快速成形技术的快速模具制造技术(doc 6)

合集下载

快速成型与快速模具制造技术及其应用课程作业

快速成型与快速模具制造技术及其应用课程作业
速成型技术的成型方法多达十余种,目前应用较多 的有立体光固化(SLA)、选择性激光烧结(SLS)、分层 实体制造(LOM)、熔积成型(FDM)等。这些工艺方法 都是在材料累加成型的原理基础上,结合材料的物理化 学特性和先进的工艺方法而形成的,它与其他学科的发 展密切相关。
1、立体光固化(SLA) 该方法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速
二、 STL数据文件及处理
快速成型制造设备目前能够 接受诸如STL,SLC,CLI, RPI,LEAF,SIF等多种数 据格式。其中由美国3D Systems公司开发的STL文 件格式可以被大多数快速成
型机所接受,因此被工业界
认为是目前快速成型数据的
准标准,几乎所有类型的快 速成型制造系统都采用STL 数据格式。
五、CT图像数据处理软Mimics
Mimics软件简介
Mimics软件是比利时Materialise公司面向医 学CT或MRI数据模型处理的运行在Windows 操作 系统环境下的高度集成的三维图像处理软件,该软 件能在几分钟内将CT或MRI数据转换成三维CAD或 快速成型所需的模型文件。其主要功能特点如下:
成型方法。
SLA技术原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫 描,被扫描区域的树脂薄层(约十分之几毫米)产生光聚合反应而固化,形 成零件的一个薄层。工作台下移一个层厚的距离,以便固化好的树脂表面再 敷上一层新的液态树脂,进行下一层的扫描加工,如此反复,直到整个原型 制造完毕。由于光聚合反应是基于光的作用而不是基于热的作用,故在工作 时只需功率
3、选择性激光烧结(SLS)
研究SLS的有DIM公司、EOS公司、北京隆源公司。该法采用C02激光器作 能源,目前使用的造型材料多为各种粉末材料。在工作台上均匀铺上一层很薄 的粉末,激光束在计算机控制下按照零件分层轮廓有选择性地进行烧结,一层 完成后再进行下一层烧结。全部烧结完后去掉多余的粉末,再进行打磨、烘干 等处理便获得零件。目前,成熟的工艺材料为蜡粉及塑料粉,用金属粉或陶瓷 粉进行粘接烧结的工艺还正在实验研究阶段。该技术具有原材料选择广泛、多 余材料易于清理、应用范围广等优点,适用于原型及功能零件的制造。在成形 过程中,激光工作参数以及粉末的特性和烧结气氛是影响烧结成形质量的重要 参数,原理如图4所示。

快速制模技术

快速制模技术

快速制模技术模具是制造业中使用量大、影响面广的工具产品。

没有型腔模、压铸模、铸模、深拉模和冲压模,就无法生产出被广泛应用和具有竞争价格的塑料件、合金压铸件、钢板件和锻件。

在现代批量生产中,没有高水平的模具,就没有高质量的产品,它对企业提高生产效率、降低生产成本也有重要的作用。

据国外最新统计分析,金属零件粗加工的75%、精加工的50%和塑料零件的90%是用模具加工完成的。

因此,模具工业也被称为“皇冠工业”。

由于市场竞争的日益激烈,产品更新换代的速度不断加快,多品种小批量将成为制造业的重要生产方式,在这种情况下,制造业对产品原型的快速制造和模具的快速制造提出了强烈的要求。

高速加工技术的出现,为模具制造技术开辟了一条崭新的道路。

快速制模技术是一种快捷、方便、实用的模具制造技术。

特别适用于新产品开发试制、工艺验证和功能验证以及多品种小批量生产。

快速制模技术特点快速模具制造技术与传统的模具制造技术相比,具有如下特点:(1)制造方法简单,工艺范围广由于快速模具制造是基于材料逐层堆积的成形方法,工艺过程相对简单、方便和快捷,它不仅能适应各种生产类型特别是单件小批的模具生产,而且能适应各种复杂程度的模具制造;它既能制造塑料模具,也能制造金属模具。

