无人机基础知识(飞行原理、系统组成、组装与调试)
无人机运行手册基础知识与操作技巧

无人机运行手册基础知识与操作技巧
一、无人机基础知识
无人机(Unmanned Aerial Vehicle,UAV)是一种通过无线遥控或
预设程序实现飞行任务的飞行器。
无人机一般由机身、电机、螺旋桨、控制系统等部件组成。
在操作无人机之前,必须了解一些基础知识:
1. 了解无人机的各部件功能和组装方式。
2. 了解无人机的飞行原理和控制方法。
3. 掌握无人机的安全规范和飞行限制。
二、无人机操作技巧
1. 检查无人机和遥控器电量,确保充足。
2. 对无人机进行预飞检查,包括螺旋桨、电机、起落架等部件是否
正常。
3. 在空旷的场地进行试飞,确保无人机能正常起飞、悬停和降落。
4. 切勿在人员密集或禁飞区域飞行,避免安全事故发生。
5. 根据天气条件选择合适的飞行时间和地点,避免风雨天气飞行。
6. 在飞行过程中保持关注无人机的状态,随时准备处理意外情况。
三、无人机应用领域
无人机在农业、航拍、勘测、应急救援等领域有着广泛的应用。
通过合理的操作和技巧,可以更好地发挥无人机的功能,提高工作效率和安全性。
以上是关于无人机基础知识与操作技巧的介绍,希望对您在无人机操作过程中有所帮助。
在操作无人机时,务必注意安全,遵循相关规定,合理使用无人机,确保飞行任务顺利完成。
祝您飞行愉快!。
无人机培训基础知识

无人机培训基础知识
无人机培训的基础知识包括以下几个方面:
1. 无人机的分类:了解无人机的不同类型和用途,如多旋翼无人机、固定翼无人机、垂直起降无人机等。
2. 无人机的构造和部件:学习无人机的构造和各个零部件的功能,包括机架、电机、电调、飞控、遥控器、传感器等。
3. 飞行原理:了解无人机的飞行原理,包括升力、重力、气动力等基本概念,以及如何控制无人机的姿态和飞行路径。
4. 飞行技术:学习无人机的基本飞行技术,包括起飞、降落、悬停、盘旋、定点飞行、航线飞行等。
5. 航拍技术:掌握无人机航拍的基本技巧,包括摄像机的控制、拍摄角度的选择、拍摄规划等。
6. 无人机安全知识:了解无人机的安全飞行规则和法律法规,包括飞行限制区域、飞行高度限制、飞行许可证等。
7. 故障排除和应急处理:学习无人机故障的识别和排除方法,以及遇到紧急情况时的正确处理方式。
8. 航空气象知识:了解航空气象的基本知识,包括天气对无人机飞行的影响、风速、风向、能见度等指标的解读。
9. 飞行计划和数据处理:学习如何进行飞行计划,包括航线规划、航点设置等,以及如何处理和分析飞行数据。
10. 无人机维护和保养:了解无人机的日常维护和保养方法,包括电池管理、零部件检查、软件更新等。
这些基础知识将帮助学员建立起对无人机的基本了解,为进一步的专业培训和实践打下基础。
无人机飞行原理、系统组成、组装与调试技术

近年來無人機的應用逐漸廣泛,不少愛好者想集中學習無人機的知識,本文從最基本的飛行原理、無人機系統組成、組裝與調試等方面著手,集中講述了無人機的基本知識。
第一章飛行原理本章介紹一些基本物理觀念,在此只能點到為止,如果你在學校已上過了或沒興趣學,請跳過這一章直接往下看。
第一節速度與加速度速度即物體移動的快慢及方向,我們常用的單位是每秒多少公尺﹝公尺/秒﹞ 0加速度即速度的改變率,我們常用的單位是﹝公尺/秒/秒﹞,如果加速度是負數,則代表減速。
第二節牛頓三大運動定律第一定律:除非受到外來的作用力,否則物體的速度(v)會保持不變。
沒有受力即所有外力合力為零,當飛機在天上保持等速直線飛行時,這時飛機所受的合力為零,與一般人想像不同的是,當飛機降落保持相同下沉率下降,這時升力與重力的合力仍是零,升力並未減少,否則飛機會越掉越快。
第二定律:某品質為m的物體的動量(p = mv)變化率是正比於外加力 F 並且發生在力的方向上。
此即著名的F=ma 公式,當物體受一個外力後,即在外力的方向產生一個加速度,飛機起飛滑行時引擎推力大於阻力,於是產生向前的加速度,速度越來越快阻力也越來越大,遲早引擎推力會等於阻力,於是加速度為零,速度不再增加,當然飛機此時早已飛在天空了。
