2017-2018学年南京市中考数学第二次模拟试题含答案
2020-2021学年最新南京市中考数学第二次调研考试试卷及答案

数学第二次调研考试试卷一、单选题1.下列图标,是轴对称图形的是()A. B. C. D.【答案】D【考点】轴对称图形【解析】【解答】解:根据定义可得D为轴对称图形,故答案为:D.【分析】根据轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合,对各选项逐一判断。
2.如图,若A,B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A.b+aB.b-aC.a bD.【答案】B【考点】数轴及有理数在数轴上的表示,有理数的加法,有理数的减法,有理数的乘方,有理数的除法【解析】【解答】解:根据数轴可得:a+b<0;b-a>0;;计算时,如果b为偶数,则结果为正数,b为奇数时,结果为负数.故本题选B.【分析】观察数轴可得出b>0,a<0,再根据有理数的运算法则判断各选项的符号,即可求解。
3.关于代数式x+2的结果,下列说法一定正确的是()A.比2大B.比2小C.比x大D.比x小【答案】C【考点】有理数大小比较【解析】【解答】解:当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,故答案为:C.【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案。
4.如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A.①②B.①③C.②③D.①②③【答案】B【考点】二次函数y=a(x-h)^2+k的图像,二次函数y=a(x-h)^2+k的性质【解析】【解答】解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故答案为:B.【分析】观察函数图像的开口方向、与y轴的交点情况、对称轴的位置,可对①作出判断;由对称轴的情况,可对②作出判断;观察图形,可得出当x>3时,y的值小于0,综上所述,可得出答案。
历年江苏省南京市中考数学试卷(含答案)

2017 年江苏省南京市中考数学试卷一、选择题(本大题共 6 小题,每小题2 分,共12 分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2分)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是()A.7 B.8 C.21 D.362.( 2 分)计算106×(102)3÷104的结果是()A.103 B.107 C.108 D.1093.( 2 分)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有 4 个面是三角形;乙同学:它有8 条棱,该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.( 2 分)若< a< ,则下列结论中正确的是()A.1< a< 3 B.1< a< 4C.2< a< 3D.2< a< 45.( 2 分)若方程(x﹣5)2=19的两根为a和b,且a> b,则下列结论中正确的是()A. a 是19 的算术平方根B. b 是19 的平方根C.a﹣ 5 是19 的算术平方根D.b+5 是19 的平方根6.( 2 分)过三点A(2,2),B (6,2),C(4,5)的圆的圆心坐标为()A.(4,)B.(4,3)C.(5,)D.(5,3)二、填空题(本大题共10 小题,每小题2分,共20 分)7.( 2 分)计算:| ﹣3| = ;= .8.( 2 分)2016年南京实现GDP约10500亿元,成为全国第11 个经济总量超过万亿的城市,用科学记数法表示10500 是.9.( 2 分)分式在实数范围内有意义,则x的取值范围是.10.( 2 分)计算+ × 的结果是.11.( 2 分)方程﹣=0的解是.12.( 2 分)已知关于 x 的方程x 2+px+q=0 的两根为﹣3 和﹣ 1,则 p= ,q= .13.( 2分)如图是某市 2013﹣ 2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大14. ( 2 分)如图,∠1 是五边形 ABCDE 的一个外角,若∠ 1=65°,则∠ A+∠ B+∠15.( 2 分)如图,四边形 ABCD 是菱形,⊙ O 经过点 A 、 C 、 D ,与BC 相交于点E ,连接AC 、 AE .若∠ D=78°,则∠ EAC=°.16.( 2 分)函数y 1=x 与 y 2= 的图象如图所示,下列关于函数y=y 1+y 2的结C+∠D=论:①函数的图象关于原点中心对称;②当x<2 时,y随x的增大而减小;③当x> 0 时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共11 小题,共88 分)17.(7 分)计算(a+2+ )÷(a﹣).18.(7 分)解不等式组请结合题意,完成本题的解答.(1)解不等式①,得,依据是:.(2)解不等式③,得.(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.19.(7 分)如图,在?ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,B D相交于点O,求证:OE=OF.20.(8 分)某公司共25 名员工,下表是他们月收入的资料.月收入/元4500 1800 1000 550 480 340 300 2200 0 0 00000人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是元,众数是元.2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.(8 分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.(8 分)“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).23.(8 分)张老师计划到超市购买甲种文具100 个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买 1 个甲种文具,需增加购买 2 个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具.(1)①当减少购买 1 个甲种文具时,x= ,y= ;②求y 与x之间的函数表达式.(2)已知甲种文具每个 5 元,乙种文具每个 3 元,张老师购买这两种文具共用去540 元,甲、乙两种文具各购买了多少个?24.(8 分)如图,PA,PB是⊙O 的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O 于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥ AC.25.(8 分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口 A 的正南方向,港口 B 的正西方向的 D 处,它沿正北方向航行5km 到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37≈ ° 0.60,cos37≈° 0.80,tan37 °≈ 0.75)26.(8 分)已知函数y=﹣x2+(m﹣1)x+m(m 为常数).(1)该函数的图象与x 轴公共点的个数是.A.0 B.1 C.2 D.1 或 2( 2)求证:不论m 为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤ m≤ 3 时,求该函数的图象的顶点纵坐标的取值范围.27.(11 分)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD(AB> BC)(图①),使AB 与DC 重合,得到折痕EF,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB、PC,得到△PBC.(1)说明△PBC是等边三角形.【数学思考】(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC,他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm,另一边长为 a cm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm 的直角三角形铁片,所需正方形铁片的边长的最小值为cm.2017 年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共 6 小题,每小题2 分,共12 分。
南京市中考数学试卷含详细解版

江苏省南京市初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是()A. - 2B. 2C. - 8D. 8考点:有理数的加法;绝对值. 分析:先计算﹣5+3,再求绝对值即可. 解答:解:原式=|﹣2| =2. 故选B . 点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数. 2.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6 C. x ²y 9 D. -x ²y 9 考点:幂的乘方与积的乘方. 分析:根据幂的乘方和积的乘方的运算方法:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数);求出计算(﹣xy 3)2的结果是多少即可. 解答:解:(﹣xy 3)2 =(﹣x )2•(y 3)2 =x 2y 6,即计算(﹣xy 3)2的结果是x 2y 6. 故选:A . 点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn(m ,n 是正整数);②(ab )n =a n b n (n 是正整数).3.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()A. AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D. △ADE 的面积△ABC 的面积 = 13考点:相似三角形的判定与性质. 分析:第3题图DA CE由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.某市底机动车的数量是2×106辆,新增3×105辆.用科学记数法表示该市底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:底机动车的数量为:3×105+2×106=2.3×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.估计5 -12介于( )A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间考点:第6题图MGFE O CD BA N估算无理数的大小. 分析:先估算的范围,再进一步估算,即可解答.解答: 解:∵ 2.235, ∴﹣1≈1.235, ∴≈0.617,∴介于0.6与0.7之间,故选:C . 点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为() A. 133B. 92C.4313D.2 5考点:切线的性质;矩形的性质. 分析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,得到∠A=∠B=90°,CD=AB=4,由于AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE ,FBGO 是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果. 解答:解:连接OE ,OF ,ON ,OG , 在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点, ∴∠AEO=∠AFO=∠OFB=∠BGO=90°, ∴四边形AFOE ,FBGO 是正方形, ∴AF=BF=AE=BG=2, ∴DE=3,∵DM 是⊙O 的切线, ∴DN=DE=3,MN=MG , ∴CM=5﹣2﹣MN=3﹣MN ,在R t △DMC 中,DM 2=CD 2+CM 2, ∴(3+NM )2=(3﹣NM )2+42,∴NM=,∴DM=3=,故选A.点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.二.填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.考点:算术平方根;平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.若式子x+1在实数范围内有意义,则x的取值范围是.考点:二次根式有意义的条件.分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.计算5×153的结果是.考点:二次根式的乘除法.分析:直接利用二次根式的性质化简求出即可.解答:解:=×=5.故答案为:5. 点评:此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键. 10.分解因式(a - b )(a - 4b )+ab 的结果是 .考点:因式分解-运用公式法. 分析:首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可. 解答:解:(a ﹣b )(a ﹣4b )+ab =a 2﹣5ab+4b 2+ab =a 2﹣4ab+4b 2 =(a ﹣2b )2.故答案为:(a ﹣2b )2. 点评:此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .考点:解一元一次不等式组. 分析:分别解每一个不等式,再求解集的公共部分. 解答:解:,解不等式①得:x >﹣1, 解不等式②得:x <1,所以不等式组的解集是﹣1<x <1. 故答案为:﹣1<x <1. 点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 考点:根与系数的关系;一元二次方程的解. 分析:利用一元二次方程的根与系数的关系,两根的和是﹣m ,两个根的积是3,即可求解. 解答:解:设方程的另一个解是a ,则1+a=﹣m ,1×a=3,解得:m=﹣4,a=3.故答案是:3,﹣4.点评:本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A',再作点A'关于y轴的对称点,得到点A'',则点A''的坐标是( , ).考点:关于x轴、y轴对称的点的坐标.分析:分别利用x轴、y轴对称点的性质,得出A′,A″的坐标进而得出答案.解答:解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.点评:此题主要考查了关于x轴、y轴对称点的性质.(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.工种人数每人每月工资元电工 5 7000木工 4 6000瓦工 5 50001名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”).考点:方差.分析:利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大.解答:解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:增大.点评:此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键.15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= °.1y=考点:圆内接四边形的性质. 分析:连接CE ,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD ,然后求解即可. 解答:解:如图,连接CE ,∵五边形ABCDE 是圆内接五边形, ∴四边形ABCE 是圆内接四边形, ∴∠B+∠AEC=180°, ∵∠CED=∠CAD=35°, ∴∠B+∠E=180°+35°=215°. 故答案为:215.点评:本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .考点:反比例函数与一次函数的交点问题. 分析:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,由于点A 在反比例函数y 1=上,设A (a ,),求得点B 的坐标代入反比例函数的解析式即可求出结果. 解答:解:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D , ∵点A 在反比例函数y 1=上, ∴设A (a ,),∴OC=a ,AC=, ∵AC ⊥x 轴,BD ⊥x 轴, ∴AC ∥BD ,∴△OAC ∽△OBD , ∴,∵A 为OB 的中点, ∴=,∴BD=2AC=,OD=2OC=2a , ∴B (2a ,), 设y 2=, ∴k=2a •=4,∴y 2与x 的函数表达式是:y=. 故答案为:y=.点评:本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用. 三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来.考点: 解一元一次不等式;在数轴上表示不等式的解集. 分析:不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可. 解答:第17题图–1–2–31230解:去括号,得2x+2﹣1≥3x+2, 移项,得2x ﹣3x ≥2﹣2+1, 合并同类项,得﹣x ≥1, 系数化为1,得x ≤﹣1,这个不等式的解集在数轴上表示为:点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 18.(7分)解方程2x -3 = 3x考点:解分式方程. 专题: 计算题. 分析:观察可得最简公分母是x (x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程两边同乘以x (x ﹣3),得2x=3(x ﹣3). 解这个方程,得x=9.检验:将x=9代入x (x ﹣3)知,x (x ﹣3)≠0. 所以x=9是原方程的根. 点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.(7分)计算⎝⎛⎭⎫2a ²-b ² - 1a ² - ab ÷ aa +b考点:分式的混合运算. 分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可. 解答:解:(﹣)÷=[﹣]×=[﹣]×=×=.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD = CD BD. (1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.考点:相似三角形的判定与性质. 分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°. 解答:(1)证明:∵CD 是边AB 上的高, ∴∠ADC=∠CDB=90°,∵=.∴△ACD ∽△CBD ;(2)解:∵△ACD ∽△CBD , ∴∠A=∠BCD ,在△ACD 中,∠ADC=90°, ∴∠A+∠ACD=90°, ∴∠BCD+∠ACD=90°, 即∠ACB=90°. 点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.21.(8分)为了了解某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合抽样结果,得到下列统计图.第20题图A(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较与抽样学生50米跑成绩合格率情况,写出一条正确的结论.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.