模具的结构愈复杂,快速模具制造的优越性就更突出。

(2)模具材料可强韧化和复合化快速模具制造工艺能方便地利用在合金中添加元素或结晶核心,改变金属凝固过程或热处理等手段,可改善和提高模具材料的性能;或者在合金中添加其它材料,可制造复合材料模具。

(3)设计周期短,质量高由于RT的模具设计极少依赖人的因素,因而可有效地降低人为的设计缺陷。

设计师可利用RP制造的高精度模型,在设计阶段就可对产品的整体或局部进行装配和综合评价,并不断改进,大大地提高了产品的设计质量。

(4)便于远程的制造服务由于RT对信息技术的应用,缩短了用户和制造商之间的距离,利用互联网可进行远程设计和远程服务,能使有限的资源得到充分的发挥,用户的需求能得到最快的响应。

快速成型技术在产品设计中的应用

快速成型技术在产品设计中的应用

快速成型技术在产品设计中的应用快速成型技术,即Rapid Prototyping,简称RP技术,是一种利用计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,通过堆叠或涂覆材料来逐层制造实体模型的技术。

随着科技的不断发展,快速成型技术在产品设计中的应用得到了越来越广泛的应用,为产品开发提供了更快、更灵活的解决方案。

本文将探讨快速成型技术在产品设计中的应用,并介绍其优势和未来发展趋势。

快速成型技术在产品设计中的应用主要体现在以下几个方面:1.快速制作实体模型:传统上,产品的开发需要花费大量的时间和成本来制作实体模型进行测试和验证。

而有了快速成型技术,设计师可以通过CAD软件设计出模型,并利用快速成型技术将设计图转化成实体模型,实现快速制作和验证设计的效果。

这样可以有效缩短产品开发周期,提高产品设计的灵活性和精度。

2.灵活性和创新性:快速成型技术可以很容易地制作复杂形状的实体模型,从而为设计师提供了更多的创意空间。

设计师可以通过快速成型技术制作出各种各样的模型,包括曲线、空间结构等复杂形状,从而激发设计的创新性,提高产品的竞争力。

3. 降低成本:传统的产品设计需要雕刻模型或制作模具,这些过程通常需要大量的时间和成本。

而快速成型技术可以直接将设计图转化为实体模型,无需制作模具和雕刻,从而大大节省了成本和时间。

4. 可视化效果:产品设计师可以通过快速成型技术将设计图快速转化为实体模型,从而更直观地展现给客户和团队成员,加快决策过程。

这种可视化效果可以帮助客户和团队更好地理解设计意图,提出意见和建议,从而更好地满足市场需求。

5. 高效的定制化生产:快速成型技术可以帮助企业快速响应市场需求,实现定制化生产。

设计师可以根据客户需求快速制作出客户需求的产品,实现小批量、多样化的生产,从而提高产品的市场竞争力。

未来,随着科技的不断发展和应用场景的不断扩大,快速成型技术在产品设计中的应用将会越来越广泛。

随着快速成型技术的不断创新和发展,将会有更多的材料可以用于快速成型技术,从而更好地满足产品设计的需求。

快速成型技术-第五章快速模具制造

快速成型技术-第五章快速模具制造
融覆法,叠蹭实体制造工艺法等制备陶瓷,金属模. 2.间接快速制模技术.通过快速成型技术制备母模
具,软模具等,再通过传统的机械加工法来生产模 具的方法.
快速制模方法
间接法是先制作一个母模,一般由快速成形系 统建立,再由这样的母模制作模具,主要有:
(1)用快速成形件作母模,与传统工艺结合制
