两相流的一些介绍讲解

合集下载

气液两相流

气液两相流

热物理量测试技术1 概述两相流广泛应用于热能动力工程、核能工程、低温工程以及航天领域等许多领域。

所谓两相流,广义上讲是指一种物质或两种物质在不同状态下的流动,其中气体和液体一起流动称为气液两相流。

对于两相流中的气液混合物,它们可以是同一种物质,即汽—液(如水和水蒸气),也可以是两种不同的物质,即气—液(如水和空气混合物)。

气液两相流是一个相当复杂的问题,。

在单相流中,经过一段距离之后,就会建立一个稳定的速度场。

但对于两相流,例如蒸汽和水,则很难建立一个稳定的流动,因为在管道流动中有压降产生,由于此压降作用会产生液体的蒸发,所以在研究气液两相流时必须考虑两相间的传热与传质问题。

两相流学科还处于半经验半理论阶段,对于两相流的流动和传热规律进行研究时,除了依靠各种数学物理模型外,还要依靠实验,这就需要两者相结合从而更好地进行研究。

2 两相流压降测量[1]压降,即两相流通过系统时产生的压力变化,是两相流体流动过程中的一个重要参数。

保持两相流体流动所需的动力以及动力系统的容量和功率就取决于压降的大小。

一般说来,两相流体流动时产生的压降一般由三部分组成,即摩擦阻力压降、重位压降、加速压降,管道系统出现阀门、孔板等管件时,还需测量局部压降。

目前,常用差压计或传感器来测量两相流压降。

2.1 利用差压计测量压降应用差压计测量气液两相流压降的测量原理图如图1所示。

所测压降为下部抽头的压力与上部抽头压力之差。

在差压计的Z1截面上可列出压力平衡式如下:P1+(Z2−Z1)ρC g=P2+(Z4−Z3)ρC g+(Z3−Z1)ρM g(2.1)式中,ρC为取压管中的流体密度;ρM为差压计的流体密度。

由(2.1)可得:P1−P2=(Z3−Z1)g(ρM−ρC)+(Z4−Z2)ρC g(2.2)由上式可知,要算出压降P1−P2的值,必须知道取压管中的流体密度ρC和差压计读数Z3−Z1。

当管中流体不流动时:P1−P2=gρm(Z4−Z2)(2.3)式中,ρm为两相混合物平均密度。

两相流、多相流

两相流、多相流

两相流的概念及类型两相物质(至少一相为流体)所组成的流动系统。

若流动系统中物质的相态多于两个,则称为多相流,两相或多相流是化工生产中为完成相际传质和反应过程所涉及的最普遍的粘性流体流动。

通常根据构成系统的相态分为气液系、液液系、液固系、气固系等。

气相和液相可以以连续相形式出现,如气体-液膜系统;也可以以离散的形式出现,如气泡-液体系统,液滴-液体系统。

固相通常以颗粒或团块的形式处于两相流中。

两相流的流动形态有多种。

除了同单相流动那样区分为层流和湍流外,还可以依据两相相对含量(常称为相比)、相界面的分布特性、运动速度、流场几何条件(管内、多孔板上、沿壁面等)划分流动形态。

对于管内气液系统,随两相速度的变化,可产生气泡流、塞状流、层状流、波状流、冲击流、环状流、雾状流等形态;对于多孔板上气液系可以产生自由分散的气泡、蜂窝状泡沫、活动泡沫、喷雾等形态。