解答:解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与相比,该市大学生50米跑成绩合格率下降了5%(答案不唯一).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.考点:列表法与树状图法.专题:计算题.分析:(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.解答:解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.23.(8分)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km /h 和36km /h .经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 位,测得∠DBO=58°,此时B 处距离码头O 有多远?(参考数据:sin 58° ≈ 0.85,cos 58° ≈ 0.53,tan 58° ≈ 1.60)考点:解直角三角形的应用.分析:设B 处距离码头Oxkm ,分别在Rt △CAO 和Rt △DBO 中,根据三角函数求得CO 和DO ,再利用DC=DO ﹣CO ,得出x 的值即可.解答:解:设B 处距离码头Oxkm ,在Rt △CAO 中,∠CAO=45°, 东北O B A∴CO=AO •tan ∠CAO=(45×0.1+x )•tan45°=4.5+x ,在Rt △DBO 中,∠DBO=58°,∵tan ∠DBO=,∴DO=BO •tan ∠DBO=x •tan58°,∵DC=DO ﹣CO ,∴36×0.1=x •tan58°﹣(4.5+x ),∴x=≈=13.5.因此,B 处距离码头O 大约13.5km .点评:本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键.24.(8分)如图,AB ∥ CD ,点E 、F 分别在AB 、CD 上,连接EF ,∠AEF 、∠CFE 的平分线交于点G ,∠BEF 、∠DFE 的平分线交于点H .(1) 求证:四边形EGFH 是矩形.(2) 小明在完成(1)的证明后继续进行了探索.过G 作MN ∥ EF ,分别交AB 、CD 于点M 、N ,过H 作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.考点:菱形的判定;全等三角形的判定与性质;矩形的判定.分析:(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH 是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP 是菱形,只要证MN=NQ ,再证∠MGE=∠QFH 得出即可.解答:(1)证明:∵EH 平分∠BEF ,∴∠FEH=∠BEF ,∵FH 平分∠DFE ,小明的证明思路 由AB ∥CD ,MN ∥EF ,PQ ∥EF ,易证四边形MNQP 是平行四边形.要证▱MNQP 是菱形, 只要证NM=NQ .由已知条件 , MN ∥ EF ,可证NG = NF ,故只要证 GM = FQ ,即证△MGE ≌△QFH .易证 , , 故只要证 ∠MGE = ∠QFH ,∠QFH = ∠GEF ,∠QFH=∠EFH , 第24题图P H G A D C∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠EFG=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;(2)解:答案不唯一:由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证 GE=FH、∠GME=∠FGH.故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.点评:此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.25.(10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)DA考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A 为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.解答:解:满足条件的所有图形如图所示:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法.26.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB.(2)连接OE,交CD于点F,OE ⊥ CD.求证:△ABE是等边三角形.考点:圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.(第26题)EOCABD分析:(1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE ,然后利用等边对等角可得∠DCE=∠AEB ,进而可得∠A=∠AEB ;(2)首先证明△DCE 是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB ,可得△ABE 是等腰三角形,进而可得△ABE 是等边三角形.解答:证明:(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE ,∵DC=DE ,∴∠DCE=∠AEB ,∴∠A=∠AEB ;(2)∵∠A=∠AEB ,∴△ABE 是等腰三角形,∵EO ⊥CD ,∴CF=DF ,∴EO 是CD 的垂直平分线,∴ED=EC ,∵DC=DE ,∴DC=DE=EC ,∴△DCE 是等边三角形,∴∠AEB=60°,∴△ABE 是等边三角形.点评:此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义.(2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?x /kgy /元D B120 C 60 A考点:二次函数的应用.分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.解答:解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.点评:本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.。
2020年江苏省南京市中考数学模拟试题(含答案)

2020年江苏省南京市中考数学模拟试题含答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号...........涂.黑.) 1.-2的倒数是( )A .-12B .12 C .±2 D .22.函数y =x -2中自变量x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x ≠2 3.s in45°的值是( )A .12B .22C .32D .1 4.下列地方银行的标志中,既不是轴对称图形,也不是中心对称图形的是 ( )5.已知某圆锥的底面半径为3 cm ,母线长5 cm ,则它的侧面展开图的面积为( )A .30 cm 2B .15 cm 2C .30π cm 2D .15π cm 2 6.六多边形的内角和为( )A .180°B .360°C .720°D .1080° 7.已知,AB 是⊙O 的弦,且OA =AB ,则∠AOB 的度数为( )A .30°B .45°C .60°D .90°8.某区新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是 ( ) A .中位数 B .众数 C .方差 D .平均数 9.在△ABC 中,AC =4,AB =5,则△ABC 面积的最大值为( ) A .6 B .10 C .12 D .2010.直线l :y =mx -m +1(m 为常数,且m ≠0)与坐标轴交于A 、B 两点,若△AOB (O 是原点)的面积恰为2,则符合要求的直线l 有( )A .D .B .C .A .1条B .2条C .3条D .4条二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 11.分解因式:xy ―x = .12.去年无锡GDP(国民生产总值)总量实现约916 000 000 000元,该数据用科学记数法表示为 元. 13.分式方程4x = 2x +1的解是 .14.若点A (1,m )在反比例函数y =3x的图像上,则m 的值为 .15.写出命题“两直线平行,同位角相等”的结论部分: . 16.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8,E 是CD 的中点,则OE 的长等于___________.17.如图,∠A =110°,在边AN 上取B ,C ,使AB =BC .点P 为边AM 上一点,将△APB 沿PB 折叠,使点A 落在角内点E 处,连接CE ,则∠BPE +∠BCE = °.18.已知,在平面直角坐标系中,点A (4,0),点B (m ,33m ),点C 为线段OA 上一点(点O 为原点),则AB +BC 的最小值为 .三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)9- (-2)2+(-0.1)0; (2)(x ―2)2―(x +3)(x ―1).20.(本题满分8分)计算:ABC EPM N(第17题)(第16题) ABECDO(1)解不等式:5+x ≥3(x -1); (2)解方程组:⎩⎪⎨⎪⎧x =3-y , ……①2x +y =5.……②21.(本题满分8分)已知,如图,等边△ABC 中,点D 为BC 延长线上一点,点E 为CA 延长线上一点,且AE =DC ,求证:AD =BE .22.(本题满分8分)某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:成绩段 频数 频率 0≤x <20 5 0.120≤x <40 10a40≤x <60 b 0.1460≤x <80 mc 80≤x <10012n根据以上图表信息,解答下列问题:AC BDE30秒跳绳次数的频数、频率分布表30秒跳绳次数的频数分布直方图5 10 155 10161220 40 60 80 100 频数(人)跳绳次数(1)表中的a = ,m = ;(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)(3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?23.(本题满分8分)在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)24.(本题满分8分)已知,如图,线段AB ,利用无刻度的直尺和圆规,作一个满足条件的△ABC :① △ABC 为直角三角形;② tan ∠A =13.(注:不要求写作法,但保留作图痕迹)25.(本题满分8分)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,AB如图1,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形EFGH ,如图2.设小正方形的边长为x 厘米. (1)当矩形纸板ABCD 的一边长为90厘米时,求纸盒的侧面积的最大值; (2)当EH :EF =7:2,且侧面积与底面积之比为9:7时,求x 的值.26.(本题满分8分)已知二次函数y =ax 2-8ax (a <0)的图像与x 轴的正半轴交于点A ,它的顶点为P .点C 为y 轴正半轴上一点,直线AC 与该图像的另一交点为B ,与过点P 且垂直于x 轴的直线交于点D ,且CB :AB =1:7. (1)求点A 的坐标及点C 的坐标(用含a 的代数式表示);(2)连接BP ,若△BDP 与△AOC 相似(点O 为原点),求此二次函数的关系式.(图2)(图1) ABCDE FGH27.(本题满分10分)如图,一次函数y =-12x +m (m >0)的图像与x 轴、y 轴分别交于点A 、B ,点C 在线段OA 上,点C 的横坐标为n ,点D 在线段AB 上,且AD =2BD ,将△ACD 绕点D旋转180°后得到△A 1C 1D .(1)若点C 1恰好落在y 轴上,试求n m的值;(2)当n =4时,若△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,求该一次函数的解析式.O AB CD C 1 A 1 xy28.(本题满分10分)阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理——“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC 中,点D 为BC 的中点,根据“中线长定理”,可得:AB 2+AC 2=2AD 2+2BD 2.小明尝试对它进行证明,部分过程如下:解:过点A 作AE ⊥BC 于点E ,如图2,在Rt △ABE 中,AB 2=AE 2+BE 2,同理可得:AC 2=AE 2+CE 2,AD 2=AE 2+DE 2, 为证明的方便,不妨设BD =CD =x ,DE =y , ∴AB 2+AC 2=AE 2+BE 2+AE 2+CE 2=…… (1)请你完成小明剩余的证明过程;理解运用:(2) ① 在△ABC 中,点D 为BC 的中点,AB =6,AC =4,BC =8,则AD =_______;② 如图3,⊙O 的半径为6,点A 在圆内,且OA =22,点B 和点C 在⊙O 上,且∠BAC =90°,点E 、F 分别为AO 、BC 的中点,则EF 的长为________;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O 的半径为55,以A (−3,4)为直角顶点的△ABC 的另两个顶点B ,C 都在⊙O 上,D 为BC 的中点,求AD 长的最大值.请你利用上面的方法和结论,求出AD 长的最大值.ABCD (图1)ABCD E (图2)OA E CBFAB CDO xy(图4)参考答案与评分标准一、选择题:1.A 2.B 3.B 4.D 5.D 6.C 7.C 8.A 9.B 10.C 二、填空题: 11.x (y -1)12.9.16×1011 13.x =-2 14.3 15.同位角相等 16.417.70°18.2 3三、解答题:19.解:(1)原式=3-4+1 ……(3分)(2)原式=x 2-4x +4-(x 2+2x -3) …(2分)=0. ………(4分) =x 2-4x +4-x 2-2x +3…(3分)=-6x +7.……(4分)20.解:(1)5+x ≥3x -3 …(2分) (2)把①代入②,得y =1; …(2分)∴2x ≤8 …(3分) 把y =1代入①,得x =2. …(3分)∴x ≤4.…(4分) ∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =1.…(4分)21.证明:在等边△ABC 中,AB =CA ,∠BAC =∠ACB =60°,∴∠EAB =∠DCA =120°.………(2分)在△EAB 和△DCA 中,⎩⎪⎨⎪⎧AE =DC ,∠EAB =∠DCA ,AB =CA .………(5分)∴△EAB ≌△DCA ,………(6分) ∴AD =BE .………(8分) 22.(1)a =0.2,m =16;……(4分) (2)图略,柱高为7;……(6分)(3)600×16+1250=336(人).……(8分)23.解:画树状图,得(画树状图或列表正确,得5分)∵共有4种等可能的结果,其中甲队获胜的情况有1种,………(6分) ∴甲队获胜的概率为:P (甲队获胜)=14;……………………(8分)24.解:(1)延长AB 至M ,使得AM =3AB ;………(3分) (2)过点M 作MN ⊥AB ,且截取MN =AB ;………(5分)(3)过点B 作AB 的垂线,交AN 于点C .………(7分) ∴Rt △ABC 即为所求.………(8分)作出垂线或垂直,得2分;构出3倍或13,得3分;构图正确,得2分;结论1分.25.解:(1)S 侧=2[x (90-2x )+x (40-2x )] =-8x 2+260x …………………(2分)=-8(x -654)2+42252.………………………………………(3分)∵-8<0,∴当x =654时,S 侧最大=42252.…………………(4分)(2)设EF =2m ,则EH =7m ,………………………………………(5分)则侧面积为2(7mx +2mx )=18mx ,底面积为7m ·2m =14m 2, 由题意,得18mx :14m 2=9:7,∴m =x . …………………(7分) 则AD =7x +2x =9x ,AB =2x +2x =4x由4x ·9x =3600,且x >0,∴x =10.…………………………(8分)26.解:(1)P (4,-16a ),A (8,0),…………………………(2分)∵CB :AB =1:7,∴点B 的横坐标为1,…………(3分) ∴B (1,-7a ),∴C (0,-8a ).………………………(4分) (2)∵△AOC 为直角三角形,∴只可能∠PBD =90°,且△AOC ∽△PBD .………(5分) 设对称轴与x 轴交于点H ,过点B 作BF ⊥PD 于点F ,易知,BF =3,AH =4,DH =-4a ,则FD =-3a ,∴PF =-9a , 由相似,可知:BF 2=DF ·PF ,∴9=-9a ·(-3a ),……(6分)ABMNC 第2局 第3局甲乙甲乙甲 乙∴a =33, a =-33(舍去).…………………(7分) ∴y =-33x 2-833x .…………………(8分) 27.解:(1)由题意,得B (0,m ),A (2m ,0).……………………………(1分)如图,过点D 作x 轴的垂线,交x 轴于点E ,交直线A 1C 1于点F , 易知:DE =23m ,D (23m ,23m ) ,C 1(43m -n ,43m ).………………(3分)∴43m -n =0,∴n m =43;……………………………………………(4分) (2)由(1)得,当m >3时,点C 1在y 轴右侧;当2<m <3时,点C 1在y 轴左侧.① 当m >3时,设A 1C 1与y 轴交于点P ,连接C 1B ,由△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,∴S △BA 1P :S △BC 1P =3:1, ∴A 1P :C 1P =3,∴23m =3(43m -4),∴m =185.……………………(6分)∴y =-12x +185.………………………………………………………(7分)② 当2<m <3时,同理可得:y =-12x +187.……(10分)(参照①给分)综上所述,y =-12x +187或y =-12x +185.28.解:(1)∴AB 2+AC 2=2AE 2+(x +y )2+(x -y )2=2AE 2+2x 2+2y 2=2AE 2+2BD 2+2DE 2=2AD 2+2BD 2.………………(3分) (2)①10;②4;………………(7分)(3)连接OA ,取OA 的中点E ,连接DE .………………(8分)由(2)的②可知:DE =152,………………(9分)在△ADE 中,AE =52, DE =152,∴AD 长的最大值为52+152=10.……(10分)注:只写答案,只给1分.。
无锡XX学校2017—2018学年中考二模考试数学试卷 有答案