2.安放原型:将原型固定在平板上,制作模框. 3.在原型表面贴粘土和石膏背衬 4.硅橡胶的浇注 5.固化 6.修理
硅橡胶模具的应用
主要生产一些浇注产品,能够缩短产品的制造时间, 降低成本,提高效率.
生产工艺过程: 清洗模具→喷离合剂→组合模具→树脂计算→脱
泡混合→真空浇注→硬化→取出
型框的尺寸影响硅橡胶的用量,所以必须要 计算好合适的尺寸.
硅橡胶模具制造过程
3.原形件的固定:利用清洁胶带纸将定型样件型框 边缘围上,要求固定牢固。同时要注意增加一些 排气空.
硅橡胶模具制造过程
4.计算所须硅橡胶的用量,混合并真空脱泡:硅橡胶 的用量必须根据所造制件的尺寸和型框尺寸以及 硅橡胶的比重准确计算.同时要加入适当的硬化剂, 搅拌均匀后真空脱炮,脱炮的时间根据达到的真空 度来确定.
硅橡胶的分类
快速模具用的硅橡胶主要有: 1.室温硫化硅橡胶(Room Temperature
Vulcanized rubber),可以承受316℃的高温。 2.热硫化硅橡胶(Heat-cured Vulcanized
rubber),可以承受538℃的高温。
快速软模材料及特点
(1)TE-1089硅橡胶,属于双组分室温硫化硅 橡胶,具有优异的柔韧性,极强的抗撕强度,及 耐高温、耐化学腐蚀性。
影响质量因素,特点. 4.粉末材料激光烧结:原理,装置组成及各装置作用,

快速成型技术

快速成型技术

第六章快速成型技术 (2)4.1 快速原型技术简介 (2)4.1.1 快速成型的基本原理 (2)4.1.2 快速成型的工艺过程 (3)4.1.3 快速原形技术的特点 (4)4.2 RP工艺方法简介 (5)4.2.1典型RP工艺方法简介 (5)4.2.2 典型快速成型工艺比较 (8)4.2.3 其他快速成型工艺 (9)4.3 SCPS350紫外光快速成型机 (9)4.3.1 SCPS350紫外光快速成型机基本原理及制作过程 (9)4.3.2 SCPS350紫外光快速成型机床控制软件的介绍 ..................................... 错误!未定义书签。

4.3.3 SCPS350紫外光快速成型机机床实例讲解............................................. 错误!未定义书签。

第六章快速成型技术4.1 快速原型技术简介快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的新兴制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。

它集成了CAD 技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。

由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。

与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。

通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。

快速成型技术自问世以来,得到了迅速的发展。

由于RP技术可以使数据模型转化为物理模型,并能有效地提高新产品的设计质量,缩短新产品开发周期,提高企业的市场竞争力,因而受到越来越多领域的关注,被一些学者誉为敏捷制造技术的使能技术之一。

