人教版七年级数学期中测试卷
人教版七年级上册数学期中考试试卷(含答案)

人教版七年级上册数学期中考试试卷(含答案)人教版七年级上册数学期中考试试卷(含答案)一、选择题1. 以下哪个数是整数?A. √2B. 3/4C. -5D. 0.752. 下列有理数中,绝对值最大的是:A. -3B. 1/3C. 0D. -5/63. 对于非零有理数a,以下等式成立的是:A. a^2 = -aB. a * a = -aC. a * a = aD. a^2 = a二、填空题1. 计算:5/6 + 2/3 = ____2. 将72cm^2写成平方分米为____(注:1平方分米=100平方厘米)3. 若a = -2/3,b = 1/2,求ab的值。
三、解答题1. 线段AB的长度为3.2厘米,线段CD的长度为7.5厘米,求AB与CD的比值。
2. 小明从家到学校的距离为4千米,他刚走了2千米,这时他离学校还有多远?3. 将小数-0.125改写成分数。
四、应用题1. 一块长方形花坛长为12米,宽为8米,小明要用花砖铺满这个花坛。
每块花砖的正方形面积为0.25平方米,小明需要多少块花砖?2. 甲乙两个人同时从A地出发,以相同的速度向B地行驶,甲车开车时图示速度为75千米/小时,乙车开车时图示速度为80千米/小时。
若甲车到达B地用时比乙车早30分钟,求A到B地的距离。
五、解答题1. 有理数运算的要点是什么?请分析有理数的加法、减法、乘法和除法运算的规律和特点。
2. 计算题:5/12 + 4/9 - 1/3 + 2/5 = ____ ---答案:一、选择题1. C2. D3. A二、填空题1. 11/62. 0.723. -1/3三、解答题1. AB与CD的比值为 32/752. 离学校还有 2千米3. -0.125可以写成 -1/8四、应用题1. 需要 384 块花砖2. A到B地的距离为 100 千米五、解答题1. 有理数运算的要点是:符号相同的有理数相加减,绝对值大的数保留符号;符号相反的有理数相加减,先求绝对值相加减,再给结果加上原来的符号;有理数相乘除,符号相同为正,符号不同为负。
人教版2022--2023学年度第一学期七年级数学上册期中测试卷及答案

已知: ,
(1)将A按照x的降幂进行排列是:;
(2)仿照上面的方法列竖式计算A+B;
(3)小丽说也可以用类似方法列竖式计算A-B,请你试试看;
(4)请写一个多项式C=,使其与B的和是二次单项式.
24.(10分)我们知道, 的几何意义是:在数轴上数a对应的点到原点的距离,类似的, 的几何意义就是:数轴上数 对应点之间的距离;比如:2和5两点之间的距离可以用 表示,通过计算可以得到他们的距离是3
【解析】
【分析】先判断各个几何体正面看的几何图形,节日进而即可求解.
【详解】从正面看,1号,6号,7号的图形相同,
故选B.
【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,进行分析.
6. B
【解析】
【分析】根据有理数的有关性质,对选项逐个判断即可.
【详解】解:A、负数的绝对值都是正数,选项正确,不符合题意;
参考答案与试题解析
一、选择题.(每小题2分,共16分)
1. B
【解析】
【分析】根据正、负数的定义对各数进行判断即可得解.
【详解】解:−5、+3、−0.2、 、0、 、−11、2.4中,
负数有:−5、−0 2、 、−11,共4个.
故选:B.
【点睛】本题考查了正数和负数,是基础题,熟记概念是解题的关键.
【详解】解:多项式 的最高次项是 ,
最高次项的系数为 ,多项式的次数为4,常数项为−1,
∴它是四次五项式,
∴A正确,不符合题意;
B错误,符合题意;
C正确,不符合题意;
D正确,不符合题意;
故选:B.
【点睛】本题主要考查了多项式,熟练掌握常数项、多项式 次数、b次a项式有关定义是解题关键.