两相流研究的一个基本课题是判断流动形态及其相互转变。

流动形态不同,则热量传递和质量传递的机理和影响因素也不同。

例如多孔板上气液两相处于鼓泡状态时,正系统混合物(浓度增加时表面张力减低)的板效率(见级效率)高于负系统混合物(浓度增加时表面张力增加);而喷射状态下恰好相反。

两相流研究的另一个基本课题,是关于分散相在连续相中的运动规律及其对传递和反应过程的影响。

当分散相液滴或气泡时,有很多特点。

例如液滴和气泡在运动中会变形,在液滴或气泡内出现环流,界面上有波动,表面张力梯度会造成复杂的表面运动等。

这些都会影响传质通量,进而影响设备的性能。

两相流研究的课题,还有两相流系统的摩擦阻力,系统的振荡和稳定性等。

两相流研究模型两相流的理论分析比单相流困难得多,描述两相流的通用微分方程组至今尚未建立。

大量理论工作采用的是两类简化模型:①均相模型。

将两相介质看成是一种混合得非常均匀的混合物,假定处理单相流动的概念和方法仍然适用于两相流,但须对它的物理性质及传递性质作合理的假定;②分相模型。

两相流及几种模型介绍

两相流及几种模型介绍

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。

两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。

引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。

离散相模型FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相;←离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等;←应用范围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等;←颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑;湍流中颗粒处理的两种模型:Stochastic←Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。

通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道”多相流模型FLUENT中提供的模型:VOF模型(Volume of Fluid Model)←混合模型(Mixture Model)←←欧拉模型(Eulerian Model)VOF模型(Volume of Fluid Model)← VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0<α1<1,表示该控制容积中有两相交界面;← VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。

气液两相流 整理

气液两相流 整理

第一章概论相的概念:相是体系中具有相同化学组成和物理性质的一部分,与体系的其它均匀部分有界面隔开两相流动的处理方法:双流体瞬态模拟方法和精确描述物理现象的稳态机理模型是多相管流研究的主要方法目前研究存在的问题:1、多相流问题未得到解析解;2、油气水三相流的研究不够深入;3、水平井段变质量流动研究较少;4、缺乏向下流动的综合机理模型;5、缺乏专用研究仪器气液两相流的分类:1、细分散体系:细小的液滴或气泡均匀分散在连续相中2、粗分散体系:较大的气泡或液滴分散在连续相中3、混合流动型:两相均非连续相4、分层流动:两相均为连续相气液两相流的基本特征:1、体系中存在相界面:两相之间也存在力的作用,出现质量和能量的交换时伴随着机械能的损失2、两相的分布情况多种多样:两相流动中两相介质的分布称为流型3、两相流动中存在滑脱现象:相间速度的差异称为滑脱,滑脱将产生附加的能量损失4、沿程流体体积流量有很大变化,质量流量不变气液两相流研究方法:1、经验方法:从气液两相流动的物理概念出发,或者使用因次分析法,或者根据流动的基本微分方程式,得到反映某一特定的两相流动过程的一些无因次参数,然后依据实验数据整理出描述这一流动过程的经验关系式。

优点:使用方便,在一定条件下能取得好的结果缺点:使用有局限性,且很难从其中得出更深层次的关系2、半经验方法:根据所研究的气液两相流动过程的特点,采用适当的假设和简化,再从两相流动的基本方程式出发,求得描述这一流动过程的函数关系式,最后用实验方法确定出函数关系式中的经验系数。

优点:有一定的理论基础,应用广泛缺点:存在简化和假设,具有不准确性3、理论分析方法:针对各种流动过程的特点,应用流体力学方法对其流动特性进行分析,进而建立起描述这一流动过程的解析关系式。

优点:以理论分析为基础,可以得到解析关系式缺点:建立关系式困难,求解复杂研究气液两相流应考虑的几个问题:1、不能简单地用层流或紊流来描述气液两相流2、水平或倾斜流动是轴不对称的3、由于相界面的存在增加了研究的复杂性4、总能量方程中应考虑与表面形成的能量问题5、多相流动中各相的温度、组分的浓度都不是均匀的,相之间有传热和传质6、各相流速不同,出现滑脱问题,是多相流研究的核心与重点流动型态:相流动中两相介质的分布状况称为流型或两相流动结构流型图:描述流型变化及其界限的图。