无锡XX 学校2017—2018学年度第二学期二模考试初三数学试卷2018.5一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.﹣2的相反数是 A .2B .﹣2C .12D .12- 2.下列图形中,既是轴对称图形,又是中心对称图形的是A B C D3.函数5x y -=中自变量x 的取值范围是 A .5x ≠B .5x ≠-C .5x >D .5x ≥4.下列运算中,正确的是A .3253()a b a b =B .3412a a a ⋅=C .43a a a ÷=D .224a a a += 5.一个多边形的内角和等于它的外角和,则这个多边形的边数为 A .3B .4C .5D .66.已知圆锥的高为4,底面圆的半径为3,则该圆锥的全面积为 A .15πB .24πC .21πD .20π7.如图,在菱形ABCD 中,点M ,N 在对角线AC 上,且ME ⊥AD 于E ,NF ⊥AB 于F ,若ME =MN =2,NF =3,则AN 的值为 A .3B .4C .5D .6第7题第8题第10题8.如图,已知⊙O 的直径AB ,BC 是⊙O 的弦,过点C 的切线交BA 的延长线于点D ,且∠BCD =105°,OD =2,则AD 的长是A .3C .23-D .232 9.已知反比例函数2(0)y x x=>的图像与一次函数(3)3(0)y k x k =-+>的图像有且只有一个交点P ,则P 的横坐标m 的取值范围是 A .233m ≤≤B .233m <<C .03m <≤D .03m << 10.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD 上的一点,连结CP ,将△BCP 沿着直线CP 翻折,若点B 落在边AD 上的点E 处,且EP ∥AB ,则AB 的长等于A C D 二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.因式分解:244a b ab b -+=▲. 12.2月7日晚,据央视数据显示,《中国诗词大会》这个节目全部10期累计收看观众达到11.63亿人次,其中11.63亿用科学记数法可表示为▲. 13.分式方程21124x x x -=--的解是▲. 14.某公司全体员工年薪的具体情况如下表:年薪/万元30 14 9 6 4 3.5 3 员工数/人1 1 12 7 6 2 则该公司全体员工年薪的平均数比中位数多▲万元.15.命题“若m <n ,则m ²<n ²”的逆命题是▲命题(填“真”或“假”).16.如图,点A 、B 、C 、D 在⊙O 上,OB ⊥AC ,连结OC ,若∠BOC =58°,则∠ADB 的度数为▲.17.如图所示,正方形ABCD 的顶点A 、B 与正方形EFGH 的顶点G 、H 同在一段抛物线上,且抛物线的顶点在CD 上,若正方形ABCD 的边长为10,则正方形EFGH 的边长为▲.18.在△ABC 中,∠ABC =60°,BC =8,AC =10,点D 、E 在AB 、AC 边上,且AD =CE ,则CD +BE 的最小值为▲.第16题第17题第18题三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算与化简:(1)011327tan 30(2018)()3π--+︒--+;(2)2(3)(2)a a a ++-. 20.(本题满分8分)(1)解不等式:11123x x +-+≤;(2)解方程:2410x x --=. 21.(本题满分6分)如图,已知在△ABC 中,∠B =45°,点D 是BC 边的中点,DE ⊥BC 于点D ,交AB 于点E ,连结CE . (1)求∠AEC 的度数;(2)请你判断AE 、BE 、AC 三条线段之间的等量关系,并证明你的结论.22.(本题满分8分)已知:如图,在△ABC 中,∠C =90°,请利用没有刻度的直尺和圆规,按下列要求作图(注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注).(1)作出斜边AB 边上的高CD ;(2)过点A 作一射线分别交线段CD 、线段CB 于点P 、点Q ,且使得CP =CQ ; (3)若CA =4,CB =3,则CP =▲.23.(本题满分8分)我国二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,随机对本校部分同学进行了问卷调查,同学们对父母生育二孩所持的态度,分别为“非常赞同”、“赞同”、“无所谓”、“不赞同”等四种态度,现将调查统计结果制成了如图两幅统计图.请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共随机调查了▲名学生; (2)请补全条形统计图和扇形统计图;(3)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”态度的是多少名学生? 24.(本题满分8分)甲、乙、丙三人到东方大厦购物,他们同时在该商场的楼上车库等电梯,三人都任意从1至3层的某一层出电梯.(1)求甲、乙两人从同一层楼出电梯的概率(请用“画树状图”或“列表”等方法写出分析过程); (2)甲、乙、丙三人从同一层楼出电梯的概率为▲. 25.(本题满分8分)无锡市为了节约用水,规定:每户每月用水量不超过最低限量a m 3时,只付基本费8元和定额损耗费c 元(c ≤5);若用水量超过a m 3时,除了付基本费和损耗费外,超过部分每1 m 3付b 元的超额费.萌萌家今年月份 用水量(m 3)交水费(元)一月份 9 9 二月份 15 19 三月份2233(1b 、c 表示); (2)根据表格中的数据,求a 、b 、c 的值;(3)萌萌家今年四月份的用水量30 m 3,应交水费用多少元? 26.(本题满分10分)经过原点的抛物线22(1)y x mx m =-+>与x 轴的另一个交点为A ,过点P(1,m )作直线PM ⊥x 轴于M ,交抛物线于B ,点B 关于抛物线对称轴的对称点为C (B 、C 不重合),连结CB ,CP .(1)若△PBC 面积为4,求抛物线的解析式;(2)若将PC 绕P 旋转90°,点C 恰好落在坐标轴上,求抛物线的解析式.27.(本题满分10分)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“限定圆”.如图为点A,B的“限定圆”的示意图.(1)已知点A的坐标为(﹣1,0),点B的坐标为(4,4),则点A,B的“限定圆”的面积为▲;(2)已知点A的坐标为(0,0),若直线12y x b=+上只存在一个点B,使得点A,B的“限定圆”的面积为16π,求点B的坐标;(3)已知点A在以P(m,0)为圆心,1为半径的圆上,点B在直线323 y x=+点A,B的“限定圆”的面积都不小于16π,请求出m的范围.28.(本题满分10分)如图,在平面直角坐标系中,O为原点,平行四边形OABC的顶点A在x轴的正半轴上,OA=2,OC=1,且OC⊥AC,点P、Q分别是边BC,边AB上的点,连结AC、PQ,点B1是点B关于PQ的对称点.(1)当点Q与点A重合时,且点B1落在OA上,求点B1的坐标;(2)过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的最大值与最小值.参考答案三、解答题 19.(1)8;(2)89a +.20.(1)1x ≤;(2)125x =225x = 21.(1)90°;(2)DE 的长为222AE BE AC +=.22.(1)垂规作图作高;(2)垂规作图作∠BAC 的平分线;(3)43. 23.(1)50;(2)补全统计图,赞同标20,扇形统计图中赞同40%,非常赞同20%,无所谓30%; (3)1200名.24.(1)13;(2)19. 25.(1)8,8,c x ay bx ab c x a +≤⎧=⎨-++>⎩;(2)a =10,b =2,c =1;(3)49元. 26.(1)26y x x =-+; (2)24y x x =-+. 27.(1)41π; (2)(455-,855)或(55,855-); (3)m ≤﹣2或m ≥14.28.(1)(1,0); (2)3331715(7)1427n m =≤≤+;33153()24142n m m =-+≤≤.。
2017年江苏省各市中考数学试题汇总(13套)

文件清单:2017年中考真题精品解析数学(江苏无锡卷)(含答案)2017年中考真题精品解析数学(江苏连云港卷)(含答案)2017年江苏省徐州市中考数学试卷(含答案)2017年江苏省淮安市中考数学试卷(含答案)2017年江苏省盐城市中考数学试卷(含答案)2017年苏州市初中毕业暨升学考试试卷(含答案)2017年南京市初中毕业生学业考试(含答案)2017年江苏省南通市中考数学试题(含答案)2017年江苏省常州市中考数学试题及答案(含答案)2017年江苏省扬州市中考数学试题(含答案)2017年江苏省泰州市中考数学试题(含答案)2017年江苏省镇江市中考数学试题(含答案)2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣152.函数=2-xy x 中自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x >23.下列运算正确的是( )A .(a 2)3=a 5B .(ab )2=ab 2C .a 6÷a 3=a 2D .a 2•a 3=a 54.下列图形中,是中心对称图形的是( )A .B .C .D .5.若a ﹣b=2,b ﹣c=﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣56.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.3210.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A.2 B.54C.53D.75二、填空题(本大题共8小题,每小题2分,共16分)11.计算123的值是.12.分解因式:3a2﹣6a+3=.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.若反比例函数y=kx的图象经过点(﹣1,﹣2),则k的值为.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由»AE,EF,»FB,AB所围成图形(图中阴影部分)的面积等于.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x =+21.已知,如图,平行四边形ABCD 中,E 是BC 边的中点,连DE 并延长交AB 的延长线于点F ,求证:AB=BF .22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(63,则点M的坐标为.x图象上异于原点O的任意一点,经过T变换后得到点B.(2)A是函数y=32①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号A型B型处理污水能力(吨/月)240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣15【答案】D .【解析】试题解析:∵﹣5×(﹣15)=1,∴﹣5的倒数是﹣15.故选D .考点:倒数2.函数=2-xy x 中自变量x 的取值范围是()A .x ≠2B .x ≥2C .x ≤2D .x >2【答案】A .考点:函数自变量的取值范围.3.下列运算正确的是( )A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【答案】D.【解析】试题解析:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.4.下列图形中,是中心对称图形的是()A.B.C.D.【答案】C.考点:中心对称图形.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【答案】B【解析】试题解析:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B考点:整式的加减.6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分)70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【答案】A.考点:1.中位数;2.算术平均数.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【答案】C.【解析】试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,=0.5=50%,x2=﹣2.5(不合题意舍去),解得:x1答即该店销售额平均每月的增长率为50%;故选C.考点:一元二次方程的应用.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【答案】B.故选B.考点:命题与定理.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.32【答案】C.【解析】试题解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH=22AD DH-=12,∴HB=AB﹣AH=8,在Rt△BDH中,BD=2285DH BH+=,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,考点:1.切线的性质;2.菱形的性质.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A .2B .54C .53D .75【答案】D .【解析】试题解析:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴BC=2234+=5,∵CD=DB ,∴AD=DC=DB=52,∵12•BC•AH=12•AB•A C ,∴AH=125,在Rt △BCE 中,22222475()55BC BE -=-= .故选D.考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.二、填空题(本大题共8小题,每小题2分,共16分)11.计算123⨯的值是.【答案】6.【解析】试题解析:123⨯==6.⨯=12336考点:二次根式的乘除法.12.分解因式:3a2﹣6a+3=.【答案】3(a﹣1)2.考点:提公因式法与公式法的综合运用.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.【答案】2.5×105.【解析】试题解析:将250000用科学记数法表示为:2.5×105.考点:科学记数法—表示较大的数.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.【答案】11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.的图象经过点(﹣1,﹣2),则k的值为.15.若反比例函数y=kx【答案】2.【解析】试题解析:把点(﹣1,﹣2)代入解析式可得k=2.考点:待定系数法求反比例函数解析式.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为c m2.【答案】15π.考点:圆锥的计算.17.如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB 在圆心O 1和O 2的同侧),则由»AE,EF ,»FB ,AB 所围成图形(图中阴影部分)的面积等于 .【答案】534﹣6.【解析】试题解析:连接O 1O 2,O 1E ,O 2F ,则四边形O 1O 2FE 是等腰梯形,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,∴四边形EGHF 是矩形, ∴GH=EF=2, ∴O 1G=12, ∵O 1E=1,∴GE=32,∴1112O G O E =; ∴∠O 1EG=30°, ∴∠AO 1E=30°, 同理∠BO 2F=30°,∴阴影部分的面积=S 矩形ABO2O1﹣2S 扇形AO1E ﹣S 梯形EFO2O1=3×1﹣2×2301360π⨯⨯=12(2+3)×32=3﹣534﹣6π. 考点:1.扇形面积的计算;2.矩形的性质.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于 .【答案】3. 【解析】试题解析:平移CD 到C ′D ′交AB 于O ′,如图所示,则∠BO ′D ′=∠BOD , ∴tan ∠BOD=tan ∠BO ′D ′, 设每个小正方形的边长为a ,则O ′B=22(2)5a a a +=,O ′D ′=22(2a)(2)22a a +=,BD ′=3a , 作BE ⊥O ′D ′于点E , 则BE=3a 232222BD O F a aO D a''==''g , ∴O ′E=2222322(5)()22a a O B BE a '-=-=, ∴tanBO ′E=32a2322BE O E a==',∴tan ∠BOD=3.考点:解直角三角形.三、解答题(本大题共10小题,共84分) 19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b )(a ﹣b )﹣a (a ﹣b ) 【答案】(1)-1;(2)ab ﹣b 2考点:1.平方差公式;2.实数的运算;3.单项式乘多项式;4.零指数幂.20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x=+【答案】(1)﹣1<x≤6;(2)x=13.(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.考点:1.解分式方程;3.解一元一次不等式组.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB 的延长线于点F,求证:AB=BF.【答案】证明见解析.【解析】试题分析:根据线段中点的定义可得CE=BE ,根据平行四边形的对边平行且相等可得AB ∥CD ,AB=CD ,再根据两直线平行,内错角相等可得∠DCB=∠FBE ,然后利用“角边角”证明△CED 和△BEF 全等,根据全等三角形对应边相等可得CD=BF ,从而得证.学科网 试题解析:∵E 是BC 的中点, ∴CE=BE ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∴∠DCB=∠FBE , 在△CED 和△BEF 中,DCA=FBE CE=BECED=BEF ⎧∠∠⎪⎨⎪∠∠⎩, ∴△CED ≌△BEF (ASA ), ∴CD=BF , ∴AB=BF .考点:1.平行四边形的性质;2.全等三角形的判定与性质.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】1.3考点:列表法与树状图法.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【答案】(1)4556;600;(2)补图见解析;(3)①(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.考点:条形统计图.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(6,﹣3),则点M的坐标为.(2)A是函数y=32x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【答案】(1)Q(a+32b,12b);M(9,﹣23);(2)①y=37x;②34试题解析:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=12PC=12b,DQ=32PQ=32b,∴Q(a+32b,12b);(2)①∵A是函数y=32x图象上异于原点O的任意一点,∴可取A(2,3),∴2+32×3=72,12×3=32,∴B (72,2),设直线OB 的函数表达式为y=kx ,则72k=2,解得k=7,∴直线OB 的函数表达式为y=7x ;②设直线AB 解析式为y=k ′x+b ,把A 、B坐标代入可得2+722k b k b ⎧'⎪⎨'+=⎪⎩,解得3k b ⎧'=-⎪⎪⎨⎪=⎪⎩,∴直线AB 解析式为y=﹣3x+3,∴D (0,3),且A (2,B (72,2),∴,,∴OAB OAD S AB 3===S AD 4V V . 考点:一次函数综合题.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A 型 B 型 处理污水能力(吨/月)240180已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元,售出的1台A 型、4台B 型污水处理器的总价为42万元. (1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【答案】(1) 设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;(2)(2)由于求至少要支付的钱数,可知购买6台A 型污水处理器、3台B 型污水处理器,费用最少,进而求解即可.