第三定律:作用力與反作用力是數值相等且方向相反。
你踢門一腳,你的腳也會痛,因為門也對你施了一個相同大小的力第三節力的平衡作用於飛機的力要剛好平衡,如果不平衡就是合力不為零,依牛頓第二定律就會產生加速度,為了分析方便我們把力分為X、Y、Z三個軸力的平衡及繞X、Y、Z三個軸彎矩的平衡。
軸力不平衡則會在合力的方向產生加速度,飛行中的飛機受的力可分為升力、重力、阻力、推力﹝如圖1-1﹞,升力由機翼提供,推力由引擎提供,重力由地心引力產生,阻力由空氣產生,我們可以把力分解為兩個方向的力,稱x 及y 方向﹝當然還有一個z方向,但對飛機不是很重要,除非是在轉彎中﹞,飛機等速直線飛行時x方向阻力與推力大小相同方向相反,故x方向合力為零,飛機速度不變,y方向升力與重力大小相同方向相反,故y方向合力亦為零,飛機不升降,所以會保持等速直線飛行。
无人机的结构、飞行原理、系统组成、组装与调试

无人机的结构、飞行原理、系统组成、组装与调试目录第一章初步认识无人机的基本构成第二章无人机的飞行原理第三章飞行操作:模拟—电动—油动第四章无人机的发动机第五章无人机的系统组成第六章无人机的组装第七章无人机的调试第一章初步认识无人机的基本构成无人机最早出现于第二次世界大战时,直至近几年有厂商逐步把军用无人机技术转移至电子消费品的生产之上,制成定价较平、操作较易的无人机,始令无人机在消费者市场大热起来。
今次Lock Sir便为大家讲解无人机的运作结构及飞行原理。
一般来说,无人机有飞行器机架、飞行控制系统、推进系统、遥控器、遥控信号接收器和云台相机等6大构成部分。
1. 飞行器机架飞行器机架(Flying Platform)的大小,取决于桨翼的尺寸及电机(马达/马达)的体积:桨翼愈长,马达愈大,机架大小便会随之而增加。
机架一般采用轻物料制造为主,以减轻无人机的负载量(Payload)。
2. 飞行控制系统飞行控制系统(Flight Control System)简称飞控,一般会内置控制器、陀螺仪、加速度计和气压计等传感器。
无人机便是依靠这些传感器来稳定机体,再配合GPS 及气压计数据,便可把无人机锁定在指定的位置及高度。
3. 推进系统无人机的推动系统(Propulsion System)主要由桨翼和马达所组成。
当桨翼旋转时,便可以产生反作用力来带动机体飞行。
系统内设有电调控制器(Electronic Speed Control),用于调节马达的转速。
4. 遥控器这是指Remote Controller或Ground Station,让航拍玩家透过远程控制技术来操控无人机的飞行动作。
5. 遥控信号接收器主要作用是让飞行器接收由遥控器发出的遥控指令信号。
4轴无人机起码要有4条频道来传送信号,以便分别控制前后左右4组旋轴和马达。
6. 云台相机目前无人机所用的航拍相机,除无人机厂商预设于飞行器上的相机外,有部分机型容许用户自行装配第三方相机,例如GoPro Hero 4运动相机或Canon EOS 5D系列单眼相机,惟近年亦有厂商提倡采用M4 /3无反单眼(如:Panasonic LUMIX GH4)作航拍用途。
第2章无人机组成及飞行原理

固定翼无人机的结构组成
5、动力装置
目前民用领域主要适用往复式活塞发动机和无刷电动机。无刷电动机多用于多旋翼。 往复式活塞发动机是一种内燃机,由气缸、活塞、连杆、曲轴、机匣和汽化器等组
成。它的工作原理是燃料与空气的混合气在气缸内爆燃,产生的高温高压气体对活塞做 功,推动活塞运动,并通过连杆带动曲轴转动,将活塞的往复直线运动转换为曲轴的旋 转运动。曲轴的转动带动螺旋桨旋转,驱动无人机飞行。整个工作过程包括吸气、压缩、 做功和排气四个环节,不断循环往复地进行,使发动机连续运转。
标称空载KV值 电机KV值定义为“转速/伏特”,意思为输入电压增加1V,无刷电机空转转速增加的