快速成型与快速模具制造技术及其应用

快速成型与快速模具制造技术及其应用

1976年,P. L. DiMatteo进一步明确 地提出,这种堆积技术能够用来制 造用普通机加工设备难以加工的曲 面,如螺旋桨、三维凸轮和型腔模 具等。在具体实践中,通过铣床加 工成形沿高度标识的金属层片,然 后通过粘接成叠层状,采用螺栓和 带锥度的销钉进行连接加固,制作 了型腔模,如图所示。
由DiMatteo制作的型腔模叠层模型
第三节 快速成型技术的特点及优越性
❖ 快速成型技术的优越性
◎ 用户受益 用户在产品设计的最初阶段,也能见到产品样品甚至少量产品,这使得用户能及早、 深刻地认识产品,进行必要的测试,并及时提出意见,从而可以在尽可能短的时间 内,以最合理的价格得到性能最符合要求的产品。
第一章 概 论
1 快速成型技术的早期发展 2 快速成型技术的主要方法及分类 3 快速成型技术的特点及优越性 4 快速成型技术的发展趋势
1902年,Carlo Baese在他的美国专利(# 774549)中,提出了用光敏聚合 物制造塑料件的原理,这是现代第一种快速成形技术—“立体平板印 刷术”(StereoLithography)的初始设想。
1940年,Perera提出了在硬纸板上切割轮廓线,然后将这些纸板粘结 成三维地形图的方法。
第一章 概 论
1 快速成型技术的早期发展 2 快速成型技术的主要方法及分类 3 快速成型技术的特点及优越性 4 快速成型技术的发展趋势
第二节 快速成型技术的主要方法及分类
❖ 快速成型过程
快速成型离散和叠加过程
快速成型技术的制造方式是基 于离散堆积原理的累加式成型, 从成型原理上提出了一种全新 的思维模式,即将计算机上设 计的零件三维模型,通过特定 的数据格式存储转换并由专用 软件对其进行分层处理,得到 各层截面的二维轮廓信息,按 照这些轮廓信息自动生成加工 路径,在控制系统的控制下, 选择性地固化光敏树脂或烧结 粉状材料或切割一层层的成型 材料,形成各个截面轮廓薄片, 并逐步顺序叠加成三维实体, 然后进行实体的后处理,形成 原型或零件,如图所示。

快速成型技术的原理工艺过程及技术特点

快速成型技术的原理工艺过程及技术特点

快速成型技术的原理、工艺过程及技术特点:快速成型属于离散/堆积成型。

它从成型原理上提出一个全新的思维模式维模型,即将计算机上制作的零件三维模型,进行网格化处理并存储,对其进行分层处理,得到各层截面的二维轮廓信息,按照这些轮廓信息自动生成加工路径,由成型头在控制系统的控制下,选择性地固化或切割一层层的成型材料,形成各个截面轮廓薄片,并逐步顺序叠加成三维坯件.然后进行坯件的后处理,形成零件。

快速成型的工艺过程具体如下:l )产品三维模型的构建。

由于 RP 系统是由三维 CAD 模型直接驱动,因此首先要构建所加工工件的三维CAD 模型。

该三维CAD模型可以利用计算机辅助设计软件(如Pro/E , I-DEAS , Solid Works , UG 等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、CT 断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。

2 )三维模型的近似处理。

由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,以方便后续的数据处理工作。

由于STL格式文件格式简单、实用,目前已经成为快速成型领域的准标准接口文件。

它是用一系列的小三角形平面来逼近原来的模型,每个小三角形用3 个顶点坐标和一个法向量来描述,三角形的大小可以根据精度要求进行选择。

STL 文件有二进制码和 ASCll 码两种输出形式,二进制码输出形式所占的空间比 ASCII 码输出形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。

典型的CAD 软件都带有转换和输出 STL 格式文件的功能。

3 )三维模型的切片处理。

根据被加工模型的特征选择合适的加工方向,在成型高度方向上用一系列一定间隔的平面切割近似后的模型,以便提取截面的轮廓信息。

间隔一般取0.05mm~0.5mm,常用 0.1mm 。

间隔越小,成型精度越高,但成型时间也越长,效率就越低,反之则精度低,但效率高。

快速成型技术在模具制造中的应用与发展前景

快速成型技术在模具制造中的应用与发展前景

快速成型技术在模具制造中的应用与发展前景快速成型技术(Rapid Prototyping,简称RP),又称增材制造技术(Additive Manufacturing,简称AM),是一种通过逐层逐点添加材料的方式,直接将三维数字模型转换为实体模型的制造技术。

它通过数控技术、计算机模型和数字化工艺的应用,极大地缩短了传统制造过程中从设计到加工的时间,提高了制造效率和产品质量,并在模具制造领域得到广泛应用。

快速成型技术在模具制造中的应用主要体现在以下几个方面:1. 制造复杂结构的模具:传统的模具制造往往需要多次加工和组装,制约了模具的结构复杂度和精度,而快速成型技术可以直接将复杂的三维数字模型转化为实体模型,使得制造复杂结构的模具变得更加容易。