人教版七年级数学上册期中考试卷(附带答案)

人教版七年级数学上册期中考试卷(附带答案)(满分:150分时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。
(每小题4分,共10题,共40分)1.﹣2023的绝对值是()A.﹣12023B.﹣2023 C.12023D.20232.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值。
如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同(第2题图)(第5题图)(第7题图)3.在数﹣2,﹣3.14156,﹣13,﹣5%,﹣6.3,2023,200%,0,﹣0.01001中,负分数有()A.4个B.5个C.6个D.7个4.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为()A.0.358X105B.35.8X103C.3.58X105D.3.58X1045.如图,小红把一密闭且透明的圆柱形水杯中装一半的水,随意转动水杯,水面的形状不可能是()A.圆形B.长方形C.三角形D.椭圆6.下面的说法中,正确的是()A.x +3是多项式B.(﹣2)3中底数是2C.3ab35的系数是3 D.单项式﹣ab2的次数是2次7.如图,是一个正方体的表面展开图,则原正方体中与"就"字相对的面上的字是()A.知B.是C.力D.量8.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a+b>0B.a-b>0C.ab>0D.ab<0(第8题图)(第9题图)9.将两边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1上中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1-C 2的值( )A.0B.a -bC.2a -2bD.2b -2a10.已知:m=|a+b |c +2|b+c |a +3|c+a |b ,且abc >0,a+b+c=0.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则x+y=( )A.4B.3C.2D.1第II 卷 (非选择题 共110分)二.填空题(共6小题,每小题4分,满分24分)11.中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作"+50元",那么亏损30元,记作 元.12.《雨不绝》是唐代诗人杜甫的作品,其中有诗句:鸣雨既过渐细微,映空摇如丝飞.译文:喧哗的雨已经过去、逐渐变得细微,映着天空摇漾的是如丝的细雨飘飞.诗中描写雨滴滴下来形成雨丝,用数学知识解释为 .13.若(m+1)2+|n -2|=0,则m n = .14.若一个棱柱有12个顶点,且所有侧棱长的和为30cm ,则每条侧棱长为 cm.15."整体思想"是中学数学解题中重要的思想方法,在多项式的求值中应用极为广泛.若3a 2-a -2=0,则﹣6a 2+2a+3值为 ﹣ .16.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成2023次变换后,骰子朝上一面的点数是 .三.解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.(本小题满分6分)在数轴上表示下列各数:0,﹣4.5,312,﹣2,+7,113.并用"<"号把各数连接起来.19.(本小题满分12分)计算:(1)5+(﹣6)﹣(﹣3) (2)﹣58×(﹣4)÷(﹣52)(3)(﹣16+34-112)×(﹣24) (4)﹣14+(﹣2)3÷4×[5-(-3)3]20.(本小题满分6分)一个几何体的三种视图如图所示.(1)这个几何体的名称是 .(2)求这个几何体的体积.(结果保留π)21.(本小题满分6分)化简:(1)x2+5y-4x2-y-1 (2)7a+3(a-3b)-(b+3a)22.(本小题满分8分)山东是红富士苹果的主要产地,现有30箱红富士苹果,以每箱25kg 为标准,其中重量超过或不足的千克数分别用正数或负数来表示,记录如表所示:(1)30箱红富士苹果中,最重的一箱比最轻的一箱多kg.(2)与标准重量相比,30箱红富士苹果总计超过或不足的重量为多少?(3)若红富士苹果每千克售价6元,则这30箱红富士苹果可卖多少钱?23.(本小题满分8分)如图,某居民小区有一块长为a,宽为2b的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b的扇形花台,其余部分铺设草坪.(1)草坪(阴影部分)的周长为,面积为.(结果用含有a,b,π的式子表示)(2)如果铺设草坪的费用为每平方米50元.当a=6米,b=2米,π取3时,铺设草坪共需多少元?24.(本小题满分10分)学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式:(1)当有5张桌子时,第一种方式能坐人,第二种方式能坐人.(2)当有n张桌子时,第一种方式能坐人,第二种方式能坐人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,现在请你当一回小老师,你打算选择以下哪种方式来摆放餐桌?为什么?25.(本小题满分12分)阅读材料,回答问题.材料一:因为23=2×2×2,22=2×2,所以23×22=(2×2×2)×(2×2)=25.材料二:求31+32+33+34+35+36的值.解:设S=31+32+33+34+35+36①则3S=32+33+34+35+36+37②用②-①得,3S -S=(32+33+34+35+36+37)-(31+32+33+34+35+36)=37-3所以2S=37-3,即S=37-32 所以31+32+33+34+35+36=37-32这种方法我们称为"错位相减法".