转速值。例如,1000kv电机,外加1v电压,电机空转时每分钟转1000转,外加2v电压, 电机空转就2000转了。单从KV值,不可以评价电机的好坏,因为不同KV值有不同的适 用不同尺寸的浆绕线匝数多的,KV值低,最高输出电流小,但扭力大,上大尺寸的浆; 绕线匝数少的,KV值高,最高输出电流大,但扭力小,上小尺寸的浆。
固定翼无人机的结构组成
3、尾翼
尾翼是用来配平、稳定和操作固定翼无人机飞行的部件,通常包括垂直尾翼(垂尾)和 水平尾翼(平尾)两部分。
水平尾翼由水平安定面和升降舵组成,通常情况下水平安定面是固定的,升降舵是可动的。 垂直尾翼包括固定的垂直安定面和可动的方向舵。方向舵用于控制飞机的横向运动,升降 舵用于控制飞机的纵向运动。 尾翼的形状也是多种多样的,选择尾翼形状,首先要考虑的是能获得最大效能的空气动力, 并在保证强度的前提下,尽量使结构简单、质量轻。
多旋翼无人机的构成
5、动力电源—电池
电池是将化学能转化成电能的装置。在整个飞行系统中,电池作为能源储备,为整个 动力系统和其他电子设备提供电力来源。目前在多旋翼飞行器上,一般采用普通锂电池 或者智能锂电池等。
无人机的安装和调试

第2章 无人机的选购指南
●02
如何选择适合自己的无人机?
根据需求和用途选择
01 确定飞行任务和需求
注意关键参数
02 飞行时间、航程、载荷等
考虑预算
03 确保性价比符合预期
如何识别无人机的品质?
品牌口碑
查看用户评价 了解市场认可度
生产商背景
研究公司资质 关注技术实力
售后服务
咨询售后政策 考察维修便捷性
在安装无人机之前,务必详细阅读使用说明书, 了解安装流程和注意事项。同时,准备必要的 工具和设备,确保安装过程顺利进行。
安装步骤
解包无人机 确保配件齐全
连接电池 正确对接接口
组装机身 按照说明书步骤进行
固定螺旋桨 保证安装牢固
安装传感器和摄像头
传感器安装 确认位置正确
连接线缆 避免松动
摄像头安装 调整视角和焦距
未来无人机技术发展趋势
智能化 随技术进步
广泛应用 产业链完善
多功能化 满足多需求
结语
通过学习无人机的安装和调试,我们深入了解 了这一领域的重要性。希望大家在未来的飞行 中能够更加熟练地操控无人机,创作出更加精 彩的航拍作品。
参考资料
无人机飞行器大全 XXX出版社
无人机技术手册 XXX印刷厂
感谢观看
飞行高度和速度 保持稳定清晰
飞行轨迹和路径 规划技巧
飞行轨迹和路径规划对于完成飞行任务至关重 要。制定良好的飞行计划可以确保无人机顺利 完成任务。学会调整飞行轨迹和高度,可以适 应不同的飞行环境和需求。
飞行技巧总结
起飞和降落
选择合适环境 熟练掌握技巧
悬停和盘旋
控制高度方向 熟练盘旋调整
航拍技巧
无人机基础知识

无人机基础知识无人机,即无人驾驶的飞行器,是指能够在无人驾驶情况下完成任务的飞行器。
无人机广泛应用于民用和军事领域,具有飞行灵活、成本低廉、适应多种环境等优势。
要了解无人机的基础知识,需要了解其飞行原理、系统组成、以及组装和调试方法。
首先,了解无人机的飞行原理十分重要。
无人机的飞行原理主要是基于空气动力学原理,通过产生升力和控制飞行姿态来实现飞行。
无人机通常采用固定翼结构或旋翼结构。
固定翼无人机利用机翼产生升力,通过稳定器控制姿态;而旋翼无人机则通过旋翼产生升力,并通过改变旋翼的倾斜角度来控制飞行姿态。
其次,无人机的系统组成也是需要了解的。
无人机的主要系统包括飞行控制系统、动力系统和载荷系统。
飞行控制系统主要负责无人机的飞行控制和导航。
它由飞行控制器、陀螺仪、加速度计、罗盘和GPS等组成。
动力系统包括无人机的动力源和推进系统。
常见的动力源有电池和燃油发动机,推进系统包括电动螺旋桨和喷气引擎等。
载荷系统主要包括相机、传感器等装置,用于无人机携带各种载荷完成任务。
最后,了解无人机的组装和调试方法也是很重要的。
无人机通常需要进行组装和调试才能投入使用。
组装时,需要按照无人机的说明书和组装手册进行步骤操作。
通常包括拆卸和组装无人机的各个部件、连接电源和调试飞行控制器等。
调试时,需要进行飞行姿态和传感器校准、遥控器和无人机的联结、电池和电机的测试等工作,以确保无人机能够正常工作。