两相流、多相流讲课讲稿

两相流、多相流讲课讲稿

两相流、多相流两相流的概念及类型两相物质(至少一相为流体)所组成的流动系统。

若流动系统中物质的相态多于两个,则称为多相流,两相或多相流是化工生产中为完成相际传质和反应过程所涉及的最普遍的粘性流体流动。

通常根据构成系统的相态分为气液系、液液系、液固系、气固系等。

气相和液相可以以连续相形式出现,如气体-液膜系统;也可以以离散的形式出现,如气泡-液体系统,液滴-液体系统。

固相通常以颗粒或团块的形式处于两相流中。

两相流的流动形态有多种。

除了同单相流动那样区分为层流和湍流外,还可以依据两相相对含量(常称为相比)、相界面的分布特性、运动速度、流场几何条件(管内、多孔板上、沿壁面等)划分流动形态。

对于管内气液系统,随两相速度的变化,可产生气泡流、塞状流、层状流、波状流、冲击流、环状流、雾状流等形态;对于多孔板上气液系可以产生自由分散的气泡、蜂窝状泡沫、活动泡沫、喷雾等形态。

两相流研究的一个基本课题是判断流动形态及其相互转变。

流动形态不同,则热量传递和质量传递的机理和影响因素也不同。

例如多孔板上气液两相处于鼓泡状态时,正系统混合物(浓度增加时表面张力减低)的板效率(见级效率)高于负系统混合物(浓度增加时表面张力增加);而喷射状态下恰好相反。

两相流研究的另一个基本课题,是关于分散相在连续相中的运动规律及其对传递和反应过程的影响。

当分散相液滴或气泡时,有很多特点。

例如液滴和气泡在运动中会变形,在液滴或气泡内出现环流,界面上有波动,表面张力梯度会造成复杂的表面运动等。

这些都会影响传质通量,进而影响设备的性能。

两相流研究的课题,还有两相流系统的摩擦阻力,系统的振荡和稳定性等。

两相流研究模型两相流的理论分析比单相流困难得多,描述两相流的通用微分方程组至今尚未建立。

大量理论工作采用的是两类简化模型:①均相模型。

将两相介质看成是一种混合得非常均匀的混合物,假定处理单相流动的概念和方法仍然适用于两相流,但须对它的物理性质及传递性质作合理的假定;②分相模型。

两相流的一些介绍

两相流的一些介绍
Your site here
三.结果分析
因为网格形状及其质量对两相流的计算收敛性 影响非常大,所以在计算时,我们采用了两套 网格进行计算即六面体网格和四面体网格,然 后比较计算结果。在两相流计算过程中有主相 和第二相的设置区别,为了考察两种设置的关 系,我进行了水是第二相及空气是第二相的两 种设定计算。
Models -> solve.. Base---基于压力求 解器 2. 隐形格式 ---Implicit 3.非定常流动-Unsteady
设置:1Pressure
Your site here
2.多相流模型
步骤:Define -> Models > Multiphase...
设置:混合模型---Mixture 原因:VOF 模型适合于分层
四面体-空气为第 二相-水的密度
Your site here
四面体网格各相面体-水为第二相-水的体积分数
四面体-空气为第二相-空气的体积分数
四面体-空气为第二相-水的体积分数
Your site here
六面体网格的各相密度
六面体-水为第 二相-混合密度
速度对比
四面体网格 水为第二相
四面体网格 空气为第二相
六面体网格 水为第二相
六面体网格 空气为第二相
Your site here
四面体网格各相密度
四面体-水为第 二相-混合密度
四面体-水为第 二相-空气密度
四面体-水为第 二相-水的密度
四面体-空气为第 二相-混合密度
四面体-空气为第 二相-空气密度
两相之间没有滑移速度,因为这个 过程是两相流是静止不动的,物体 一定速度冲入两相中。
的或自由表面流,mixture 和Eulerian 模型适合于流 动中有相混合或分离,或者 分散相的volume fraction 超过 10%的情形。(流动 中分散相的volume fraction 小于或等于 10% 时可使用离散相模型)