(1)填空:5×58=5( ),a 2·a 5=a ( ).(2)"棋盘摆米"是一个著名的数学故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏.阿基米德对国王说:"我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行"国王以为要不了多少粮食,就随口答应了.①国际象棋共有64个格子,则在第64格中应放 粒米.(用幂表示)②设国王输给阿基米德的总米粒数为S ,求S.26.(本小题满分12分)如图,已知数轴点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=22.(1)写出数轴上点B 表示的数.(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x -3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.试探究:①若|x -8|=3,则x= .②动点P 从O 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t 为多少秒时,A ,P 两点之间的距离为2?(3)动点P ,Q 分别从O ,B 两点,同时出发,点P 以每秒2个单位长度沿数轴向右匀速运动,Q 点以P 点速度的两倍,沿数轴向右匀速运动,设运动时间为t(1>0)秒.求当t 为多少秒时,P ,Q 之间的距离为4?答案解析一.单选题。
人教版数学七年级上册《期中考试试卷》及答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列各数中,其相反数等于本身的是( )A. B. 0 C. 1 D.2.据探测,月球表面白天阳光垂直照射地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有( )A 56℃ B. ﹣56℃ C. 310℃ D. ﹣310℃ 3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元 4.下列说法正确的是( ) A. 315x -不是单项式 B. 最大的负有理数是C. 432x x +是七次二项式D. 2(4)-中4-是底数,2是幂 5.下列计算正确的是( )A. 496x x x x -+=-B. 21xy xy -=-C. 32x x x -=D. 1122a a a --=- 6.若一个数的绝对值是5,则这个数是( )A. 5B. -5C. ±5D. 0或57.下列各组数中,互为相反数的有( )A. 3-与|3|--B. (25)--与25-C. 2(3)-与23D. 31-或3(1)- 8.有理数、在数轴上的对应点的位置如图,化简2a b b a -+-的结果是( )A.B. 33b a -C. 3b -D. b - 9.若关于x ,y 多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A. 17 B. 67 C. -67 D. 010. 观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ ……计算:3×(1×2+2×3+3×4+…+99×100)=A. 97×98×99B. 98×99×100C. 99×100×101D. 100×101×102二、填空题11.比较大小:23- ____45- (填“>、< 或 =”). 12.台风“杜鹃”给浙江省造成的经济损失达16.9亿元,近似数16.9亿精确到______位.13.已知||5a =,||7b =,且||a b a b +=+,则a b -的值为______.14.若24m n +=,则代数式642m n --的值为_______.15.小明从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则小明卖报收入____元.16.符号“f ”与“”表示两种运算,它对一些数,运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2019)2019g f ⎛⎫-= ⎪⎝⎭______ 三、解答题17.(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭(2)212|58|24(3)3-+-+÷-⨯ (3)()()222255223a a a a a a ⎡⎤-+---⎣⎦ 18.数轴上标出下列各数:-1.5,2,+(-1),0,3-并用“<”连接起来.19.把下列各数应的表示集合的大括号里:0.618, 3.14-,4-,35,1||3-,6%,0,32,. (1)正整数:{ …}(2)整数:{ …}(3)负分数:{ …}(4)有理数:{ …}20.某工厂第一车间有人,第二车间比第一车间人数的45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有______人?(2)调动后,第一车间的人数为______人,第二车的人数为______人.(3)求调动后,第一车间的人数比第二车的人数多几人?21.某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km ):(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费元,超过3km 的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元22.