试题解析:(1)可设每台A 型污水处理器的价格是x 万元,每台B 型污水处理器的价格是y 万元,依题意有2+3=44+4=42x y x y ⎧⎨⎩,解得=10=8x y ⎧⎨⎩.答:设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;考点:1.一元一次不等式的应用;2.二元一次方程组的应用.27.如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A ,B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C ,D 两点(点C 在点D 的上方),直线AC ,DB 交于点E .若AC :CE=1:2. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.【答案】(1) P (1,0).(2) y=28x 2﹣24x ﹣1528.【解析】试题分析:(1)如图,作EF ⊥y 轴于F ,DC 的延长线交EF 于H .设H (m ,n ),则P (m ,0),PA=m+3,PB=3﹣m .首先证明△ACP ∽△ECH ,推出12AC PC AP CE CH HE ===,推出CH=2n ,EH=2m=6,再证明△DPB ∽△DHE ,推出144PB DP n EH DH n ===,可得3-1264m m =+,求出m 即可解决问题;(2)由题意设抛物线的解析式为y=a (x+3)(x ﹣5),求出E 点坐标代入即可解决问题.∴12AC PC AP CE CH HE ===, ∴CH=2n ,EH=2m=6, ∵CD ⊥AB , ∴PC=PD=n , ∵PB ∥HE ,∴△DPB ∽△DHE , ∴144PB DP n EH DH n ===, ∴3-1264m m =+,∴m=1, ∴P (1,0).(2)由(1)可知,PA=4,HE=8,EF=9, 连接OP ,在Rt △OCP 中,PC=2222OC OP -=∴2,2∴E(9,62),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,62)代入得到a=28,∴抛物线的解析式为y=28(x+3)(x﹣5),即y=28x2﹣24x﹣1528.考点:圆的综合题.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【答案】(1) 83;(2) 477≤m<47.【解析】试题分析:(1)只要证明△ABD∽△DPC,可得AD ABCD PD,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3试题解析:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ ⊥BC 于Q ,EM ⊥DC 于M .则EQ=3,CE=DC=4易证四边形EMCQ 是矩形, ∴CM=EQ=3,∠M=90°, ∴EM=2222437EC CM -=-=,∵∠DAC=∠EDM ,∠ADC=∠M , ∴△ADC ∽△DME ,AD DGDM EM=, ∴77AD =,∴AD=47,由△DME ∽△CDA , ∴DM EM =CD AD, ∴71=4AD,∴AD=47,综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,这样的m 的取值范围477≤m <47.考点:四边形综合题.2017年江苏省连云港市中考数学试题数学试题一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2的绝对值是( ) A.2-B.2C.12-D.122.计算2a a ×的结果是( ) A.aB.2aC.22aD.3a3.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数4.如图,已知ABC DEF △∽△,:1:2AB DE =,则下列等式一定成立的是( )A.12BC DF=B.12A D =∠的度数∠的度数C.12ABC DEF =△的面积△的面积D.12ABC DEF =△的周长△的周长5.由6个大小相同的正方体塔成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则( )A.三个视图的面积一样大 C.主视图的面积最小 C.左视图的面积最小D.俯视图的面积最小6.8( )A.8826C.822=?D.837.已知抛物线()20y ax a =>过()12,A y -,()21,B y 两点,则下列关系式一定正确的是( ) A.120y y >>B.210y y >>C.120y y >>D.210y y >>8.如图所示,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点2017A 处,则点2017A 与点0A 间的距离是( )A.4B.23C.2D.0二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.使分式11x -有意义的x 的取值范围是 . 10.计算()()22a a -+= .11.截至今年4月底,连云港市中哈物流合作基地累计完成货物进,出场量6800000吨,数据6 800 000用科学计数法可表示为 .12.已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是 . 13.如图,在平行四边形ABCD 中,AE BC ^于点E ,AF CD ^于点F ,若60EAF =∠°,则B =∠ .14.如图,线段AB 与O ⊙相切于点B ,线段AO 与O ⊙相交于点C ,12AB =,8AC =,则O ⊙的半径长为 .15.设函数3y x=与26y x =--的图象的交点坐标为(),a b ,则12a b+的值是 .16.如图,已知等边三角形OAB 与反比例函数()0,0k y k x x=>>的图象交于A ,B 两点,将OAB △沿直线OB 翻折,得到OCB △,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC的值为 .(已知62sin154-=°)三、解答题 (本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:()()0318 3.14p ---+-.18.化简:211a a a a-×-.19.解不等式组:()3143216x x x ì-+<ïí--?ïî.20.某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x 分(60100x#).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.根据以上信息解答下列问题: (1)统计表中c 的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?21.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.如图,已知等腰三角形ABC中,AB AC=,点D,E分别在边AB、AC上,且AD AE=,连接BE、CD,交于点F.(1)判断ABE∠的数量关系,并说明理由;∠与ACD(2)求证:过点A、F的直线垂直平分线段BC.23.如图,在平面直角坐标系xOy中,过点()A-的直线交y轴正半轴于点B,2,0将直线AB绕着点O顺时针旋转90°后,分别与x轴y轴交于点D、C.(1)若4OB=,求直线AB的函数关系式;(2)连接BD,若ABD△的面积是5,求点B的运动路径长.24.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.25.如图,湿地景区岸边有三个观景台A、B、C.已知1400AC=米,AB=米,1000B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求ABC△的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD.试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.20.80°≈,cos60.70.49°≈,°≈,sin66.10.91°≈,sin60.70.87°≈,cos53.20.60≈)cos66.10.41°≈,2 1.41426.如图,已知二次函数()230y axbx a =++?的图象经过点()3,0A ,()4,1B ,且与y 轴交于点C ,连接AB 、AC 、BC . (1)求此二次函数的关系式;(2)判断ABC △的形状;若ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标; (3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE DG =. 求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH BF ¹,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点1A 、1B 、1C 、1D ,得到矩形1111A B C D .如图2,当AH BF >时,若将点G 向点C 靠近(DG AE >),经过探索,发现:11112ABCD A B C D EFGH S S S =+矩形矩形四边形.如图3,当AH BF >时,若将点G 向点D 靠近(DG AE <,请探索EFGH S 四边形、ABCD S 矩形与1111A B C D S 矩形之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题.(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH BF >,AE DG >,11EFGH S =四边形,29HF ,求EG 的长.(2)如图5,在矩形ABCD中,3AD=,点E、H分别在边AB、AD上,1AB=,5BE=,FG=,连接EF、HG,请DH=,点F、G分别是边BC、CD上的动点,且102直接写出四边形EFGH面积的最大值.一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 2的绝对值是( ) A.2-B.2C.12-D.12【答案】B 【解析】试题分析:根据绝对值的性质,一个正数的绝对值为本身,可知2的绝对值为2. 故选:B 考点:绝对值2. 计算2a a ×的结果是( ) A.aB.2aC.22aD.3a【答案】D考点:同底数幂相乘3. 小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数。
2020-2021学年江苏省南京市中考数学二模试卷(2)及答案解析
江苏省南京市中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)据报道,截止2016年12月27日,根据江苏作家张嘉佳小说改编的电影《摆渡人》累计票房达32800万元,用科学记数法表示32800万元是()A.328×106元B.32.8×107元C.3.28×108元D.0.328×109元2.(2分)下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)计算3﹣2的结果是()A.﹣6 B.C.D.﹣4.(2分)使式子有意义的x的取值范围是()A.x>1B.x<1C.x≠1D.x≥15.(2分)一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A.B.C.D.6.(2分)下列关于正方形的叙述,正确的是()A.正方形有且只有一个内切圆B.正方形有无数个外接圆C.对角线相等且垂直的四边形是正方形D.用一根绳子围成一个平面图形,正方形的面积最大二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)的相反数是,的倒数是.8.(2分)若△ABC∽△DEF,请写出1个正确的结论:.9.(2分)把4x2﹣16因式分解的结果是.10.(2分)已知x1、x2是一元二次方程x2+x﹣5=0的两个根,则x12+x22﹣x1x2= .11.(2分)已知点A(3,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是.12.(2分)如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2= °.13.(2分)如图,顺次连接菱形ABCD的各边中点E、F、G、H.若AC=a,BD=b,则四边形EFGH的面积是.14.(2分)如图,△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在OA上.将△COD绕点O顺时针旋转一周,在旋转过程中,当旋转角是°时,CD∥AB.15.(2分)平面直角坐标系中,原点O关于直线y=﹣x+4对称点O1的坐标是.16.(2分)定点O、P的距离是5,以点O为圆心,一定的长为半径画圆⊙O,过点P作⊙O的两条切线,切点分别是B、C,则线段BC的最大值是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:,其中x=3.18.(7分)(1)解不等式﹣≤1,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是.19.(6分)QQ运动记录的小莉爸爸2月份7天步行的步数(单位:万步)如下表:日期2月6日2月7日2月8日2月9日2月10日2月11日2月12日步数2.1 1.7 1.8 1.9 2.0 1.8 2.0(2)求小莉爸爸这7天中每天步行的平均步数;(3)估计小莉爸爸2月份步行的总步数.20.(7分)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在黑色区域的概率.21.(7分)如图①,窗帘的褶皱是指按照窗户的实际宽度将窗帘布料以一定比例加宽的做法,褶皱之后的窗帘更能彰显其飘逸、灵动的效果.其中,窗宽度的1.5倍为平褶皱,窗宽度的2倍为波浪褶皱.如图②,小莉房间的窗户呈长方形,窗户的宽度(AD)比高度(AB)的少0.5m,某种窗帘的价格为120元/m2.如果以波浪褶皱的方式制作该种窗帘比以平褶皱的方式费用多180元,求小莉房间窗户的宽度与高度.22.(7分)如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是200m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少m?(用含α、β的式子表示)23.(8分)命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).已知:如图,△ABC中,∠B=∠C.求证:AB=AC.三位同学作出了三种不同的辅助线,并完成了命题的证明.小刚的方法:作∠BAC 的平分线AD,可证△ABD≌△ACD,得AB=AC;小亮的方法:作BC边上的高AD,可证△ABD≌△ACD,得AB=AC;小莉的方法:作BC边上的中线AD.(1)请你写出小刚与小亮方法中△ABD≌△ACD的理由:;(2)请你按照小莉的思路完成命题的证明.24.(8分)已知:如图,△ABC的外接圆是⊙O,AD是BC边上的高.(1)请用尺规作出⊙O(不写作法,保留作图痕迹);(2)若AB=8,AC=6,AD=5.4,求⊙O的半径.25.(10分)快车和慢车同时从甲地出发,匀速行驶,快车到达乙地后,原路返回甲地,慢车到达乙地停止.图①表示两车行驶过程中离甲地的路程y(km)与出发时间x(h)的函数图象,请结合图①中的信息,解答下列问题:(1)快车的速度为km/h,慢车的速度为km/h,甲乙两地的距离为km;(2)求出发多长时间,两车相距100km;(3)若两车之间的距离为s km,在图②的直角坐标系中画出s(km)与x(h)的函数图象.26.(10分)如图,二次函数y=ax2+bx﹣4的图象经过A(﹣1,0)、B(4,0)两点,于y轴交于点D.(1)求这个二次函数的表达式;(2)已知点C(3,m)在这个二次函数的图象上,连接BC,点P为抛物线上一点,且∠CBP=60°.①求∠OBD的度数;②求点P的坐标.27.(12分)【问题提出】我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.【初步思考】在一个四边形中,我们把“一组对边平行、一组对边相等、一组对角相等或一条对角线被另一条对角线平分”称为一个条件.如图1,四边形ABCD中,我们用符号语言表示出所有的8个条件:①AB=CD;②AD=BC;③AB∥CD;④AD∥BC;【深入探究】小莉所在学习小组进行了研究,她们认为2个条件可分为以下六种类型:Ⅰ关于对边的2个条件;Ⅱ关于对角的2个条件;Ⅲ关于对角线的2个条件;Ⅳ关于边的条件与角的条件各1个;Ⅴ关于边的条件与对角线的条件各1个;Ⅵ关于角的条件与对角线的条件各1个.(1)小明认为“Ⅰ关于对边的2个条件”可分为“①②,③④,①③,①④”共4种不同种类的情形.请你仿照小明的叙述对其它五种类型进一步分类.(2)小红认为有4种情形是平行四边形的判定依据.请你写出其它的三个判定定理.定义:两组对边分别平行的四边形是平行四边形;定理1:;定理2:;定理3:.(3)小刚认为除了4个判定依据外,还存在一些真命题,他写出了其中的1个,请证明这个真命题,并仿照他的格式写出其它真命题(无需证明):真命题1:四边形ABCD中,若∠BAD=∠BCD,∠ABC=∠ADC,则四边形ABCD是平行四边形.(4)小亮认为,还存在一些假命题,他写出了其中的1个,并举反例进行了说明,请你仿照小亮的格式写出其它假命题并举反例进行说明.假命题1:四边形ABCD中,若AB=CD,AD∥BC,则四边形ABCD不一定是平行四边形.反例说明:如图2,四边形ABCD中,AB=CD,AD∥BC,显然四边形ABCD不是平行四边形.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)据报道,截止2016年12月27日,根据江苏作家张嘉佳小说改编的电影《摆渡人》累计票房达32800万元,用科学记数法表示32800万元是()A.328×106元B.32.8×107元C.3.28×108元D.0.328×109元【解答】解:将32800万用科学记数法表示为:3.28×108,故选:C.2.(2分)下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.3.(2分)计算3﹣2的结果是()A.﹣6 B.C.D.﹣【解答】解:3﹣2=,故选:C.4.(2分)使式子有意义的x的取值范围是()A.x>1B.x<1C.x≠1D.x≥1【解答】解:根据题意,得2x﹣2≥0,解得,x≥1.故选:D.5.(2分)一块长方形菜园,长是宽的3倍,如果长减少3米,宽增加4米,这个长方形就变成一个正方形.设这个长方形菜园的长为x米,宽为y米,根据题意,得()A.B.C.D.【解答】解:设这个长方形菜园的长为x米,宽为y米,根据题意,得.故选:B.6.(2分)下列关于正方形的叙述,正确的是()A.正方形有且只有一个内切圆B.正方形有无数个外接圆C.对角线相等且垂直的四边形是正方形D.用一根绳子围成一个平面图形,正方形的面积最大【解答】解:A、正确.正方形有且只有一个内切圆;B、错误.正方形有且只有一个外接圆;C、错误.对角线相等且垂直的四边形不一定是正方形;D、错误.用一根绳子围成一个平面图形,圆形的面积最大;故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)的相反数是﹣,的倒数是.【解答】解:的相反数是﹣,倒数是.故答案为﹣,.8.(2分)若△ABC∽△DEF,请写出1个正确的结论:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F,==等.【解答】解:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F,==等;故答案为:答案不唯一,如:∠A=∠D,∠B=∠E,∠C=∠F,==等.9.(2分)把4x2﹣16因式分解的结果是4(x+2)(x﹣2).【解答】解:原式=4(x2﹣4)=4(x+2)(x﹣2)故答案为:4(x+2)(x﹣2)10.(2分)已知x1、x2是一元二次方程x2+x﹣5=0的两个根,则x12+x22﹣x1x2= 16 .【解答】解:根据题意得x1+x2=﹣1,x1x2=﹣5,所以x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=(﹣1)2﹣3×(﹣5)=16.故答案为16.11.(2分)已知点A(3,y1)、B(m,y2)是反比例函数y=的图象上的两点,且y1<y2.