综上所述,了解无人机的基础知识包括飞行原理、系统组成、以及组装和调试方法。
通过掌握这些知识,可以更好地理解无人机的工作原理和运行方式,为无人机的使用和维护提供参考。
无人机专业知识

无人机专业知识
无人机(Unmanned Aerial Vehicle,简称UAV)是一种无人驾驶的飞行器,可以自主或远程控制飞行。
无人机专业知识包括以下几个方面:
1. 空中动力学:了解无人机的飞行原理,包括气动力学和控制理论,以及飞行器的稳定性和操纵性。
2. 无人机设计与构造:熟悉无人机的结构和构造,包括机身、机翼、舵面、螺旋桨等,以及相应的材料和制造工艺。
3. 传感器与导航系统:了解无人机常用的传感器技术,如GPS、IMU(惯性测量单元)、气压计、雷达等,以及相应的数据处理和导航算法。
4. 飞行控制系统:熟悉无人机的飞行控制系统,包括飞行控制器、遥控器、数据传输设备等,以及相应的软件编程和调试技术。
5. 摄像与影像处理:了解无人机摄像系统的原理和技术,包括图像采集、稳定和处理等,以及相应的数据存储和分析方法。
6. 电力系统与动力装置:熟悉无人机的电力系统,包括电池、电机、电调和电子速控等,以及相应的电路设计和能量管理技术。
7. 无人机应用领域:了解无人机在各个领域的应用,如航拍摄
影、农业植保、物流快递、科学研究、消防监测等,以及相应的规范和安全要求。
除了以上的专业知识,还需要具备良好的飞行操控和操作技巧,熟悉相关法律法规和飞行安全知识,以及良好的团队合作和沟通能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近年来无人机的应用逐渐广泛,不少爱好者想集中学习无人机的知识,本文从最基本的飞行原理、无人机系统组成、组装与调试等方面着手,集中讲述了无人机的基本知识。
第一章飞行原理本章介绍一些基本物理观念,在此只能点到为止,如果你在学校已上过了或没兴趣学,请跳过这一章直接往下看。
第一节速度与加速度速度即物体移动的快慢及方向,我们常用的单位是每秒多少公尺﹝公尺/秒﹞0加速度即速度的改变率,我们常用的单位是﹝公尺/秒/秒﹞,如果加速度是负数,则代表减速。
第二节牛顿三大运动定律第一定律:除非受到外来的作用力,否则物体的速度(v)会保持不变。
没有受力即所有外力合力为零,当飞机在天上保持等速直线飞行时,这时飞机所受的合力为零,与一般人想象不同的是,当飞机降落保持相同下沉率下降,这时升力与重力的合力仍是零,升力并未减少,否则飞机会越掉越快。
第二定律:某质量为m的物体的动量(p = mv)变化率是正比于外加力 F 并且发生在力的方向上。
此即着名的F=ma 公式,当物体受一个外力后,即在外力的方向产生一个加速度,飞机起飞滑行时引擎推力大于阻力,于是产生向前的加速度,速度越来越快阻力也越来越大,迟早引擎推力会等于阻力,于是加速度为零,速度不再增加,当然飞机此时早已飞在天空了。
第三定律:作用力与反作用力是数值相等且方向相反。
你踢门一脚,你的脚也会痛,因为门也对你施了一个相同大小的力第三节力的平衡作用于飞机的力要刚好平衡,如果不平衡就是合力不为零,依牛顿第二定律就会产生加速度,为了分析方便我们把力分为X、Y、Z三个轴力的平衡及绕X、Y、Z三个轴弯矩的平衡。
轴力不平衡则会在合力的方向产生加速度,飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞,升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称x 及y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。
弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。
第四节伯努利定律伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,这里说的流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那幺大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。