例如,快速成型技术可以实现内部空腔、内螺纹结构等复杂形状的模具制造,大大提高了模具的功能性和应用领域。

2. 减少制造周期:快速成型技术可以大大缩短模具的设计和制造周期。

传统的模具制造需要经过设计、加工、组装等多个环节,而且每个环节都可能出现问题导致延误。

而快速成型技术可以直接将数字模型转化为实体模型,减少了多个环节的中间过程,加快了模具的制造速度。

尤其是在产品开发的初期阶段,这种快速制造模具的能力非常重要,可以提高产品研发的效率和竞争力。

3. 优化模具结构和性能:快速成型技术可以通过不断试验迅速调整模具的设计和结构,提高模具的性能和质量。

在传统的模具制造中,往往需要经过多次试验和修改才能最终确定模具的结构和参数。

而快速成型技术可以通过快速制造并测试多个不同设计的模具样品,迅速找到最优设计方案,减少了试错的成本和周期,提高了模具的效率和性能。

4. 减少模具制造成本:快速成型技术不仅可以缩短制造周期,还可以降低模具制造的成本。

传统的模具制造方式往往需要大量的人工和设备投入,制造周期长,成本高。

而快速成型技术可以通过直接从数字模型中生成模具,减少了多个加工环节和设备的投入,降低了制造成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

快速成形技术的快速模具制造技术(doc 6)
基于快速成形技术的快速模具制造技术
一、引言
近10年来,制造业市场环境发生了巨大的变化,迅速将产品推向市场已成为制造商把握市场先机的重要保障。

因此,产品的快速开发技术将成为赢得21世纪制造业市场的关键
快速成形技术(以下简称RP)是一种集计算机辅助设计、精密机械、数控激光技术和材料学为一体的新兴技术,它采用离散堆积原理,将所设计物体的CAD模型转化成实物样件。

由于RP技术采用将三维形体转化为二维平面分层制造的原理,对物体构成复杂性不敏感,因此物体越复杂越能体现它的优越性。

以RP为技术支撑的快速模具制造RT(Rapid Tooling)也正是为了缩短新产品开发周期,早日向市场推出适销对路的、按客户意图定制的多品种、小批量产品而发展起来的新型制造技术。

由于产品开发与制造技术的进步,以及不断追求新颖、奇特、多变的市场消费导向,使得产品(尤其是消费品)的寿命周期越来越短已成为不争的事实。

例如,汽车、家电、计算机等产品,采用快速模具制造技术制模,制作周期为传统模具制造的1/3~1/10,生产成本仅为1/3~1/5。

所以,工业发达国家已将RP/RT作为缩短产品开发时间及模具制作周期的重要研究课题和制造业核心技术之一,我国也已开始了快速制造业的研究与开发应用工作。

二、基于RPM的快速模具制造方法
模具是制造业必不可少的手段,其中用得最多的有铸模、注塑模、冲压模和锻模等。

传统制作模具的方法是:对木材或金属毛坯进行车、铣、刨、钻、磨、电蚀等加工,得到所需模具的形状和尺寸。

这种方法既费时又费钱,特别是汽车、摩托车和家电所需的一些大型模具,往往造价数十万元以上,制作周期长达数月甚至一年。

而基于RPM技术的RT直接或间接制作模具,使模具的制造时间大大缩短而成本却大大降低。

1. 用快速成形机直接制作模具
由于一些快速成形机制作的工件有较好的机械强度和稳定性,因此快速成形件可直接用作模具。

例如,Stratasys公司TITAN快速成形机的PPSF制件坚如硬木,可承受30 0℃高温,经表面处理(如喷涂清漆,高分子材料或金属)后可用作砂型铸造木模、低熔点合金铸造模、试制用注塑模以及熔模铸造的压型。