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含 m,n 的代数式表示地面的总面积;(2)已知 n 1.5=,且客厅面积是卫生间面积的 倍,如果铺 平方米地砖的平均费用为 100 元,那么小王铺地砖的总费用为多少元?23.某购物网店在双十一期间实行打折促销活动,规定如下表:次性购物不大于100元不打折,不大于300元但大于100元打九折,超过300元的部分打八折.(1)王老师一次性购物600元,他实际付款多少元?(2)若顾客在该网店一次性购物元,当低于300元但大于100元时,他实际付款多少元?当大于300元时,他实际付款多少元?(用含的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为元(100300)a <,用含的式子表示两次购物王老师实际付款多少元?24.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x ﹣3|也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|值.(2)若|x ﹣2|=5,求x 的值是多少?(3)同理|x ﹣4|+|x+2|=6表示数轴上有理数x 所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x ,使得|x ﹣4|+|x+2|=6,写出求解的过程.答案与解析一、选择题1.下列各数中,其相反数等于本身的是()A. B. 0 C. 1 D.【答案】B【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】A.的相反数是1,故不符合题意;B.0的相反数是0,故符合题意;C.1的相反数是-1,故不符合题意;D.的相反数是-a,当a=0时,符合题意;当a≠0时,不符合题意;故选B.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2.据探测,月球表面白天阳光垂直照射地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有( )A. 56℃B. ﹣56℃C. 310℃D. ﹣310℃【答案】C【解析】试题解析:127-(-183)=127+183=310℃,故选C.3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元【答案】D【解析】80000000000000元=8×1013元,故选D .点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.4.下列说法正确的是( ) A. 315x -不是单项式 B. 最大的负有理数是C. 432x x +是七次二项式D. 2(4)-中4-是底数,2是幂 【答案】A【解析】分析】根据单项式、多项式、乘方的定义及有理数的大小比较方法逐项分析即可.【详解】A . 315x -不是单项式,正确; B . 没有最大的负有理数,故不正确;C . 432x x +是四次二项式,故不正确;D . 2(4)-中4-是底数,2是指数,故不正确;故选A .【点睛】本题考查了单项式、多项式、乘方的定义及有理数的大小比较方法,熟练掌握各知识点是解答本题的关键.5.下列计算正确的是( )A. 496x x x x -+=-B. 21xy xy -=-C. 32x x x -=D. 1122a a a --=- 【答案】D【解析】【分析】根据同类项及合并同类项的方法逐项分析即可.【详解】A . 496x x x x -+=,故不正确;B . 2xy xy xy -=-,故不正确;C .x 3与x 2不是同类项,不能合并,故不正确;D . 1122a a a --=-,正确; 故选D .【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.6.若一个数的绝对值是5,则这个数是( )A. 5B. -5C. ±5D. 0或5【答案】C【解析】正数的绝对值有两个,且互为相反数,所以|±5|=5. 故选C.7.下列各组数中,互为相反数的有( )A. 3-与|3|--B. (25)--与25-C. 2(3)-与23D. 31-或3(1)- 【答案】B【解析】【分析】化简后,根据相反数的定义【详解】A . ∵|3|--=-3,∴3-与|3|--相等,故不符合题意;B . ∵(25)--=25,25-=-25,∴(25)--与25-是互为相反数,故符合题意;C . ∵2(3)-=9,23=9,∴2(3)-与23相等,故不符合题意;D . ∵31-=-1,3(1)-=-1,∴31-或3(1)-相等,故不符合题意;故选B .【点睛】本题考查了相反数、绝对值、乘方的意义,熟练掌握各知识点是解答本题的关键.8.有理数、在数轴上的对应点的位置如图,化简2a b b a -+-的结果是( )A.B. 33b a -C. 3b -D. b - 【答案】C【解析】【分析】由数轴上点的位置,判断出a-b 和b 的正负,利用绝对值的代数意义化简即可得到结果.【详解】解:由数轴上点的位置得:a-b 大于0,b 小于0,∴|a-b|+2|b|-a=a-b-2b-a=-3b ,故选C.【点睛】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键. 9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A. 17 B. 67 C. -67 D. 0【答案】B【解析】【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.10. 观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A. 97×98×99B. 98×99×100C. 99×100×101D. 100×101×102【答案】C【解析】试题分析:先根据题中所给的规律,把式子中的1×2,2×3,…,99×100,分别展开,整理后即可求解.