写出满足条件的m的一个值,m可以是2(答案不唯一).【解答】解:∵y=的图象位于一三象限,点A在第一象限,∴y1>0,y随x的增大而减小.∵当m<0时,点B位于第三象限,∴y2<0.故假设不成立.当m>0时,点B位于第一象限,∴y2>0.又∵y1<y2,∴m<3.∴0<m<3.所以m的值可为2.故答案为:2.12.(2分)如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2= 220 °.【解答】解:如图,∵直线b平移后得到直线a,∴a∥b,∴∠1+∠4=180°,即∠4=180°﹣∠1,∵∠5=∠3=40°,∴∠2=∠4+∠5=180°﹣∠1+40°,∴∠1+∠2=220°.故答案为220.13.(2分)如图,顺次连接菱形ABCD的各边中点E、F、G、H.若AC=a,BD=b,则四边形EFGH的面积是ab .【解答】解:∵点E、F分别是菱形AB、BC边上的中点,∴EF是△ABC的中位线,∴EF=AC,且EF∥AC.同理,HG=AC,且HG∥AC,∴EF=HG,且EF∥HG.∴四边形EFGH是平行四边形.∴EH∥FG,EH=FG=BD.又∵四边形ABCD是菱形,∴AC⊥BD,∴EF⊥EH,∴四边形EFGH的面积=EF•EH=a•b=ab.故答案是:ab.14.(2分)如图,△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在OA上.将△COD绕点O顺时针旋转一周,在旋转过程中,当旋转角是100或280 °时,CD∥AB.【解答】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角为270°+10°=280°,综上所述,当旋转角为100°或280°时,边CD恰好与边AB平行.故答案为:100或280.15.(2分)平面直角坐标系中,原点O关于直线y=﹣x+4对称点O1的坐标是(,).【解答】解:如图,∵原点O关于直线y=﹣x+4对称点O1,∴OO1⊥AB,设O1O与直线y=﹣x+4的交点为D,作O1E⊥x轴于E,由直线y=﹣x+4可知A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,∵S△AOB=OA•OB=AB•OD,∴OD==,∴OO1=,∵∠ADO=∠O1EO=90°,∠AOD=∠EOO1,∴△AOD∽△O1OE,∴=,即=,∴OE=,∴O1E==,∴点O1的坐标是(,),故答案为(,).16.(2分)定点O、P的距离是5,以点O为圆心,一定的长为半径画圆⊙O,过点P作⊙O的两条切线,切点分别是B、C,则线段BC的最大值是 5 .【解答】解:∵PC、PB是⊙O的切线,∴∠PCO=∠PBO=90°,∴点C、B在以OP为直径的圆上,∵BC是这个圆的弦,∴当BC=OP=5时,BC的值最大(直径是圆中最长的弦).故答案为5.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:,其中x=3.【解答】解:原式=+•=+1=,当x=3时,原式==2.18.(7分)(1)解不等式﹣≤1,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是﹣4<a≤﹣3 .【解答】解:(1)∵2x﹣3(x﹣1)≤6,∴2x﹣3x+3≤6,解得x≥﹣3,这个不等式的解集在数轴上表示如下:.(2)∵关于x的一元一次不等式x≥a只有3个负整数解,∴关于x的一元一次不等式x≥a的3个负整数解只能是﹣3、﹣2、﹣1,∴a的取值范围是:﹣4<a≤﹣3.故答案为:﹣4<a≤﹣3.19.(6分)QQ运动记录的小莉爸爸2月份7天步行的步数(单位:万步)如下表:日期2月6日2月7日2月8日2月9日2月10日2月11日2月12日步数2.1 1.7 1.8 1.9 2.0 1.8 2.0(2)求小莉爸爸这7天中每天步行的平均步数;(3)估计小莉爸爸2月份步行的总步数.【解答】解:(1)用折线统计图表示小莉爸爸这7天内步行的步数如下:;(2)小莉爸爸这7天内每天步行的平均步数为:=×(2.1+1.7+1.8+1.9+2.0+1.8+2.0)=1.9(万步).(3)小莉爸爸2月份步行的步数约为:1.9×28=53.2(万步).20.(7分)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在黑色区域的概率.【解答】解:由图得:白色扇形的圆心角为120°,故转动一次,指针指向白色区域的概率为:=,则转动一次,指针指向阴影区域的概率为:,故让转盘自由转动两次.指针一次落在黑色区域,另一次落在白色区域的概率是:2××=.21.(7分)如图①,窗帘的褶皱是指按照窗户的实际宽度将窗帘布料以一定比例加宽的做法,褶皱之后的窗帘更能彰显其飘逸、灵动的效果.其中,窗宽度的1.5倍为平褶皱,窗宽度的2倍为波浪褶皱.如图②,小莉房间的窗户呈长方形,窗户的宽度(AD)比高度(AB)的少0.5m,某种窗帘的价格为120元/m2.如果以波浪褶皱的方式制作该种窗帘比以平褶皱的方式费用多180元,求小莉房间窗户的宽度与高度.【解答】解:设小莉房间窗户的宽度为xm,则高度为(x+0.5)m.根据题意,得(2﹣1.5)x(x+0.5)×120=180,解得x1=﹣2,x2=1.5.所以x=1.5,x+0.5=2.答:小莉房间窗户的宽度为1.5m,则高度为2m.22.(7分)如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是200m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少m?(用含α、β的式子表示)【解答】解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=xm,则PE=(x﹣1.6)m,PF=(x﹣1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴CF=.∵AE+CF=BD.∴+=200.解,得x=.答:气球的高度是m.23.(8分)命题:有两个角相等的三角形是等腰三角形(简称“等角对等边”).已知:如图,△ABC中,∠B=∠C.求证:AB=AC.三位同学作出了三种不同的辅助线,并完成了命题的证明.小刚的方法:作∠BAC 的平分线AD,可证△ABD≌△ACD,得AB=AC;小亮的方法:作BC边上的高AD,可证△ABD≌△ACD,得AB=AC;小莉的方法:作BC边上的中线AD.(1)请你写出小刚与小亮方法中△ABD≌△ACD的理由:AAS ;(2)请你按照小莉的思路完成命题的证明.【解答】解:(1)△ABD≌△ACD的理由是AAS,故答案为AAS.(2)证明:过点D作DE⊥AB于点E,过点D作DF⊥AC于点F.∵∠BED=∠CFD=90°,∠B=∠C,BD=CD.∴△BDE≌△CDF(AAS).∴BE=CF,DE=DF.在Rt△AED和Rt△AFD中,∠AED=∠AFD=90°.∵AD=AD,DE=DF,∴Rt△AED≌Rt△AFD.∴AE=AF.∴AE+BE=AF+CF.即AB=AC.24.(8分)已知:如图,△ABC的外接圆是⊙O,AD是BC边上的高.(1)请用尺规作出⊙O(不写作法,保留作图痕迹);(2)若AB=8,AC=6,AD=5.4,求⊙O的半径.【解答】解:(1)如图,⊙O是所求作的图形.(2)如图,作⊙O的直径AE,连接BE.∵AE是直径,∴∠ABE=90°.∵∠ADC=∠ABE=90°,∠C=∠E,∴△ABE∽△ADC,∴=.即=,解得AE=.∴⊙O的半径为.25.(10分)快车和慢车同时从甲地出发,匀速行驶,快车到达乙地后,原路返回甲地,慢车到达乙地停止.图①表示两车行驶过程中离甲地的路程y(km)与出发时间x(h)的函数图象,请结合图①中的信息,解答下列问题:(1)快车的速度为km/h,慢车的速度为150 km/h,甲乙两地的距离为50 km;(2)求出发多长时间,两车相距100km;(3)若两车之间的距离为s km,在图②的直角坐标系中画出s(km)与x(h)的函数图象.【解答】解:(1)快车的速度为300÷2=150km/h,慢车的速度为:300÷6=50km/h,甲乙两地的距离为300km,故答案为:150,50,300;(2)快车在行驶过程中离A地的路程y1与时间x的函数关系式:当0≤x<2时,y1=150x,当2≤x≤4时,y1=300﹣150(x﹣2),即y1=600﹣150x.慢车在行驶过程中离A地的路程y2与时间x的函数关系式:当0≤x≤6时,y2=50x,由题意,得①当0≤x<2时,y1﹣y2=100,150x﹣50x=100,解得x=1;②当2≤x<3时,y1﹣y2=100,600﹣150x﹣50x=100,解得x=2.5;③当3≤x<4时,y2﹣y1=100,50x﹣(600﹣150x)=100,解得x=3.5;④当4≤x≤6时,两车相距大于100km.答:出发1 h或2.5h或3.5h后,两车相距100km;(3)s与x的函数图象如图所示:26.(10分)如图,二次函数y=ax2+bx﹣4的图象经过A(﹣1,0)、B(4,0)两点,于y轴交于点D.(1)求这个二次函数的表达式;(2)已知点C(3,m)在这个二次函数的图象上,连接BC,点P为抛物线上一点,且∠CBP=60°.①求∠OBD的度数;②求点P的坐标.【解答】(1)由题意知:,解得.∴该二次函数的表达式为y=x2﹣3x﹣4;(2)①∵当x=0时,y=﹣4.∴抛物线与y轴交点D的坐标为(0,﹣4).∵在△BOD中,∠BOD=90°,OB=4,OD=4,∴BD==8,即BD=2OB,∴∠ODB=30°.∴∠OBD=60°;②过点P作PE⊥x轴于点E,过点C作CF⊥BD于点F,∵x=3时,m=﹣4.∴点C的坐标为(3,﹣4).∵CD∥x轴,∴CD=3,∠CDB=60°,∠DCF=30°.∴DF=CD=,CF==,∵BD=8,∴BF=8﹣=,设点P的坐标为(x,x2﹣3x﹣4).则PE=﹣x2+3x+4,BE=4﹣x,∵∠CBP=∠OBD=60°,∴∠CBF=∠PBE.∵∠CFB=∠PEB=90°.∴△CBF∽△PBE.∴=.∴=.解得:x1=4(舍去),x2=﹣.∵当x=﹣时,y=﹣.∴点P的坐标为(﹣,﹣).27.(12分)【问题提出】我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.【初步思考】在一个四边形中,我们把“一组对边平行、一组对边相等、一组对角相等或一条对角线被另一条对角线平分”称为一个条件.如图1,四边形ABCD中,我们用符号语言表示出所有的8个条件:①A B=CD;②AD=BC;③AB∥CD;④AD∥BC;⑤∠BAD=∠BCD;⑥∠ABC=∠ADC;⑦OA=OC;⑧OB=OD.【深入探究】小莉所在学习小组进行了研究,她们认为2个条件可分为以下六种类型:Ⅰ关于对边的2个条件;Ⅱ关于对角的2个条件;Ⅲ关于对角线的2个条件;Ⅳ关于边的条件与角的条件各1个;Ⅴ关于边的条件与对角线的条件各1个;Ⅵ关于角的条件与对角线的条件各1个.(1)小明认为“Ⅰ关于对边的2个条件”可分为“①②,③④,①③,①④”共4种不同种类的情形.请你仿照小明的叙述对其它五种类型进一步分类.(2)小红认为有4种情形是平行四边形的判定依据.请你写出其它的三个判定定理.定义:两组对边分别平行的四边形是平行四边形;定理1:两组对边分别相等的四边形是平行四边形;定理2:一组对边平行且相等的四边形是平行四边形;定理3:对角线互相平分的四边形是平行四边形.(3)小刚认为除了4个判定依据外,还存在一些真命题,他写出了其中的1个,请证明这个真命题,并仿照他的格式写出其它真命题(无需证明):真命题1:四边形ABCD中,若∠BAD=∠BCD,∠ABC=∠ADC,则四边形ABCD是平行四边形.(4)小亮认为,还存在一些假命题,他写出了其中的1个,并举反例进行了说明,请你仿照小亮的格式写出其它假命题并举反例进行说明.假命题1:四边形ABCD中,若AB=CD,AD∥BC,则四边形ABCD不一定是平行四边形.反例说明:如图2,四边形ABCD中,AB=CD,AD∥BC,显然四边形ABCD不是平行四边形.【解答】(1)解:Ⅱ关于对角的2个条件可分为“⑤⑥”共1种情形;Ⅲ关于对角线的2个条件可分为“⑦⑧”共1种情形;Ⅳ关于边的条件与角的条件各1个可分为“①⑤,③⑤”共2种情形;Ⅴ关于边的条件与对角线的条件各1个可分为“①⑦,③⑦”共2种情形;Ⅵ关于角的条件与对角线的条件各1个可分为“⑤⑦,⑥⑦”共2种情形.(2)解:定理2:两组对边分别相等的四边形是平行四边形;定理3:一组对边平行且相等的四边形是平行四边形;定理4:对角线互相平分的四边形是平行四边形.故答案为:两组对边分别相等的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形(3)证明:∵∠BAD+∠ABC+∠BCD+∠ADC=360°,∠BAD=∠BCD,∠ABC=∠ADC,∴2∠BAD+2∠ABC=360°,2∠ABC+2∠BCD=360°.∴∠BAD+∠ABC=180°,∠ABC+∠BCD=180°.∴AD∥BC,AB∥CD.∴四边形ABCD是平行四边形.真命题2:四边形ABCD中,若AB∥CD,∠BAD=∠BCD,则四边形ABCD是平行四边形;真命题3:四边形ABCD中,若AB∥CD,OA=OC,则四边形ABCD是平行四边形;真命题4:四边形ABCD中,若∠ABC=∠AD C,OA=OC,则四边形ABCD是平行四边形;(4)解:假命题2:四边形ABCD中,若AB=CD,∠BAD=∠BCD,则四边形ABCD不一定是平行四边形.反例如下:如图△ABC中,AB=AC,在BC上取一点D,连接AD,把△ADC翻转得如图所示的四边形ABDC,∵AB=AC,∴∠B=∠C.在四边形ABDC中,AB=CD,∠B=∠C,显然,四边形ABDC不是平行四边形.假命题3:四边形ABCD中,若AB=CD,OA=OC,则四边形ABCD不一定是平行四边形.反例如下:如图,OA=OC,直线l经过点O,分别以A、C为圆心,一定的长为半径画弧交直线l于点B、D,得如图所示的四边形ABCD,在四边形ABCD中,AB=CD,OA=OC,显然,四边形ABDC不是平行四边形.假命题4:四边形ABCD中,若∠BAD=∠BCD,OA=OC,则四边形ABC D不一定是平行四边形.反例如下:如图,筝形ABCD中,∠BAD=∠BCD,OA=OC,显然四边形ABCD不是平行四边形.。
2023年江苏省南京市建邺区中考数学二模试卷【答案版】
2023年江苏省南京市建邺区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.﹣2023的倒数是( ) A .2023 B .−12023C .﹣2023D .120232.计算(a 3)2•a ﹣3的结果是( )A .a 6B .a 5C .a 4D .a 33.光的速度非常快,传播1米仅需要0.0000000033秒.用科学记数法表示0.0000000033是( ) A .3.3×10﹣10B .3.3×10﹣9C .3.3×10﹣8D .3.3×10﹣74.表示数a ,b ,c 的点在数轴上的位置如图所示,下列选项中一定成立的是( )A .a +b >b +cB .a ﹣c >b ﹣cC .ab >bcD .ac>bc5.如图,在△ABC 中,∠C =90°,AC =2BC =10.以点B 为圆心,BC 为半径画弧交AB 于点D ;以点A 为圆心,AD 为半径画弧交AC 于点E ,则CE 长最接近的整数是( )A .6B .5C .4D .36.如图,在平面直角坐标系中,点P 的坐标是(4,5),⊙P 与x 轴相切,点A ,B 在⊙P 上,它们的横坐标分别是0,9.若⊙P 沿着x 轴向右作无滑动的滚动,当点B 第一次落在x 轴上时,此时点A 的坐标是( )A .(7+2π,9)B .(7+2.5π,9)C .(7+2π,8)D .(7+2.5π,8)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡 7.4的平方根是 ;4的算术平方根是 .8.若式子在实数范围内有意义,则x的取值范围是.√x−39.计算√12−√4的结果是.310.一组数据2、4、5、6、x的平均数是4,则这组数据的方差是.11.设x1,x2是关于x的方程x2+6x+m=0的两个根,且x1=2x2,则m=.12.若一个多边形的每个外角都为36°,则这个多边形的内角和是°.13.如图,正比例函数y=kx与反比例函数y=5的图象交于A,B两点.若AC∥x轴,BC∥y轴,则S△xABC=.14.如图,AB是⊙O的直径,点C在圆上.将AĈ沿AC翻折与AB交于点D.若OA=3cm,BĈ的度数为̂=cm.40°,则AD15.二次函数y=ax2+bx+c(a≠0,a、b、c是常数)的图象如图所示,则不等式ax2+(b﹣2)x+c>0的解集是.16.如图,在矩形ABCD中,AD=2AB,点E在CD上,∠BAE的平分线交BC于点F,若ED=BF=3,则AE=.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时17.先化简,再求值:(x+y)(x2﹣xy+y2),其中x=√93,y=1.18.计算:[1m−1+(m−3)(m−1)m−1]÷m2−42m−2.19.如图,四边形ABCD是平行四边形,点E,F分别是BC,AD的中点.(1)求证:AE=CF;(2)连接AC,若AC=CD且∠ACD=90°,判断四边形AECF的形状并说明理由.20.小亮到某水果店买草莓.第一次花了60元.几天后水果店搞促销,草莓每千克降价4元,小亮花48元买到了和第一次一样多的草莓.求小明第一次购买时草莓的单价.21.“五一”假期期间,南京旅游市场强劲复苏.甲、乙两位游客准备在5月3日各自游玩玄武湖、鸡鸣寺、台城这三处景点,他们游玩每个景点的顺序是随机的.(1)求甲游玩的第一处景点是鸡鸣寺的概率;(2)甲、乙以相同顺序游玩这三处景点的概率是.22.某初中2013年至2022年这十年间入学人数如下表:根据表格内容,解决下列问题:(1)若要反映该初中这十年入学人数的变化趋势,最适合的统计图是.A.条形统计图B.扇形统计图C.折线统计图(2)与上年相比,该初中入学人数增加最多的年份是年;(3)假定每年学生入学后没有转入转出的情况.到2021年底,该初中在校教师总数与在校的三个年级学生总数的比是1:13.如果到2022年底该比值仍不低于1:13,那么2022年该初中在校教师人数至少增加多少?23.如图,已知菱形ABCD.求作⊙O,使得⊙O与菱形的四条边都相切.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.24.(9分)已知关于x 的一次函数y =kx +2k (k 为常数,k ≠0).(1)不论k 为何值,该函数图象都经过一个定点,这个定点的坐标为 ; (2)若该函数的图象与坐标轴所围成的三角形的面积为3,求k 的值;(3)若该函数的图象与坐标轴所围成的三角形内部(不含边界)中只有1个横、纵坐标均为整数的点,结合图象,直接写出k 的取值范围.25.学校无人机兴趣小组进行测量活动.如图,甲楼AB 与乙楼CD 之间的距离BD 为72米.无人机升空后,在点M 处测得甲楼顶部A 与乙楼顶部C 的俯角分别为14°60°,点M 距地面BD 的高度为50米.无人机沿水平方向由点M 飞行40米到达点N ,测得点A 的俯角为37°.点A ,B ,C ,D ,M ,N 均在同一竖直平面内.求乙楼CD 的高度.(参考数据:tan14°≈0.25,tan37°≈0.75,√3≈1.73.)26.(9分)如图,在△ABC 中,点P 是BC 边上一点且满足P A =PB ,⊙O 是△ABP 的外接圆,过点P 作PD ∥AB 交AC 于点D . (1)求证:PD 是⊙O 的切线;(2)若∠P AC =90°,BP =3,PC =9,求⊙O 的半径; (3)若AC 是⊙O 的切线,直接写出AP PD的取值范围.27.(9分)某酒杯的轴截面如图①所示,其中杯体轴截面ABC呈曲线形状(忽略杯体的厚度).点A、C 在杯口处,AC=12cm,点B是曲线上的最低点.当酒杯装满液体时,液体最大深度(最低点B到AC 的距离)是4cm.将杯中的液体倒出一部分后,液体的最大深度(最低点B到MN的距离)恰好为2cm,如图②所示.(1)如果杯体轴截面ABC呈抛物线形状,求此时MN的长度;(2)如果杯体轴截面ABC呈双曲线形状,求此时MN的长度.2023年江苏省南京市建邺区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.﹣2023的倒数是( ) A .2023B .−12023C .﹣2023D .12023解:∵﹣2023×(−12023)=1,∴﹣2023的倒数是−12023, 故选:B . 2.计算(a 3)2•a ﹣3的结果是( )A .a 6B .a 5C .a 4D .a 3解:(a 3)2•a ﹣3=a 6•a ﹣3=a 3, 故选:D .3.光的速度非常快,传播1米仅需要0.0000000033秒.