热工水力学(第八讲)两相流的描述

热工水力学(第八讲)两相流的描述

32
4.1.1 质量方程
∂ ∂ ∫∫Az ρdAz + ∂z ∫∫Az ρυ z dAz = 0 ∂t

∂ ∂ { ρ vα + ρl (1 − α )} Az + ∂z { ρ vαυv,z + ρl (1 − α )υl, z } Az = 0 ∂t
33
4.1.2 动量方程
p p+ z dz
3
1 两相流算子
• 算子(operator)表示某种函数运算的符号。 (operator) • 两相流算子,包括定相函数、面积平均算 子、体积平均算子、时间平均算子。 • 为什么需要三种不同的平均: 两相流不同于单相流,某一相可能在空间 上不连续,在时间上有脉动。
4
1.1 定相函数
• 如果某一时刻空间某一点r处是k相状态,k 表示汽(v)或液(l)。那么定相函数定义 定相函数 为:
{ jv } z =
qm,v,z
ρ v Az
=
Gv,z
ρv
=
Gm,z χ z
ρv
25
• 混合物:
{ j} z
1− χz χz 1 qm ,l, z qm ,v, z = ( + ) = Gm , z ( + ) Az ρl ρv ρl ρv
体积流密度具有线速度的量纲,在单相流 情况下实际上就是平均速度vm。
k
= ck
k
{c}
c =
k

{ } c 、 {{c}} = {c}
c
实际上没有意义
ck = ck
α k , {ck } = {ck }k {α k }
13
• 体积平均量若随时间波动,则瞬时量可表 示为时间平均量与脉动量之和:

2-2.井筒气液两相流

2-2.井筒气液两相流

如果忽略气体的密度,则
m
fl f
l
液相的流动断面增大将引起混合物密度的增加。
假定:存在和不存在滑脱两种情况下液、气体积流量不
变。有滑脱时,气体流速大,液体流速小,为保持体
积流量不变,气体过流断面将减小为 f g ,液体的过流
断面将增加为 f1。考虑滑脱后分相过流断面的变化:
f fl fl ( fg fg )
• 泡雷诺数
vs C1C2 gD
Nb

vs DL L
-
图 2 21
摩 擦 阻 力 系 数 曲 线
图2-22 C1 ~Nb曲线
• C2是根据泡雷诺数及雷诺数 N R e来确定:
N

Re

vt DL L

段塞流的摩擦梯度:
f
fLvt2 ( qL vs Ap )
2D qt vs Ap
泡流的特点:气体是分散相,液体是连续相;气体主
要影响混合物密度,对摩擦阻力的影响不大;滑脱现 象比较严重。
③段塞流:当混合物继续向上流动,压力逐渐降低,气
体不断膨胀,小气泡将合并成大气泡,直到能够占据 整个油管断面时,井筒内将形成一段油一段气的结构。
段塞流的特点:气体呈分散相,液体呈连续相,炮弹
状的大气泡托着油柱向上流动,象一个破漏的活塞向 上推油。油、气间的相对运动要比泡流小,滑脱也小。
(4)雾流
• 雾流混合物密度计算公式与泡流相同:
m H L L H g g (1 H g )L H g g
• 由于雾流的气液无相对运动速度,即滑脱速度接近于雾,
基本上没有滑脱:
Hg