解:根据题意可知,3×(1×2+2×3+3×4+…+99×100)=3×[13(1×2×3−0×1×2)+13(2×3×4−1×2×3)+13(3×4×5−2×3×4)+…+13(99×100×101−98×99×100)]=1×2×3−0×1×2+2×3×4−1×2×3+3×4×5−2×3×4+…+99×100×101−98×99×100=99×100×101.故选C.点睛:本题是一道找规律题.解题的关键要找出所给式子的规律,并应用于后面求解的式子中.二、填空题11.比较大小:23-____45-(填“>、< 或=”).【答案】>【解析】【分析】比较两个负数的大小关系,可以比较这两个负数的绝对值,绝对值大的反而小.【详解】解:∵210412, 315515 ==∴24 35 <∴24 35 ->-【点睛】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.12.台风“杜鹃”给浙江省造成的经济损失达16.9亿元,近似数16.9亿精确到______位.【答案】千万位【解析】【分析】根据精确度的定义解答即可,近似数的最后一个数字实际在什么位上,即精确到了什么位.【详解】∵16.9亿中的9在千万位上,∴似数16.9亿精确到千万位.故答案为:千万位.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.13.已知||5a =,||7b =,且||a b a b +=+,则a b -的值为______.【答案】或12-【解析】【分析】由||a b a b +=+,可知a 与b 是平行向量,根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分两种情况计算可求得答案.【详解】∵||a b a b +=+,∴a 与b 是平行向量,∴a =5,b =7或a =-5,b =7,∴a b -=5-7=-2或a b -=-5-7=-12.故答案为:或12-.【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键. 14.若24m n +=,则代数式642m n --的值为_______.【答案】【解析】【分析】把642m n --变形为()622m n -+,将24m n +=代入计算即可.【详解】∵24m n +=,∴642m n --=()622m n -+=6-8=-2.故答案为:-2.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.如果给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.15.小明从报社以每份0.4元的价格购进了份报纸,以每份0.5元的价格售出了份报纸,剩余的以每份0.2元的价格退回报社,则小明卖报收入____元.【答案】(0.3b-0.2a)【解析】【分析】首先表示出成本价是0.4a 元,再表示出买了b 份报纸的钱数,和退回的钱数,用卖的钱数+退回的钱数-成本可得赚的钱数.【详解】∵每份0.4元的价格购进了a 份报纸,∴这些报纸的成本是0.4a 元,∵每份0.5元的价格出售,一天共售b 份报纸,∴共卖了0.5b 元,∵剩余的报纸以每份0.2元的价格退回报社,∴退回了0.2(a-b )元,他一天工赚到的钱数为:0.5b+0.2(a-b )-0.4a=0.3b-0.2a (元),故答案为(0.3b-0.2a ).【点睛】此题主要考查了列代数式,关键是正确理解题意,准确表示出各项的钱数.16.符号“f ”与“”表示两种运算,它对一些数,运算结果如下:(1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2019)2019g f ⎛⎫-=⎪⎝⎭______ 【答案】1;【解析】【分析】根据所给新定义运算的例子求出12019g ⎛⎫ ⎪⎝⎭与(2019)f 的值,代入1(2019)2019g f ⎛⎫-= ⎪⎝⎭计算即可. 详解】∵(1)0f =,(2)1f =,(3)2f =,(4)3f =,…,∴(2019)f =2018. ∵122g ⎛⎫= ⎪⎝⎭,133g ⎛⎫= ⎪⎝⎭,144g ⎛⎫= ⎪⎝⎭,155g ⎛⎫= ⎪⎝⎭,…, ∴12019g ⎛⎫ ⎪⎝⎭=2019, ∴1(2019)2019g f ⎛⎫-= ⎪⎝⎭2019-2018=1. 故答案为:1.【点睛】本题考查了新定义运算,以及有理数的减法,明确新定义的运算方法是解答本题的关键.三、解答题17.(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭(2)212|58|24(3)3-+-+÷-⨯ (3)()()222255223a a a a a a ⎡⎤-+---⎣⎦ 【答案】(1)-19;(2)113-;(3)24a a - 【解析】【分析】 (1)根据新定义的运算法则计算即可;(2)根据乘方法则计算第一项,根据绝对值计算第二项,根据乘除混合运算法则计算第三项,然后计算加减即可;(3)去括号合并同类项即可.【详解】(1)157(36)2912⎛⎫-+⨯- ⎪⎝⎭182021=-+-=19-; (2)原式8114333=-+-=-; (3)原式=()222255226a a a a a a -+--+=222255226a a a a a a --++-24a a =-.【点睛】本题考查了有理数的混合运算、以及整式的加减运算,熟练掌握运算法则是解答本题的关键. 18.在数轴上标出下列各数:-1.5,2,+(-1),0,3-并用“<”连接起来.【答案】−1.5<+(−1)<0<2<|−3|.【解析】分析:在数轴上表示出各数,再从左到右用“<”连接起来即可.