当用作砂形铸造的木模时,它可用来重复制作50~100件砂型。

作为蜡模的成型模时,它可用来重复注射100件以上的蜡模。

用FDM快速成形机的ABS工件能选择性地融合包裹热塑性粘结剂的金属粉,构成模具的半成品,烧结金属粉并在孔隙渗入第二种金属(铝)从而制作成金属模。

2.用快速成形件作母模,复制软模具(Soft tooling)
用快速成形件作母模,可浇注蜡、硅橡胶、环氧树脂、聚氨脂等软材料,构成软模具,或先浇注硅橡胶、环氧树脂模(即蜡模的压型),再浇注蜡模。

其中,蜡模可用于熔模铸造,而硅橡胶模、环氧树脂模等可用作试制用注塑模或低熔点合金铸造模。

3.用快速成形件作母模,复制硬模具(Iron tooling)
用快速成形件作母模,或据其复制的软模具,可浇注(或涂覆)石膏、陶瓷、金属基合成材料、金属,构成硬模具(如各种铸造模、注塑模、蜡模的压型、拉伸模),从而批量生产塑料件或金属件。

这种模具有良好的机械加工性能,可进行局部切削加工,以便获得更高的精度,或镶入嵌块、冷却系统、浇注系统等。

用金属基合成材料浇注成的蜡模的压型,其模具寿命可达1000~10000件。

4. 用快速成形系统制作电脉冲机床用电极
用快速成型件作母体,通过喷镀或涂覆金属、粉末冶金、精密铸造、浇注石墨粉或特殊研磨,可制作金属电极或石墨电极。

三、基于RP的快速模具制造的应用
1. 利用硅橡胶模(Silicon Rubber Mold)制作佛头、线圈
硅橡胶有很好的弹性和复制性能,用它来复制模具可不考虑拔模斜度,基本不会影响尺寸精
度,而且这种材料有很好的切割性能,用薄片就可容易地将其切开且切面间非常贴合,因此用它来复制模具时可以先不分上下模,整体浇注出软模后,再沿预定的分模面将其切开,取出母模,即可得到上下两个软模。

(1)试验用设备和材料
所用的设备:Stratasys的Titan快速成形机、HVC-1真空注型机和恒温箱。

所用的材料:日产KE-1310ST透明硅橡胶、日产CAT-1310固化剂(浇注时,KE-1310ST与CAT -1310以100:10混合)和PX215真空注型硬制聚氨脂树脂(异氰酸脂,多元醇1∶1混合)。

(2)制模工艺路线
使用 UG、PRO-E、Solid Edge 等软件进行三维实体造型,以STL文件格式保存;将文件输入快速成形机作出制件原型,处理后作为硅橡胶母模;组合模框后将硅橡胶和固化剂的混合物浇注于框中,通过真空脱泡、固化后剖切取出母样即得硅胶模;最后在真空注型机中浇注塑料样件。

具体的制模流程如图1所示。

CAD三维造型软件

STL文件

FDM快速成型制作母件

制作模框

浇注硅胶和固化剂的混合物

固化

分模

树脂浇注
图1 制模工艺路线
(3)制作硅胶模具时的注意事项
对加成型硅橡胶而言,不要在室温下固化,而以40℃~60℃加温固化;分模面的选取一定要注意将外观面朝下,在内观面的合适位置上放置胶棒;如果零件有倒钩,可以在硅胶模上作45°切口,但注意不要割断;在一些树脂不易流满的死角处,一定要做气孔;对不容易进行分模的原型件,可以喷少许离型剂。

此外,对形状复杂(倒钩、斜面很多),两半模无法满足脱模条件的情况,开模时可以将硅橡胶模具剖开成数块来处理。

但要注意,在浇注塑料件的时候合模应精确,否则会因模具的错位或合模不紧而影响浇注品的精度。

(4)应用图例
图2和图3分别是我们制作的佛头和线圈模具的照片。

此主题相关图片如下:
图2 佛头模具。

相关文档
最新文档