qg qL qg
• 摩擦梯度:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Your site here
速度迹线
四面体-水是第二相-速度迹线
四面体-空气第二相-速度迹线
六面体-水是第二相-速度迹线
六面体-空气是第二相-速度迹线
Your site here
压力迹线
四面体-水为第二相-压力迹线
四面体-空气为第二相-压力迹线
六面体-水为第二相-压力迹线
六面体-空气为第二相-压力迹线
Your site here
3.湍流模型
步骤:Define -> Models -
>Viscous
设置:K-ε 模型
原因:Spalart-Allmaras 机
翼上的超音速、跨音速流动 ,边界层流动等 k-ε模型应用广泛用于 可压缩, 浮力,燃烧等。多相流动动 量方程中所模拟的项数是非 常大的,这使得多相流模拟 中的紊流模型非常复杂。这 一模型可以满足。 k-ω模型对于有压力梯度的大范 围边界层流动航天和涡轮机 械领域
原因:VOF 模型适合于分层
的或自由表面流,mixture
和Eulerian 模型适合于流
动中有相混合或分离,或者
分散相的volume fraction
超滑移速度,因为这个 过程是两相流是静止不动的,物体 一定速度冲入两相中。
中分散相的volume fraction 小于或等于 10% 时可使用离散相模型)
格式,是专门用于多相流计算的格式,适合大体积分数变化的流场 计算。其他解算器为保证计算精确,设为二阶迎风格式
Your site here
8.初始化设置
在初始化时,Y轴向速 度为863m/s,这个速度 值是流场在刚开始计算 时的冲击速度,随着计 算的深入,流场冲击速 度会逐渐增大,最后达 到预设的1700m/s。
Your site here
4.定义材料
Your site here
5.定义第二相
步骤:define->phase... 设置:1.主相--air
2.第二相--water_liquid
Your site here
6.边界条件设置与第二相体积分数设定
步骤: Define->Boundary Conditions...
Your site here
网格划分
四面体网格
六面面体网格
蓝色面为压力入口,红色面为压力出口,黄色面 为对称面,黑色的地面和RVE框架为WALL
Your site here
压力对比
四面体网格水为第二相
四面体网格 空气为第二相
六面体网格水为第二相
六面体网格 空气为第二相
Your site here
速度对比
四面体网格 水为第二相
四面体网格 空气为第二相
六面体网格 水为第二相
六面体网格 空气为第二相
Your site here
四面体网格各相密度
四面体-水为第 二相-混合密度
四面体-水为第 二相-空气密度
四面体-水为第 二相-水的密度
四面体-空气为第 二相-混合密度
四面体-空气为第 二相-空气密度
四面体-空气为第 二相-水的密度
Your site here
四面体网格各相体积分数
四面体-水为第二相-空气的体积分数
四面体-水为第二相-水的体积分数
四面体-空气为第二相-空气的体积分数
四面体-空气为第二相-水的体积分数 Your site here
六面体网格的各相密度
六面体-水为第 二相-混合密度
Your site here
质量守恒对比
Inlet
四面体网格 166770.31 水为第二相
四面体网格 空气为第二 相
六面体网格 水为第二相
166770.63 166757.72
六面体网格
空气为第二 相
166757.8
outlet
166770.34 166770.78
166757.41 166757.02
入口边界:pressure_inlet ---压力入口
压力计算:
p0 ps 1/ 2 | v |2
p0 总压......ps - - - 静压
- -混合密度.....v - -速度
出口边界:pressure-outlet压力出口
Your site here
6.边界条件设置与第二相体积分数设定
Your site here
9.putch设置
水的体积分数
初始化补充,此项设置为补充两相流的初始化,不经 过此项补充在计算时会默认为单项。
Your site here
三.结果分析
因为网格形状及其质量对两相流的计算收敛性 影响非常大,所以在计算时,我们采用了两套 网格进行计算即六面体网格和四面体网格,然 后比较计算结果。在两相流计算过程中有主相 和第二相的设置区别,为了考察两种设置的关 系,我进行了水是第二相及空气是第二相的两 种设定计算。
多相流模型
王新慧
2011.10.20
一.多相流概念与分类
定义:两种或两种以上不同相的流体混合在一
起的流动
第 二 相
分类:
1气-液或者液-液两
2.气-固两相流
3.液-固两相流 4.三相流
主 相
Your site here
二.问题设置和基本流程
Your site here
1.求解器的设置
步骤:Define ->
Your site here
6.边界条件设置与第二相体积分数设定
在边界条件界面中,选择第二 相设定窗口,可任意设定空气 或水的体积分数
第二相体检分数的设定
Your site here
7.解算器设置
步骤:solve->control->soultion 设置:discretion中体积分数--QUICK格式。QUICK体积分数解算器
net
0.03125 -0.15625
Models -> solve..
设置:1Pressure
Base---基于压力求 解器
2. 隐形格式 ---Implicit
3.非定常流动-Unsteady
Your site here
2.多相流模型
步骤:Define -> Models -
> Multiphase...
设置:混合模型---Mixture
六面体-水为第 二相-空气密度
六面体-水为第 二相-水的密度
六面体-空气第 二相-混合密度
六面体-空气第 二相-空气密度
六面体-空气第 二相-水的密度Your site here
六面体网格的各相体积分数
六面体-水为第二相-空气的体积分数
六面体-水为第二相-水的体积分数
六面体-空气为第二相-空气的体积分数 六面体-空气为第二相-空气的体积分数
相关文档
最新文档