本题解析:如图所示, ,故−1.5<+(−1)<0<2<|−3|.19.把下列各数应的表示集合的大括号里:0.618, 3.14-,4-,35,1||3-,6%,0,32,. (1)正整数:{ …}(2)整数:{ …}(3)负分数:{ …}(4)有理数:{ …}【答案】见解析.【解析】【分析】根据有理数的分类方法解答即可.【详解】(1)正整数:{32,… }(2)整数:{4-,0,32 ,... }(3)负分数:{ 3.14-,35,… } (4)有理数:{0.618, 3.14-,4-,35,13-,6%,0,32,…} 【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键.有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.20.某工厂第一车间有人,第二车间比第一车间人数45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有______人?(2)调动后,第一车间的人数为______人,第二车的人数为______人.(3)求调动后,第一车间的人数比第二车的人数多几人?【答案】(1)9305x-;(2)10x+,4405x-;(3)1505x+【解析】【分析】(1)先表示出调动前第二车间人数,再相加可得;(2)把第一车间的人数加10,第二车间的人数减10即可;(3)将调动后第一车间人数减去第二车间人数可得.【详解】解:(1)调动前第二车间有(45x-30)人,∴两个车间共有x+(45x-30)= (9305x-)人;(2)根据题意得:调动后,第一车间人数为(x+10)人;第二车间人数为(45x-30-10)=(4405x-)人;(2)根据题意得:(x+10)-(4405x-)= (1505x+)人,则调动后,第一车间的人数比第二车间的人数多(1505x+)人.【点睛】此题考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系进行解题.21.某出租车司机从公司出发,在东西方向的人民路上连续接送批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km):(1)接送完第批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费元,超过3km的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元?【答案】(1)在公司的东边10千米处;(2)共耗油4.8升;(3)共收到车费68元.【解析】【分析】(1)由题意把接送批客人的行驶路程相加,并进行计算即可;(2)根据题意先计算出总行驶路程,再乘以出租车每千米耗油0.2升即可求出在这过程中共耗油多少升;(3)根据题意分别计算出各个批次所收到的车费,再进行相加即可.【详解】解:(1)5+2+(-4)+(-3)+10=10(km).由题意可知规定向东为正,向西为负,答:接送完第5批客人后,该驾驶员在公司的东边10千米处.(2)由题意出租车每千米耗油0.2升可得:(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升).答:在这个过程中共耗油4.8升.(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元).答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是理解题意并熟练运用正负数的意义进行分析求解.22.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积;,且客厅面积是卫生间面积的倍,如果铺平方米地砖的平均费用为100元,那么小王(2)已知n 1.5铺地砖的总费用为多少元?【答案】(1)S=6m+2n+18;(2) 铺地砖的总费用4500元【解析】【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m 的值,把m,n 的值代入计算即可.【详解】(1)S=2n+6m+3×4+2×3=6m+2n+18. (2)n=1.5时2n=3根据题意,得6m=8×3=24, ∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.【点睛】此题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.23.某购物网店在双十一期间实行打折促销活动,规定如下表:次性购物不大于100元不打折,不大于300元但大于100元打九折,超过300元的部分打八折.(1)王老师一次性购物600元,他实际付款多少元?(2)若顾客在该网店一次性购物元,当低于300元但大于100元时,他实际付款多少元?当大于300元时,他实际付款多少元?(用含的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为元(100300)a <,用含的式子表示两次购物王老师实际付款多少元?【答案】(1)510;(2)0.9x ;0.830x +;(3)0.1 686a +【解析】【分析】(1)让300元部分按9折付款,剩下的300按8折付款即可;(2)等量关系为:购物款×9折;300×9折+超过300的购物款×8折; (3)两次购物王老师实际付款=第一次购物款×9折+300×9折+(总购物款-第一次购物款-第二次购物款300)×8折,把相关数值代入即可求解.【详解】解:(1)3000.9(600300)0.8510⨯+-⨯=(元).