用科学记数法表示0.0000000033是( ) A .3.3×10﹣10B .3.3×10﹣9C .3.3×10﹣8D .3.3×10﹣7解:0.0000000033=3.3×10﹣9. 故选:B .4.表示数a ,b ,c 的点在数轴上的位置如图所示,下列选项中一定成立的是( )A .a +b >b +cB .a ﹣c >b ﹣cC .ab >bcD .ac>bc解:根据图示,可得a <b <c 且﹣2<a <﹣1,﹣1<b <0,1<c <2, ∵a <c ,∴a +b <b +c ,∴选项A 不符合题意; ∵a <b ,∴a ﹣c <b ﹣c ,∴选项B 不符合题意; ∵a <c ,b <0,∴ab >bc ,∴选项C 符合题意; ∵a <b ,c >0,∴ac<bc ,∴选项D 不符合题意.故选:C .5.如图,在△ABC 中,∠C =90°,AC =2BC =10.以点B 为圆心,BC 为半径画弧交AB 于点D ;以点A 为圆心,AD 为半径画弧交AC 于点E ,则CE 长最接近的整数是( )A.6B.5C.4D.3解:∵∠C=90°,AC=2BC=10,∴AB=√BC2+AC2=5√5,由题意得:BD=BC=5,AE=AD=AB﹣BD=5√5−5,∴CE=AC﹣AE=15﹣5√5≈15﹣5×2.236=3.82,∴CE长最接近的整数是4.故选:C.6.如图,在平面直角坐标系中,点P的坐标是(4,5),⊙P与x轴相切,点A,B在⊙P上,它们的横坐标分别是0,9.若⊙P沿着x轴向右作无滑动的滚动,当点B第一次落在x轴上时,此时点A的坐标是()A.(7+2π,9)B.(7+2.5π,9)C.(7+2π,8)D.(7+2.5π,8)解:如图1,设⊙P与x轴的切点为D,过点P作PC⊥y轴于C,连接PD,P A,∴PD⊥x轴,∵点P的坐标是(4,5),∴PC=4,PD=5,即⊙P的半径为5,∴P A=PD=5,在Rt△PCA中,由勾股定理得:AC=√PA2−PC2=√52−42=3,延长CP 与⊙P 相交,此时交点到点C 的距离为9, 而点B 的横坐标为9,故交点为点B , ∴∠DPB =90°,如图2,当点B 第一次落在x 轴上时,⊙P 滚动了90°,∴点B 滚动的距离为:14×2π×5=2.5π,点A 的对应点为A ',点C 的对应点为C ',点B 的对应点为B ',点P 的对应点为P ', 此时A 'C '=AC =3,P 'C '=PC =4, 点A '的纵坐标为P 'C '+5=4+5=9,点A '的横坐标为PC +A 'C '+2.5π=4+3+2.5π=7+2.5π, ∴点A '的坐标为(7+2.5π,9), 即此时点A 的坐标是(7+2.5π,9), 故选:B .二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡 7.4的平方根是 ±2 ;4的算术平方根是 2 . 解:4的平方根是±2;4的算术平方根是2. 故答案为:±2;2. 8.若式子√x−3在实数范围内有意义,则x 的取值范围是 x >3 .解:∵式子√x−3在实数范围内有意义,∴x 的取值范围是:x >3. 故答案为:x >3. 9.计算√12−√43的结果是4√33. 解:√12−√43=2√3−2√33 =4√33.故答案为:4√33.10.一组数据2、4、5、6、x 的平均数是4,则这组数据的方差是 2 .解:∵数据2、4、5、6、x的平均数是4,2+4+5+6+x=4×5,x=3,则组数据的方差s2=15×[(2﹣4)2+(3﹣4)2+(5﹣4)2+(6﹣4)2+(4﹣4)2]=2.故答案为:2.11.设x1,x2是关于x的方程x2+6x+m=0的两个根,且x1=2x2,则m=8.解:根据题意,知x1+x2=3x2=﹣6,则x2=﹣2,将其代入关于x的方程x2+6x+m=0,得(﹣2)2+6×(﹣2)+m=0.解得m=8.故答案为:8.12.若一个多边形的每个外角都为36°,则这个多边形的内角和是1440°.解:∵此正多边形每一个外角都为36°,360°÷36°=10,∴此正多边形的边数为10.则这个多边形的内角和为(10﹣2)×180°=1440°.故答案为:1440.13.如图,正比例函数y=kx与反比例函数y=5x的图象交于A,B两点.若AC∥x轴,BC∥y轴,则S△ABC=10.解:根据题意设A(m,5m ),∵正比例函数y=kx与反比例函数y=5x的图象交于A,B两点,∴B(﹣m,−5m ).∵BC∥y轴,AC∥x轴,∴C(﹣m,5m ).∴S△ABC=12BC•AC=12×[5m−(−5m)]×[m﹣(﹣m)]=12×10m×2m=10.故答案为:10.14.如图,AB 是⊙O 的直径,点C 在圆上.将AC ̂沿AC 翻折与AB 交于点D .若OA =3cm ,BC ̂的度数为40°,则AD̂= 53π cm .解:如图,作D 关于AC 的对称点E ,连接AE ,BE ,OE ,则AD̂=AE ̂, ∵BĈ 的度数为40°, ∴∠CAB =20°,∴∠EAB =2∠CAB =40°, ∴∠EOB =2∠EAB =80°, ∴∠AOE =180°﹣80°=100°, ∴AÊ的长度为100°×2π×3360°=53π,∴AD̂ 的长度为53π. 故答案为:53π.15.二次函数y =ax 2+bx +c (a ≠0,a 、b 、c 是常数)的图象如图所示,则不等式ax 2+(b ﹣2)x +c >0的解集是 x <1或x >3 .解:ax 2+(b ﹣2)x +c >0, ax 2+bx +c ﹣2x >0, ∴ax 2+bx +c >2x ,即二次函数大于一次函数时x 的取值范围, 如图,由图象可知,x <1或x >3,故答案为:x <1或x >3.16.如图,在矩形ABCD 中,AD =2AB ,点E 在CD 上,∠BAE 的平分线交BC 于点F ,若ED =BF =3,则AE = 9 .解:延长AF 、DC 交于点H ,设CD =m , ∵四边形ABCD 是矩形,AD =2AB ,∴AB ∥CD ,AB =CD =m ,BC =AD =2AB =2m ,∠B =∠BCD =∠D =90°, ∴∠HCF =90°,∵ED =BF =3,∠HFC =∠AFB , ∴CE =m ﹣3,CF =2m ﹣3, ∴HC CF=tan ∠HFC =tan ∠AFB =AB BF, ∴HC =AB⋅CFBF=m(2m−3)3=23m 2﹣m , ∴HE =HC +CE =23m 2﹣m +m ﹣3=23m 2﹣3, ∵∠BAE 的平分线交BC 于点F , ∴∠EAF =∠BAF , ∵∠H =∠BAF , ∴∠EAF =∠H ,∴HE =AE ,∴HE 2=AE 2=AD 2+ED 2, ∴(23m 2﹣3)2=(2m )2+32,整理得m 4﹣18m 2=0, ∵m ≠0, ∴m 2﹣18=0,解得m 1=3√2,m 2=−3√2(不符合题意,舍去), ∴AE =HE =23m 2﹣3=23×(3√2)2﹣3=9, 故答案为:9.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时 17.先化简,再求值:(x +y )(x 2﹣xy +y 2),其中x =√93,y =1.解:原式=x 3﹣x 2y +xy 2+x 2y ﹣xy 2+y 3=x 3+y 3, 当 x =√93,y =1时, 原式=(√93)3+13=9+1=10.18.计算:[1m−1+(m−3)(m−1)m−1]÷m 2−42m−2. 解:[1m−1+(m−3)(m−1)m−1]÷m 2−42m−2=1+m 2−m−3m+3m−1÷m 2−42m−2 =m 2−4m+4m−1÷m 2−42m−2 =(m−2)2m−1⋅2(m−1)(m+2)(m−2) =2(m−2)m+2 =2m−4m+2.19.如图,四边形ABCD 是平行四边形,点E ,F 分别是BC ,AD 的中点.(1)求证:AE=CF;(2)连接AC,若AC=CD且∠ACD=90°,判断四边形AECF的形状并说明理由.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∵点E,F是BC,AD的中点,∴AF=12ADEC=12BC,∴AF=EC.又AF∥FC,∴四边形AECF是平行四边形.∴AE=CF;(2)解:四边形AECF是正方形.∵AC=CD,F是AD的中点,∴CF⊥AD,CF平分∠ACD.∴∠AFC=90°,∠ACF=12∠ACD=45°,∴∠ACF=∠CAF=45°,∴AF=CF,∠AFC=90°,AF=CF,∴▱AECF是正方形.20.小亮到某水果店买草莓.第一次花了60元.几天后水果店搞促销,草莓每千克降价4元,小亮花48元买到了和第一次一样多的草莓.求小明第一次购买时草莓的单价.解:设小明第一次购买时草莓的单价为x元/千克.由第一次花了60元.几天后水果店搞促销,草莓每千克降价4元,小亮花48元买到了和第一次一样多的草莓,得60x=48x−4,解得x=20.经检验,x=20是原方程的解.答:小明第一次购买时草莓的单价为20元/千克.21.“五一”假期期间,南京旅游市场强劲复苏.甲、乙两位游客准备在5月3日各自游玩玄武湖、鸡鸣寺、台城这三处景点,他们游玩每个景点的顺序是随机的.(1)求甲游玩的第一处景点是鸡鸣寺的概率;(2)甲、乙以相同顺序游玩这三处景点的概率是16.解:(1)将玄武湖、鸡鸣寺、台城这三处景点分别记为A ,B ,C . 甲所有可能的游玩顺序有: (A ,B ,C )、(A ,C ,B )、 (B ,A ,C )、(B ,C ,A )、 (C ,A ,B )、(C ,B ,A ),共有6种结果,它们出现的可能性相同.满足甲游客最先去鸡鸣寺(记为事件M )的结果有2种,即(B ,A ,C )、(B ,C ,A ), 所以 P(M)=26=13;(2)将(A ,B ,C )、(A ,C ,B )、(B ,A ,C )、(B ,C ,A )、(C ,A ,B )、(C ,B ,A )分别记作①、②、③、④、⑤、⑥, 列表如下:由表知,共有36种等可能结果,其中甲、乙以相同顺序游玩这三处景点的有6种结果, 所以甲、乙以相同顺序游玩这三处景点的概率为636=16,故答案为:16.22.某初中2013年至2022年这十年间入学人数如下表:根据表格内容,解决下列问题:(1)若要反映该初中这十年入学人数的变化趋势,最适合的统计图是C.A.条形统计图B.扇形统计图C.折线统计图(2)与上年相比,该初中入学人数增加最多的年份是2022年;(3)假定每年学生入学后没有转入转出的情况.到2021年底,该初中在校教师总数与在校的三个年级学生总数的比是1:13.如果到2022年底该比值仍不低于1:13,那么2022年该初中在校教师人数至少增加多少?解:(1)若要反映该初中这十年入学人数的变化趋势,最适合的统计图是是扇形统计图,故选:C;(2)从表中数据可以看出,与上年相比,该初中入学人数增加最多的年份是2022年;故答案为:2022;(3)496+517+521=1534 (人),1534÷13=118(人),设教师人数增加了x人.118+x 517+521+544≥113.解得x≥39 13.答:教师人数至少增加4人.23.如图,已知菱形ABCD.求作⊙O,使得⊙O与菱形的四条边都相切.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.解:1.连接AC、BD,交点为O,2.过点O作OH⊥AB,垂足为H,3.以O为圆心,OH为半径作圆.则⊙O即为所求.24.(9分)已知关于x的一次函数y=kx+2k(k为常数,k≠0).(1)不论k为何值,该函数图象都经过一个定点,这个定点的坐标为(﹣2,0);(2)若该函数的图象与坐标轴所围成的三角形的面积为3,求k的值;(3)若该函数的图象与坐标轴所围成的三角形内部(不含边界)中只有1个横、纵坐标均为整数的点,结合图象,直接写出k的取值范围.解:(1)y=kx+2k=k(x+2),可知当x=﹣2时,y=0,即不论k为何值,该函数图象都经过一个定点(﹣2,0);故答案为:(﹣2,0);(2)当x=0时,y=2k.由题意得12⋅|2k|⋅2=3.解得k=±3 2.(3)当k>0 时,直线与y轴的交点(0,2k)在y轴正半轴,∵函数图象与坐标轴所围成的三角形内部(不含边界)中只有1个横、纵坐标均为整数的点,则该内部点的坐标为(﹣1,1),∴当x=﹣1时,函数的纵坐标y=﹣k+2k=k大于1且小于等于2,即1<k≤2;当k<0 时,直线与y轴的交点(0,2k)在y轴负半轴,∵函数图象与坐标轴所围成的三角形内部(不含边界)中只有1个横、纵坐标均为整数的点,则该内部点的坐标为(﹣1,﹣1),∴当x=﹣1时,函数的纵坐标大于等于﹣2且小于﹣1,即﹣2≤k<﹣1,综上所述,k的取值范围为1<k≤2或﹣2≤k<﹣1.25.学校无人机兴趣小组进行测量活动.如图,甲楼AB与乙楼CD之间的距离BD为72米.无人机升空后,在点M处测得甲楼顶部A与乙楼顶部C的俯角分别为14°60°,点M距地面BD的高度为50米.无人机沿水平方向由点M飞行40米到达点N,测得点A的俯角为37°.点A,B,C,D,M,N 均在同一竖直平面内.求乙楼CD的高度.(参考数据:tan14°≈0.25,tan37°≈0.75,√3≈1.73.)解:延长BA 、DC ,分别交MN 所在直线于点E 、F ,过点M 作MH ⊥BD 于H .设AE 为x 米,在Rt △AEN 中,∵tan37°=AE EN, ∴EN =AEtan37°=43x 米,在Rt △AEM 中,∵tan14°=AEEM , ∴EM =AEtan14°=4x 米,∵EM ﹣EN =MN , ∴4x −43x =40, 解得x =15, ∴EM =60米,∵四边形EBDF 是矩形, ∴EF =BD =72米, ∴MF =12米,在Rt △CFM 中,∵∠CMF =60°, ∴tan60°=CFMF ,∴CF =MF ×tan60°=12√3(米), ∵四边形MHDF 是矩形, ∴FD =MH =50米,∴MF=50−12√3≈29(米),答:乙楼CD的高度为29米.26.(9分)如图,在△ABC中,点P是BC边上一点且满足P A=PB,⊙O是△ABP的外接圆,过点P作PD∥AB交AC于点D.(1)求证:PD是⊙O的切线;(2)若∠P AC=90°,BP=3,PC=9,求⊙O的半径;(3)若AC是⊙O的切线,直接写出APPD的取值范围.(1)证明:连接OA,OB,OP,OP交AB于点H.如图:∵OA=OB,AP=BP,∴PO是AB的垂直平分线.∴∠OHA=90°,∵PD∥AB,∴∠OPD=∠OHA=90°,即OP⊥PD,点P在⊙O上,∴PD是⊙O的切线,(2)解:∵BP=3,∴AP=3.∵∠P AC=90°,由勾股定理可得AC=√PC2−PA2=6√2.∵PD∥AB,∴△PDC∽△BAC.∴PC BC=DC AC,即912=6√2,解得DC =92√2,∴AD =32√2,PD =√AD 2+PA 2=32√6.∵△PDC ∽△BAC . ∴PC BC=PD AB,即912=32√6AB,解得AB =2√6,∵OP 是AB 的垂直平分线, ∴AH =12AB =√6, ∵∠AHP =90°,由勾股定理得HP =√AP 2−AH 2=√3, 设⊙O 半径为r .在 Rt △AHO 中,∠OHA =90°∴OH 2+AH 2=OA 2.即 (r −√3)2+(√6)2=r 2,解得 r =32√3,∴⊙O 的半径为3√32,(3)解:如图:∵PD 是⊙O 的切线,AC 是⊙O 的切线, ∴AD =PD , ∴∠APD =∠P AD , ∵P A =PB , ∴∠P AB =∠PBA , ∵PD ∥AB , ∴∠APD =∠P AB ,∵∠P AD =∠PBA , ∴△P AD ∽△BAP , ∴AP AB=PD BP,即APPD=AB PB,设⊙O 的半径为r ,OE =a (0≤a <r ),则PE =r ﹣a ,BE =√OB 2−OE 2=√r 2−a 2,AB =2BE =2√r 2−a 2, PB =√BE 2+PE 2=√2r 2−2ar , ∴AP PD=AB PB=2√r 2−a 2√2r 2−2ar=√2√r+a r,∵0≤a <r , ∴√2≤APPD <2,同理,当P 在优弧AB 上时,如图:则AP PD=AB PB=2√r 2−a 2222=√2√r−a r,∵0≤a <r , ∴0<APPD <√2, 综上可得0<APPD<2, 27.(9分)某酒杯的轴截面如图①所示,其中杯体轴截面ABC 呈曲线形状(忽略杯体的厚度).点A 、C 在杯口处,AC =12cm ,点B 是曲线上的最低点.当酒杯装满液体时,液体最大深度(最低点B 到AC 的距离)是4cm .将杯中的液体倒出一部分后,液体的最大深度(最低点B 到MN 的距离)恰好为2cm ,如图②所示.(1)如果杯体轴截面ABC 呈抛物线形状,求此时MN 的长度;(2)如果杯体轴截面ABC 呈双曲线形状,求此时MN 的长度. 解:(1)建立如图所示的直角坐标系,设y =ax 2,将C (6,4)代入,得4=36a ,解得a =19,∴y =19x 2,将y =2代入y =19x 2,得2=19x 2,解得x =±32.∴液面宽为MN 长度为6√2cm ;(2)建立如图所示的直角坐标系,设y =k x ,在Rt △AEC 中,D 为AC 中点,AC =12,AE =CE =6√2,ED =6.∵BD =4,∴EB =2.根据对称性,设点B 的坐标为(a ,a ).则点A 的坐标为 (a −√2,a +5√2).将B (a ,a ),A(a −√2,a +5√2) 分别代入 y =k x ,得{a =k a a +5√2=k a−√2, 解得{a =5√24k =258, ∴y =258x .在 Rt △MEN 中,G 为MN 中点,BG =2,根据对称性,设点M 、N 的坐标分别为(x ,y ),(y ,x ). ∴点G 的坐标为 (x+y 2,x+y 2),点E 的坐标为(x ,x ), 又点B 的坐标为 (54√2,54√2),∴x+y 2−54√2=√2,∴(x +y)2=812, ∴(x ﹣y )2=(x +y )2﹣4xy =812−252=28, 即 EN =√28=2√7,∴MN =2√7⋅√2=2√14, ∴液面宽为 2√14cm .。
2020-2021学年江苏省南京市中考数学二模试卷及答案解析