我曾经在杂志上看过某位作者说飞机产生升力是因为机翼有攻角,当气流通过时机翼的上缘产生”真空”,于是机翼被真空吸上去﹝如图1-6﹞,他的真空还真听话,只把飞机往上吸,为什幺不会把机翼往后吸,把你吸的动都不能动,还有另一个常听到的错误理论有时叫做子弹理论,这理论认为空气的质点如同子弹一般打在机翼下缘,将动量传给机翼,这动量分成一个往上的分量于是产生升力,另一个分量往后于是产生阻力﹝如图1-7﹞,可是克拉克Y翼及内凹翼在攻角零度时也有升力,而照这子弹理论该二种翼型没有攻角时只有上面”挨子弹”,应该产生向下的力才对啊,所以机翼不是风筝当然上缘也没有所谓真空。
伯努利定律在日常生活上也常常应用,最常见的可能是喷雾杀虫剂了﹝如图1-8﹞,当压缩空气朝A点喷去,A点附近的空气速度增大静压力减小,B点的大气压力就把液体压到出口,刚好被压缩空气喷出成雾状,读者可以在家里用杯子跟吸管来试验,压缩空气就靠你的肺了,表演时吸管不要成90度,倾斜一点点,以免空气直接吹进管内造成皮托管效应,效果会更好。
第二章飞行操作:模拟—电动----油动一、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。
其技术要求是:最大飞行重量同燃料在内为五千克;最大升力面积一百五十平方分米;最大的翼载荷100克/平方分米;活塞式发动机最大工作容积10亳升。
1、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。
2、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。
二、模型飞机的组成模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。
1、机翼———是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。
2、尾翼———包括水平尾翼和垂直尾翼两部分。
水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。
水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。
3、机身———将模型的各部分联结成一个整体的主干部分叫机身。
同时机身内可以装载必要的控制机件,设备和燃料等。
4、起落架———供模型飞机起飞、着陆和停放的装置。
前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。
5、发动机———它是模型飞机产生飞行动力的装置。
模型飞机常用的动装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。
三、航空模型技术常用术语1、翼展——机翼(尾翼)左右翼尖间的直线距离。
(穿过机身部分也计算在内)。
2、机身全长——模型飞机最前端到最末端的直线距离。
3、重心——模型飞机各部分重力的合力作用点称为重心。
4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。
5、翼型——机翼或尾翼的横剖面形状。
6、前缘——翼型的最前端。
7、后缘——翼型的最后端。
8、翼弦——前后缘之间的连线。
9、展弦比——翼展与平均翼弦长度的比值。
展弦比大说明机翼狭长。
练习飞行的要素与原则分析玩模型飞机和玩模型大脚车完全是两种不同的运动,模友们千万别想当然,买来了就上天,否则就只能看着飞机的残骸落泪了。
在开展模型飞机运动前,最需要有一套合理、简单的教程来指导你学会为什么这么飞和怎么样飞,让你更快更安全的把爱机送上蓝天。
开篇还是先把基础飞行练习的要素与原则强调一下,这与你能否成功的掌握飞行技能有直接的关系。