江苏省南京市中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.在下列实数中,无理数是()A.sin45°B.C.0.3 D.3.142.计算(2a2)3的结果是()A.2a5B.2a6C.6a6D.8a63.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是()分数50 60 70 80 90 100人数1 2 8 13 14 4A.70,80 B.70,90 C.80,90 D.90,1004.如图,一个由5个大小相同、棱长为1的正方体搭成的几何体,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为5 D.俯视图的面积为35.如图,四边形ABCD内接于⊙O,∠A=100°,则劣弧的度数是()A.80°B.100°C.130°D.160°6.如图,在平面直角坐标系xOy中,函数y=x的图象为直线l,作点A1(1,0)关于直线l的对称点A2,将A2向右平移2个单位得到点A3;再作A3关于直线l的对称点A4,将A4向右平移2个单位得到点A5;….则按此规律,所作出的点A2015的坐标为()A.(1007,1008)B.(1008,1007)C.(1006,1007)D.(1007,1006)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.﹣3的倒数是,﹣3的绝对值是.8.使式子1+有意义的x的取值范围是.9.分解因式:4a2﹣16= .10.计算(﹣)×= .11.改写命题“对角线互相平分的四边形是平行四边形”:如果,那么.12.如图,在直角坐标系中,点A、B、C的坐标分别为(0,3)、(4,3)、(0,﹣1),则△ABC外接圆的圆心坐标为.13.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧的长度为.14.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于点A(﹣1,2)和点B.当y1<y2时,自变量x的取值范围是.15.某剧院举办文艺演出.经调研,如果票价定为每张30元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票就减少20张.要使门票收入达到38500元,票价应定为多少元?若设票价为x元,则可列方程为.16.如图,等边△ABC中,BC=6,D、E分别在BC、AC上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)计算:(﹣2)2+(﹣π)0+|1﹣|;(2)解方程组:.18.化简:(1+)÷.19.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m= ,n= ,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.20.一个不透明的袋中,装有编号为①、②、③、④的四个球,它们除了编号外其余都相同.(1)从袋中任意摸出一个球,摸到编号为奇数的球的概率为;(2)从袋中任意摸出两个球,求摸到的球编号都为奇数的概率.21.如图,矩形ABCD中,对角线AC的垂直平分线交AD、BC于点E、F,AC与EF交于点O,连结AF、CE.(1)求证:四边形AFCE是菱形;(2)若AB=3,AD=4,求菱形AFCE的边长.22.如图,在一笔直的海岸线上有A、B两个观测点,B在A的正东方向,AB=4km.从A测得灯塔C在北偏东60°的方向,从B测得灯塔C在北偏西27°的方向,求灯塔C与观测点A的距离(精确到0.1km).(参考数据:sin27°≈0.45,cos27°≈0.90,tan27°≈0.50,≈1.73)23.从南京到某市可乘坐普通列车,行驶路程是520千米;也可乘坐高铁,行驶路程是400千米.已知高铁的平均速度是普通列车平均速度的2.5倍,且从南京到该市乘坐高铁比乘坐普通列车要少用3小时.求高铁行驶的平均速度.24.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP 上,且BC=PC.(1)求证:直线BC是⊙O的切线;(2)若OA=3,AB=2,求BP的长.25.已知二次函数y=x2﹣ax﹣2a2(a为常数,且a≠0).(1)证明该二次函数的图象与x轴的正半轴、负半轴各有一个交点;(2)若该二次函数的图象与y轴的交点坐标为(0,﹣2),试求该函数图象的顶点坐标.26.如图①,梯形ABCD中,AD∥BC,∠C=90°,BA=BC.动点E、F同时从点B出发,点E沿折线BA﹣AD﹣DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:(1)AD= cm,BC= cm;(2)求a的值,并用文字说明点N所表示的实际意义;(3)直接写出当自变量t为何值时,函数y的值等于5.27.如图1,对于平面上小于等于90°的∠MON,我们给出如下定义:若点P在∠MON的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON的“点角距”,记作d (∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角为∠xOy.(1)已知点A(5,0)、点B(3,2),则d(∠xOy,A)= ,d(∠xOy,B)= .(2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=5,画出点P运动所形成的图形.(3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=x(x≥0).①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值;②在图4中,抛物线y=﹣x2+2x+经过A(5,0)与点D(3,4)两点,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求当d(∠xOT,Q)取最大值时点Q 的坐标.江苏省南京市中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.在下列实数中,无理数是()A.sin45°B.C.0.3 D.3.14【考点】无理数.【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【解答】解:∵0.3、3.14是有限小数,∴0.3、3.14是有理数;∵,0.是循环小数,∴是有理数;∵sin45°=是无限不循环小数,∴sin45°是无理数.故选:A.【点评】此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.计算(2a2)3的结果是()A.2a5B.2a6C.6a6D.8a6【考点】幂的乘方与积的乘方.【分析】根据即的乘方法则,即可解答.【解答】解:(2a2)3=23•a6=8a6,故选:D.【点评】本题考查了积的乘方,解决本题的关键是熟记积的乘方法则.3.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是()分数50 60 70 80 90 100人数1 2 8 13 14 4A.70,80 B.70,90 C.80,90 D.90,100【考点】众数;中位数.【分析】根据中位数与众数的定义进行解答即可.【解答】解:把这组数据从小到大排列,最中间两个数的平均数是(80+80)÷2=80,则该班学生成绩的中位数是80;90出现了14次,出现的次数最多,则众数是90;故选C.【点评】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.4.如图,一个由5个大小相同、棱长为1的正方体搭成的几何体,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为5 D.俯视图的面积为3【考点】简单组合体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.【解答】解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、从上面看,可以看到4个正方形,面积为4,故D选项错误.故选:B.【点评】本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.5.如图,四边形ABCD内接于⊙O,∠A=100°,则劣弧的度数是()A.80°B.100°C.130°D.160°【考点】圆内接四边形的性质.【分析】先根据圆内接四边形的性质求出∠C的度数,再由圆周角与弧的关系即可得出结论.【解答】解:∵四边形ABCD是圆内接四边形,∠A=100°,∴∠C=180°﹣100°=80°,∴劣弧=160°.故选D.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.6.如图,在平面直角坐标系xOy中,函数y=x的图象为直线l,作点A1(1,0)关于直线l的对称点A2,将A2向右平移2个单位得到点A3;再作A3关于直线l的对称点A4,将A4向右平移2个单位得到点A5;….则按此规律,所作出的点A2015的坐标为()A.(1007,1008)B.(1008,1007)C.(1006,1007)D.(1007,1006)【考点】规律型:点的坐标.【分析】根据对称和平移,可得A1的坐标(1,0),A3的坐标(2,1),A5的坐标(3,2),A7的坐标(4,3),根据观察,发现规律:A点的横坐标是顺序,纵坐标是顺序减1,根据规律,可得答案.【解答】解:由题意可知:A1(1,0),A3(2,1),A5(3,2),A7(4,3),点的横坐标为:=1008,纵坐标为:1007,∴A2015的坐标是:(1008,1007).∴点A2015故选:B.【点评】本题考查了轴对称,利用对称、平移发现规律是解题关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.﹣3的倒数是﹣,﹣3的绝对值是 3 .【考点】倒数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣3的倒数是﹣,﹣3的绝对值是3,故答案为:,3.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.使式子1+有意义的x的取值范围是x≥﹣2 .【考点】二次根式有意义的条件.【分析】根据二次根式的被开方数是非负数,即可解答.【解答】解:根据题意,得x+2≥0,解得x≥﹣2,故答案为:x≥﹣2.【点评】本题考查了二次根式的意义和性质、概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.分解因式:4a2﹣16= 4(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式4,进而利用平方差公式进行分解即可.【解答】解:4a2﹣16=4(a2﹣4)=4(a+2)(a﹣2).故答案为:4(a+2)(a﹣2).【点评】此题主要考查了提公因式法与公式法的综合运用,熟练掌握公式形式是解题关键.10.计算(﹣)×= 2﹣2 .【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的乘法法则运算.【解答】解:原式=﹣2=2﹣2.故答案为2﹣2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.改写命题“对角线互相平分的四边形是平行四边形”:如果四边形的对角线互相平分,那么这个四边形是平行四边形.【考点】命题与定理.【分析】如果后面应是命题中的条件,那么后面是由条件得到的结论.【解答】解:原命题的条件是:四边形的对角线互相平分,结论是这个四边形是平行四边形;如果四边形的对角线互相平分,那么这个四边形是平行四边形.四边形的对角线互相平分,这个四边形是平行四边形.【点评】本题考查了命题与定理的知识,解决本题的关键是准确找到所给命题的条件和结论.12.如图,在直角坐标系中,点A、B、C的坐标分别为(0,3)、(4,3)、(0,﹣1),则△ABC外接圆的圆心坐标为(2,1).【考点】三角形的外接圆与外心;坐标与图形性质.【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,∵点A、B、C的坐标分别为(0,3)、(4,3)、(0,﹣1),的坐标是(2,1).∴O1故答案为:(2,1).【点评】此题考查了垂径定理的推论以及三角形的外心的性质,利用垂径定理的推论得出是解题关键.13.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧的长度为π.【考点】正多边形和圆.【分析】连接OM,ON,首先根据切线的性质和正五边形的性质求得圆心角的度数,然后利用弧长公式进行计算.【解答】解:如图:连接OM,ON,∵⊙O与正五边形ABCDE的边AB、AE相切于点M、N,∴OM⊥AB,ON⊥AC,∵∠A=108°,∴∠MON=72°,∵半径为1,∴劣弧的长度为:=π,故答案为π.【点评】本题考查了正多边形和圆的知识,解题的关键是能够连接OM和ON,从而求得劣弧所在扇形的圆心角,利用扇形弧长公式求解.14.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于点A(﹣1,2)和点B.当y1<y2时,自变量x的取值范围是﹣1<x<0或x>1 .【考点】反比例函数与一次函数的交点问题.【分析】根据对称性由A的坐标确定出B坐标,根据两点横坐标,利用函数图象即可确定出当y1>y2时的变量x的取值范围.【解答】解:由题意及A(﹣1,2),利用对称性得:B(1,﹣2),根据图象得:当y1>y2时的变量x的取值范围为﹣1﹣1<x<0或x>1.故答案为﹣1<x<0或x>1.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握数形结合思想是解本题的关键.15.某剧院举办文艺演出.经调研,如果票价定为每张30元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票就减少20张.要使门票收入达到38500元,票价应定为多少元?若设票价为x元,则可列方程为x[1200﹣20(x﹣30)]=38500 .【考点】由实际问题抽象出一元二次方程.【专题】销售问题.【分析】可设票价应定为x元,根据票价×销售的票数=获得门票收入,即可列出一元二次方程.【解答】解:设票价应定为x元,依题意有x[1200﹣30(x﹣30)]=38500,故答案为:x[1200﹣20(x﹣30)]=38500.【点评】此题考查一元二次方程的实际运用,找出销售问题中的基本数量关系是解决问题的关键.16.如图,等边△ABC中,BC=6,D、E分别在BC、AC上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为2.【考点】轨迹.【分析】因为MN是三角形EMN的中位线,所以MN∥BD,所以在运动过程中线段MN所扫过的区域为梯形,然后分别求得梯形的上底、下底和高,然后利用公式计算即可.【解答】解:在运动过程中线段MN所扫过的区域面积如图阴影所示:∵MN是△BDE的中位线.∴MN===1,且MN∥BD.同理:M′N′=3,且M′N′∥BD∴四边形MNN′M′为梯形.MG=MB•sin30°=1×=,N′F=N′C•sin30°=3×=.∴梯形MNN′M′的高==.∴梯形MNN′M′的面积=(FN﹣MG)=×=2.故答案为:2.【点评】本题主要考查轨迹的问题,由三角形中位线的性质判断出MN扫过的区域的形状是解题的关键.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)计算:(﹣2)2+(﹣π)0+|1﹣|;(2)解方程组:.【考点】实数的运算;零指数幂;解二元一次方程组.【专题】计算题.【分析】(1)原式第一项利用乘方的意义计算,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)方程组利用加减消元法求出解即可.【解答】解:(1)原式=4+1+﹣1=4+;(2),①×2+②,得5x=5,即x=1,将x=1代入①,得y=﹣1,则原方程组的解为.【点评】此题考查了实数的运算,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.18.化简:(1+)÷.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m= 30 ,n= 20 ,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是90°;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【分析】(1)根据条形图和扇形图确定B组的人数环绕所占的百分比求出样本容量,求出m、n的值;(2)求出C组”所占的百分比,得到所对应的圆心角的度数;(3)求出不合格人数所占的百分比,求出该校本次听写比赛不合格的学生人数.【解答】解:(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20;(2)“C组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.【点评】本题考查的是频数分布表、条形图和扇形图的知识,利用统计图获取正确信息是解题的关键.注意频数、频率和样本容量之间的关系的应用.20.一个不透明的袋中,装有编号为①、②、③、④的四个球,它们除了编号外其余都相同.(1)从袋中任意摸出一个球,摸到编号为奇数的球的概率为;(2)从袋中任意摸出两个球,求摸到的球编号都为奇数的概率.【考点】列表法与树状图法.【分析】(1)用奇数球的个数除以球的总个数即可求得编号为奇数的概率;(2)将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)∵共有4个球,为奇数的有2个,∴P(编号为奇数)==;(2)从袋中任意摸出两个球,有①②、①③、①④、②③、②④,③④共6种可能,且都是等可能的,其中,都为奇数只有①③一种可能,所以摸到的球的编号都为奇数的概率为.【点评】本题考查了概率的求法,能够将所有等可能的结果列举出来是解答本题的关键,难度不大.21.如图,矩形ABCD中,对角线AC的垂直平分线交AD、BC于点E、F,AC与EF交于点O,连结AF、CE.(1)求证:四边形AFCE是菱形;(2)若AB=3,AD=4,求菱形AFCE的边长.【考点】菱形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质;勾股定理;矩形的性质.【分析】(1)由矩形的性质得出AD∥BC,∠EAO=∠FCO,证明△AEO≌△CFO,得出AE=CF,证出四边形AFCE是平行四边形,再由对角线AC⊥EF,即可得出结论;(2)设AF=CF=x,则BF=4﹣x,在Rt△ABF中,根据勾股定理得出方程,解方程即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAO=∠FCO,∵EF是AC的垂直平分线,∴AO=CO,∠EOA=∠FOC=90°,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴AE=CF,∴四边形AFCE是平行四边形,又∵AC⊥EF,∴四边形AFCE是菱形;(2)解:∵四边形AFCE是菱形,∴AF=CF,设AF=CF=x,则BF=4﹣x,在Rt△ABF中,AF2=AB2+BF2,即x2=32+(4﹣x)2,解得x=,∴菱形AFCE的边长为.【点评】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定与性质、勾股定理、线段垂直平分线的性质;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.22.如图,在一笔直的海岸线上有A、B两个观测点,B在A的正东方向,AB=4km.从A测得灯塔C在北偏东60°的方向,从B测得灯塔C在北偏西27°的方向,求灯塔C与观测点A的距离(精确到0.1km).(参考数据:sin27°≈0.45,cos27°≈0.90,tan27°≈0.50,≈1.73)【考点】解直角三角形的应用-方向角问题.【分析】如图,过点C作CD⊥AB,构建直角△ACD和直角△BCD.通过解Rt△BDC得到BD=0.5CD.通过解Rt△ADC得到AD=CD,所以由AB=4km科研求得CD的长度.最后通过解Rt△ADC来求AC的长度.【解答】解:如图,过点C作CD⊥AB,则∠BCD=27°,∠ACD=60°,在Rt△BDC中,由tan∠BCD=,∴BD=CD tan27°=0.5CD.在Rt△ADC中,由tan∠ACD=∴AD=CD•tan60°=CD.∵AD+BD=CD+0.5CD=4,∴CD=.在Rt△ADC中,∵∠ACD=60°,∴∠CAD=30°,∴AC=2CD=≈3.6.∴灯塔C与观测点A的距离为3.6km.【点评】此题主要考查了解直角三角形﹣方向角问题的应用,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.从南京到某市可乘坐普通列车,行驶路程是520千米;也可乘坐高铁,行驶路程是400千米.已知高铁的平均速度是普通列车平均速度的2.5倍,且从南京到该市乘坐高铁比乘坐普通列车要少用3小时.求高铁行驶的平均速度.【考点】分式方程的应用.【分析】设普通列车的平均速度为x千米/时,则高铁的平均速度是2.5x千米/时,根据题意可得,乘坐高铁行驶400千米比乘坐普通列车行驶520千米少用3小时,据此列方程求解.【解答】解:设普通列车的平均速度为x千米/时,则高铁的平均速度是2.5x千米/时,依题意,得+3=,解得:x=120,经检验,x=120是原方程的解,且符合题意,则2.5x=300.答:高铁行驶的平均速度是300千米/时.【点评】本题考查了分式方程的应用,解答本题案的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP 上,且BC=PC.(1)求证:直线BC是⊙O的切线;(2)若OA=3,AB=2,求BP的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连结OB.由等腰三角形的性质得到∠A=∠OBA,∠P=∠CBP,由于OP⊥AD,得到∠A+∠P=90°,于是得到∠OBA+∠CBP=90°,求得∠OBC=90°结论可得;(2)连结DB.由AD是⊙O的直径,得到∠ABD=90°,推出Rt△ABD∽Rt△AOP,得到比例式=,即可得到结果.【解答】(1)证明:连结OB.∵OA=OB,∴∠A=∠OBA,又∵BC=PC,∴∠P=∠CBP,∵OP⊥AD,∴∠A+∠P=90°,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣(∠OBA+∠CBP)=90°,∵点B在⊙O上,∴直线BC是⊙O的切线,(2)解:如图,连结DB.∵AD是⊙O的直径,∴∠ABD=90°,∴Rt△ABD∽Rt△AOP,∴=,即=,AP=9,∴BP=AP﹣BA=9﹣2=7.【点评】本题考查了切线的判定,相似三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.25.已知二次函数y=x2﹣ax﹣2a2(a为常数,且a≠0).(1)证明该二次函数的图象与x轴的正半轴、负半轴各有一个交点;(2)若该二次函数的图象与y轴的交点坐标为(0,﹣2),试求该函数图象的顶点坐标.【考点】抛物线与x轴的交点.【分析】(1)令y=0可求得方程的两个根一正一负,可证得结论;(2)把(0,﹣2)代入抛物线的解析可求得a的值,进一步可求得其顶点坐标.【解答】(1)证明:y=x2﹣ax﹣2a2=(x+a)(x﹣2a),令y=0,则x1=﹣a,x2=2a,、x2的值必为一正一负,∵a≠0,x1∴该二次函数的图象与x轴的正半轴、负半轴各有一个交点;(2)解:由题意,得﹣2a2=﹣2,所以a=1或﹣1.当a=1时,y=x2﹣x﹣2=(x﹣)2﹣,顶点坐标为(,﹣),当a=﹣1时,y=x2+x﹣2=(x+)2﹣,顶点坐标为(﹣,﹣),该函数图象的顶点坐标为(,﹣)或(﹣,﹣).【点评】本题主要考查二次函数与x轴的交点和顶点坐标,掌握二次函数与x轴交点的横坐标是对应一元二次方程的两根是解题的关键.26.如图①,梯形ABCD中,AD∥BC,∠C=90°,BA=BC.动点E、F同时从点B出发,点E沿折线BA﹣AD﹣DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:(1)AD= 2 cm,BC= 5 cm;(2)求a的值,并用文字说明点N所表示的实际意义;(3)直接写出当自变量t为何值时,函数y的值等于5.【考点】四边形综合题;动点问题的函数图象.【分析】(1)此题的关键是要理解分段函数的意义,OM段是曲线,说明E、F分别在BA、BC 上运动,此时y、t的关系式是二次函数;MN段是线段,且平行于t轴,那么此时F运动到终点C,且E在线段AD上运动,此时y为定值;NP段是线段,此时y、t的函数关系式是一次函数,此时E在线段CD上运动,此时y值随t的增大而减小;根据上面的分析,可知在MN之间时,E 在线段AD上运动,在这个区间E点运动了2秒,所以AD=2cm;根据OM段的函数图象知:当t=5时,E、F分别运动到A、C两点,那么AB=BC=5;(2)利用待定系数法分别求两个解析式.【解答】解:(1)由图可知:OM段为抛物线,此时点E、F分别在BA、BC上运动;当E、A重合,F、C重合时,t=5s,∴AB=BC=5cm;故答案为:2,5;(2)过A作AH⊥BC,H为垂足,由已知BH=3,BA=BC=5,∴AH=4∴当点E、F分别运动到A、C时△EBF的面积为:×BC×AH=×5×4=10,即a的值为10,点N所表示的实际意义:当点E运动7s时到达点D,此时点F沿BC已运动到点C并停止运动,这时△EBF的面积为10 cm2;(3)当点E在BA上运动时,设抛物线的解析式为y=at2,把M点的坐标(5,10)代入得a=,∴y=t2,0<t≤5;当点E在DC上运动时,设直线的解析式为y=kt+b,把P(11,0),N(7,10)代入,得11k+b=0,7k+b=10,解得k=﹣,b=,所以y=﹣t+,(7≤t<11)把y=5分别代入y=t2和y=﹣t+得,5=t2和5=﹣t+,解得:t=或t=9.【点评】此题主要考查了分段函数的应用、梯形的性质以及函数解析式的求法,能够正确的理解分段函数的意义是解答此题的关键.27.如图1,对于平面上小于等于90°的∠MON,我们给出如下定义:若点P在∠MON的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON的“点角距”,记作d (∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角为∠xOy.(1)已知点A(5,0)、点B(3,2),则d(∠xOy,A)= 5 ,d(∠xOy,B)= 5 .(2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=5,画出点P运动所形成的图形.(3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=x(x≥0).①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值;②在图4中,抛物线y=﹣x2+2x+经过A(5,0)与点D(3,4)两点,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求当d(∠xOT,Q)取最大值时点Q 的坐标.【考点】二次函数综合题.【分析】(1)首先根据点A(5,0)到x轴的距离是0,到y轴的距离是5,可得d(∠xOy,A)=0+5=5;然后根据点B(3,2)到x轴的距离是2,到y轴的距离是3,求出d(∠xOy,B)的值是多少即可.(2)首先设点P的坐标是(x,y),然后根据d(∠xOy,P)=5,可得x+y=5,据此求出点P运动所形成的图形即可.(3)①首先作CE⊥OT于点E,CF⊥x轴于点F,延长FC交OT于点H,则CF=1,然后设直线OT 对应的函数关系式为y=x(x≥0),求出点H的坐标为H(4,),进而求出CH,OH的值各。
2017-2018学年度第二学期八年级下册 期中数学试卷(有答案和解析)
2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在二次根式中,字母x的取值范围是()A. B. C. D.2.若x=1是方程x2-ax+3=0的一个根,那么a值为()A. 4B. 5C.D.3.下列计算正确的是()A. B. C. D.4.A. 14,13B. 15,13C. 14,14D. 14,155.一个n边形的内角和等于它的外角和,则n=()A. 3B. 4C. 5D. 66.某厂一月份生产某机器100台,计划二、三月份共生产280台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A. B.C. D.7.如图O是边长为9的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于点F,OE∥AC,交BC于点E,则OD+OE+OF的值为()A. 3B. 6C. 8D. 98.关于x的方程(a-6)x2-8x+6=0有实数根,则a的取值范围是()A. 且B. 且C.D. 且9.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A. B. C. D.10.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共6小题,共24.0分)11.标本-1,-2,0,1,2,方差是______.12.若整数满足,则的值为________.13.若x=-2是关于x的方程x2-2ax+8=0的一个根,则方程的另一个根为______.14.已知m是一元二次方程x2-9x+1=0的解,则=______.15.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为______m.16.如图在△ABC中,∠BAC=30°,AB=AC=6,M为AC边上一动点(不与A,C重合),以MA、MB为一组邻边作平行四边形MADB,则平行四边形MADB的对角线MD的最小值是______.三、计算题(本大题共1小题,共8.0分)17.(1)已知x=2+,y=2-,求(+)(-)的值.(2)若的整数部分为a,小数部分为b,写出a,b的值并计算-ab的值.四、解答题(本大题共6小题,共58.0分)18.解方程:(1)2x2-x=0(2)(x-1)(2x+3)=1.19.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有______名同学参加这次测验;(2)这次测验成绩的中位数落在______分数段内;(3)若该校一共有800名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?20.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.(1)写出正确结论的序号;(2)证明所有正确的结论.21.银隆百货大楼服装柜在销售中发现:“COCOTREE”牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.22.如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,请再说出两种画角平分线的方法(要求画出图形,并说明你使用的工具和依据)23.如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在时刻t,使得S△PMD=S△ABC?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:二次根式中,字母x的取值范围是:x-3>0,解得:x>3.故选:B.直接利用二次根式的性质分析得出答案.此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.【答案】A【解析】解:把x=1代入x2-ax+3=0得1-a+3=0,解得a=4.故选:A.根据一元二次方程的解的定义把x=1代入x2-ax+3=0中得到关于a的方程,然后解关于a的一次方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【答案】A【解析】解:A、-=2-=,故本选项正确.B、+≠,故本选项错误;C、×=,故本选项错误;D、÷==2,故本选项错误.故选:A.根据二次根式的加法及乘法法则进行计算,然后判断各选项即可得出答案.本题考查了二次根式的混合运算,难度不大,解答本题一定要掌握二次根式的混合运算的法则.4.【答案】A【解析】解:将这组数据按大小顺序,中间一个数为13,则这组数据的中位数是13;=(24+15+13+10+8)÷5=14.故选:A.根据中位数和平均数的定义求解即可.本题为统计题,考查平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.【答案】B【解析】解:由题可知(n-2)•180=360,所以n-2=2,n=4.故选:B.利用等量关系式以及多边形内角和公式解答.根据题意列出方程即可.本题主要考查的是多边形的内角和与外角和,熟练掌握多边形的内角和与外角和公式是解题的关键.6.【答案】B【解析】【分析】主要考查增长率问题,一般用"增长后的量=增长前的量×(1+增长率)",如果设二、三月份每月的平均增长率为x,根据“计划二、三月份共生产280台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【解析】解:设二、三月份每月的平均增长率为x,则二月份生产机器为:100(1+x),三月份生产机器为:100(1+x)2;又知二、三月份共生产280台;所以,可列方程:100(1+x)+100(1+x)2=280.故选B.7.【答案】D【解析】【分析】根据等边三角形,平行线的性质,和平行四边形的判定,并根据等腰梯形性质求解.本题考查了等边三角形的性质,关键是利用了:1、等腰三角形的性质和判定:三边相等,三角均为60度,有两角相等且为60度的三角形是等边三角形;2、平行四边形的判定的性质;3、等腰梯形的判定和性质.【解答】解:延长OD交AC于点G,∵OE∥CG,OG∥CE,∴四边形OGCE是平行四边形,有OE=CG,∠OGF=∠C=60°,∵OF∥AB,∴∠OFG=∠A=60°,∴OF=OG,∴△OGF是等边三角形,∴OF=FG,∵OD∥BC,∴∠ADO=∠B=60°∴梯形OFAD是等腰梯形,有OD=AF,即OD+OE+OF=AF+FG+CG=AC=9.8.【答案】C【解析】解:当a-6=0时,原方程为-8x+6=0,解得:x=,∴a=6符合题意;当a-6≠0时,有,解得:a≤且a≠6.综上所述,a的取值范围为:a≤.故选:C.分a-6=0和a-6≠0两种情况考虑:当a-6=0时,通过解一元一次方程可得出原方程有解,进而可得出a=6符合题意(此时已经可以确定答案了);当a-6≠0时,由二次项系数非零及根的判别式△≥0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围.综上即可得出结论.本题考查了根的判别式、一元二次方程的定义以及解一元一次方程,分a-6=0和a-6≠0两种情况考虑是解题的关键.9.【答案】C【解析】解:∵点B的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l的函数解析式为y=kx+b,则,解得,所以直线l的解析式为y=x-1.根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②符合题意;在∴△ABC≌△EAD(SAS);①符合题意;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;④符合题意.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不符合题意;∴①②④符合题意,故选:B.由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.④正确.此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.11.【答案】2【解析】解:∵==0,∴方差S2=×[(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.故答案为:2.先计算出平均数,再根据方差的公式计算.本题考查方差的定义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.【答案】4【解析】解:∵2=,3=,∴整数n满足2<n<3,则n的值为=4.故答案为4.直接得出n最接近的二次根式,进而得出答案.此题主要考查了估算无理数的大小,正确将原数转化是解题关键.13.【答案】-4【解析】解:设方程的另一个根为x1,根据根与系数的关系有:-2x1=8,解得x1=-4.故答案为:-4.设出方程的另一个根,利用根与系数关系中的两根之积可以求出方程的另一个根.本题考查的是一元二次方程的解,知道方程的一个根,用根与系数关系中的两根的积可以求出方程的另一个根.14.【答案】17【解析】解:∵m是一元二次方程x2-9x+1=0的解,∴m2-9m+1=0,∴m2-7m=2m-1,m2+1=9m,∴=2m-1+=2(m+)-1,∵m2-9m+1=0,∴m≠0,在方程两边同时除以m,得m-9+=0,即m+=9,∴=2(m+)-1=2×9-1=17.故答案是:17.将x=m代入该方程,得m2-9m+1=0,通过变形得到m2-7m=2m-1,m2+1=9m;然后在方程m2-9m+1=0两边同时除以m,得到m+=9,代入即可求得所求代数式的值.此题主要考查了方程解的定义.此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15.【答案】2【解析】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,由已知得:(30-3x)•(24-2x)=480,整理得:x2-22x+40=0,解得:x1=2,x2=20,当x=20时,30-3x=-30,24-2x=-16,不符合题意舍去,即x=2.答:人行通道的宽度为2米.故答案为2.设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30-3x)m,宽为(24-2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.16.【答案】3【解析】解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=6,∠BHA=90°,∠BAH=30°,∴BH=AB=3,∵四边形ADBM是平行四边形,∴BD∥AC,∴当DM⊥AC时,DM的值最小,此时DM=BH=3,故答案为3.如图,作BH⊥AC于H.因为四边形ADBM是平行四边形,所以BD∥AC,所以当DM⊥AC时,DM的值最小,此时DM=BH.本题考查直角三角形30度角性质、等腰三角形的性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)原式=-==,∵x=2+,y=2-,∴x+y=4、y-x=-2、xy=1,则原式==-8;(2)∵2<<3,∴a=2、b=-2,∴-ab=-2(-2)=+2-2+4=6-.【解析】(1)将原式变形为,再根据x、y的值计算出y+x、y-x、xy的值,继而代入可得;(2)由题意得出a、b的值,代入计算可得.本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.18.【答案】解:(1)2x2-x=0,x(2x-)=0,则x=0或2x-=0,解得x1=0,x2=;(2)(x-1)(2x+3)=1,2x2+x-4=0,解得:x1=,x2=.【解析】(1)提取公因式x,即可得到x(2x-)=0,再解两个一元一次方程即可;(2)先转化为一般式方程,然后利用因式分解法解方程.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.19.【答案】40;70.5~80.5【解析】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是800×=380(人).(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.20.【答案】解:(1)正确结论是①④,(2)①在△ABC和△ADC中,∵ ,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;【解析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,结论①可以利用等边对等角,由等量加等量和相等来解决.21.【答案】解:(1)设每件童装应降价x元,由题意得:(100-60-x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100-60-x)(20+2x)=-2x 2+60x+800=-2(x-15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.【解析】(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,用每件盈利×销售量=每天盈利,列方程求解.为了扩大销售量,x应取较大值.(2)设每天销售这种童装利润为y,利用(1)中的关系列出函数关系式,利用配方法解决问题.此题考查了二次函数的应用以及一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售这种童装利润,进而列方程与函数关系解决实际问题.22.【答案】解:(1)如图2,OP为所作;(2)方法一:如图1,利用有刻度的直尺画出AB的中点M,则OM为∠AOB的平分线;方法二:如图3,利用圆规和直尺作∠AOB的平分线ON,【解析】(1)利用AB、EF,填空相交于点P,如图2,利用平行四边形的性质得到PA=PB,然后根据等腰三角形的性质可判断OP平分∠AOB;(2)方法一:如图1,利用有刻度的直尺和腰三角形的性质画图;方法二:如图3,利用圆规和直尺,根据基本作图作∠AOB的平分线ON.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和等腰三角形的性质.23.【答案】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,∴PD=12-t,在Rt△PDC中,PC=,CD=5,根据勾股定理得,PC2=CD2+PD2,∴29=52+(12-t)2,∴t=10或t=14(舍).即:t的值为10s;(3)假设存在t,使得S△PMD=S△ABC.∵BC=10,AD=12,∴S△ABC=BC×AD=60,①若点M在线段CD上,即0≤t<时,PD=12-t,DM=5-2t,由S△PMD=S△ABC,即(12-t)(5-2t)=,2t2-29t+43=0解得t1=(舍去),t2=②若点M在射线DB上,即<t<12.由S△PMD=S△ABC得(12-t)(2t-5)=,2t2-29t+77=0解得t=11或t=综上,存在t的值为s或 11s或s,使得S△PMD=S△ABC.【解析】(1)根据等腰三角形性质和勾股定理解答即可;(2)根据勾股定理建立方程求解即可;(3)根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,三角形的面积公式,解本题的关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.。