第一:飞行练习的要素掌握飞行技巧,需要以掌握最基本的要素为基础,不断的练习,最终实现自己对飞机启动、助跑、起飞、航线和降落等环节的控制,达到这种境界,模型界称之为“单飞”。
单飞的要素有以下几点:1、一架精心调整的遥控上单翼教练机(飞机的调整我们在专门的板块里详细说明)2、理解各种操纵对飞机控制的作用3、飞机起飞4、学会直线飞行与航线控制5、学会转弯飞行与转弯控制6、地面参照物对航线的辅助7、航线高度的控制8、降落过程控制9、降落第二:飞行练习的原则本教程里的“飞行技巧”都是通过对有经验的模型玩家的观察和与他们交谈后的总结浓缩成为“飞行方法”,旨在把各种飞行动作拆解成简单的、程序化的指令,需要大家认真的理解与实践。
初级飞行练习的原则:1、理解各飞行动作的原理,再进行动作演练2、主动控制飞机,不要让飞机来控制你“被动的去控制”,把精力投在如何控制飞机上3、拆解了的动作分开练习,熟练后,再程序化的组合练习4、真正飞行前,最好应用飞行模拟器模拟飞行,减少事故发生,加速训练进度5、真实飞行的时候,需要有经验的模型玩家在场,如出现紧急情况(飞机失控等事件),请将飞机控制权交给他们。
模型教练飞机结构详细讲解飞机草图模型教练机的基本组成这一节我们来了解一下模型教练机的基本组成。
上单翼模型教练机主要由机翼、机身、起落架、尾翼及相应的转动舵面组成。
各舵面又有副翼、襟翼、方向舵、升降舵之分,每种舵面各施其能,为飞机的各种飞行动作提供相应的偏转力请大家看下图示,以便更清楚的了解模型教练飞机各部分的结构及组成。
下面介绍一下各个舵面为飞机提供什么样的偏转力,这种偏转力能让飞机飞出什么动作。
副翼:副翼的功能主要是产生机身轴向上的偏转力矩,让飞机绕机身纵轴滚转(相关图示详见下节)襟翼:襟翼是作为飞机机翼上的一个升力辅助舵面而存在的,主要是通过偏转,为机翼提供持续的升力补偿,因只出现在较高级的仿真模型飞机中,所以这里不做详述,在飞行技巧中会稍微提及襟翼的使用方法。
方向舵:方向舵的主要功能是提供飞机纵轴的转向力矩,使飞机绕纵轴左右偏转,达到转弯到目的。
升降舵升降舵的主要功能是提供飞机横轴的转向力矩,是飞机绕横轴上下俯仰偏转,达到升降的目的。
各舵面的结构与功用已经为大家介绍完毕,下面的几节,我们分别针对各舵面的偏转力特点,详述其作用副翼在模型飞机中的作用副翼要实现飞机的纵轴滚转,就必须用到副翼通过副翼的偏转,飞机就可以在机身纵轴上滚转,滚转速度与副翼偏转角度成正比。
副翼的偏转对于飞机姿态的影响是这样的,副翼舵面偏转后,飞机以纵轴为轴心偏转,偏转方向和偏转力矩方向一致,在飞机偏转到一定角度时,松开遥控器副翼通道摇杆,飞机就会保持这种偏转角度继续飞行下去,如图所示:如果需要让飞机重新恢复水平状态,需要反方向偏转副翼舵面,让飞机回正与副翼偏转相关的飞行动作有:1、副翼转弯2、横滚3、筒滚4、倒飞要做出这些动作,需要其他的动作复合起来才能完成,相应动作。
升降舵在模型飞机中的作用升降舵要实现飞机的俯仰、爬升与下降,就必须用到升降舵通过升降舵的偏转,飞机就可以在机身横轴上转动,俯仰角度与升降舵偏转角度成正比。
升降舵的偏转对于飞机姿态的影响是这样的,升降舵舵面偏转后,飞机绕横轴转动,偏转方向和偏转力矩方向一致,飞机爬升时称之为抬头力矩,飞机俯冲时,称之为低头力矩,在飞机俯仰到一定角度时,松开遥控器升降舵通道摇杆,飞机就会保持这种偏转角度飞行,但是因为机翼的升力作用,在没有了抬头或低头力矩的情况下,机翼的升力,会自动把飞机的姿态修正成为平飞状态,修正速度和飞机的整体设计有关,这里不详述,如图所示:如果需要让飞机快速恢复水平状态,需要反方向偏转升降舵舵面,让飞机回正与升降舵偏转相关的飞行动作有:1、副翼转弯2、正/负筋斗3、筒滚4、倒飞5、8字横滚6、失速螺旋等等升降舵在飞机飞行中起到很关键的作用,很多动作的完成都需要升降舵的支持,配合其他舵面的偏转,你也可以做出很多精彩的模型动作。
方向舵在模型飞机中的作用方向舵要实现飞机的转向,方向舵的偏转就可以满足需求通过方向舵的偏转,飞机就可以在机身竖轴上转动,转弯速度与方向舵偏转角度成正比。