(2)当低于300元但大于100元时,他实际付款:0.9x 元;当大于300元时,他实际付款:300×0.9+(x-300)×0.8=(0.8x+30)元; (3)因为100300a <,所以第一次实际付款为0.9a 元,第二次付款超过300元,超过300元部分为(820300)a --元,所以两次购物王老师实际付款为()0.93000.90.8(820--300)0.1686a a a +⨯+=+元.【点睛】本题考查了列代数式,解决本题的关键是得到不同购物款所得的实际付款的等量关系,难点是求第二问的第二次购物款应分9折和8折两部分分别计算实际付款.24.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【答案】(1)6;(2) x=﹣3或7 ;(3)整数是﹣2、﹣1、0、1、2、3、4【解析】分析】(1)根据4与-2两数在数轴上所对应的两点之间的距离是6,可得|4-(-2)|=6.(2)根据|x-2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=-3或7.(3)因为4与-2两数在数轴上所对应的两点之间的距离是6,所以使得|x-4|+|x+2|=6成立的整数是-2和4之间的所有整数(包括-2和4),据此求出这样的整数有哪些即可.【详解】(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.【点睛】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.(2)解答此题的关键是要明确:|x-a|既可以理解为x与a的差的绝对值,也可理解为x与a两数在数轴上所对应的两点之间的距离.。
人教版七年级数学期中测试卷【含答案】

人教版七年级数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个数是奇数?A. 151B. 152C. 153D. 1545. 如果一个正方形的边长是6厘米,那么它的面积是多少平方厘米?A. 36平方厘米B. 40平方厘米C. 44平方厘米D. 48平方厘米二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 1是最大的质数。
()3. 任何一个偶数都能被2整除。
()4. 任何一个奇数都不能被2整除。
()5. 1千克的物品比1公斤的物品重。
()三、填空题(每题1分,共5分)1. 1千克等于______克。
2. 1米等于______分米。
3. 1平方米等于______平方分米。
4. 1千米等于______米。
5. 1吨等于______千克。
四、简答题(每题2分,共10分)1. 请简述偶数和奇数的定义。
2. 请简述质数和合数的定义。
3. 请简述正方形的特点。
4. 请简述长方形的特点。
5. 请简述三角形的特点。
五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下多少个?2. 小红有15个橙子,她给了小明5个,还剩下多少个?3. 一个长方形的长是8厘米,宽是4厘米,求它的面积。
4. 一个正方形的边长是6厘米,求它的面积。
5. 一个三角形的底是10厘米,高是5厘米,求它的面积。
六、分析题(每题5分,共10分)1. 分析下列数的特点:2、3、5、7、11、13、17、19。
2. 分析下列图形的特点:正方形、长方形、三角形。
七、实践操作题(每题5分,共10分)1. 请用纸和剪刀剪出一个正方形,边长为10厘米,并求出它的面积。
2024-2025学年人教版数学七年级上册期中考试模拟测试卷[含答案]
![2024-2025学年人教版数学七年级上册期中考试模拟测试卷[含答案]](https://img.taocdn.com/s3/m/337d8aeea1116c175f0e7cd184254b35effd1a5b.png)
2024年版七年级上学期期中数学模拟考试测试卷(测试范围:七年级上册第一章——第四章)一、单选题(每题3分,共30分)1.如果微信账单中收入100元记作100+元,那么20-元表示( )A .支出80元B .收入80元C .支出20元D .收入20元2.我国的陆地面积约为29600000km ,将9600000用科学记数法表示应为( )A .59.610´B .69.610´C .79.610´D .89.610´3.如果单项式3a x y +与5b xy -是同类项,那么()2024a b +=( )A .1B .1-C .0D .无法确定4.设a 是最小的正整数,b 是最大的负整数,c 既不是正数也不是负数,则a b c ++等于( )A . 1-B .0C .1D .25.计算-22的结果为( )A .2-B .4-C .2D .46.实数a ,b 在数轴上的位置如图所示,则( )A .a b >B .a =bC .a b >D .0b >7.若关于a ,b 的单项式522x a b +与36y a b --的和仍是单项式,则x y +的值是( )A .6B .7C .8D .98.下面计算正确的是( )A .651a a -=B .2223a a a +=C .()a b a b-+=-+D .()222a b a b+=+9.下列说法中正确的个数是( )(1)﹣a表示负数;(2)多项式﹣3a 2b +7a 2b 2﹣2ab +1的次数是3;(3)单项式229xy -的系数为﹣2;(4)若|x |=﹣x ,则x <0;(5)一个有理数不是整数就是分数.A .0个B .1个C .2个D .3个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( )A .6070B .6067C .2023D .2024二、填空题(每题3分,共18分)11.12024-相反数是 ;绝对值是 ;倒数是 .12.如果单项式23m x y +与21n x y -的差是单项式,那么m n +=.13.现规定一种新运算“*”:()*a b a b b a =---.则()2*3-的值为 .14.已知m 、n 互为相反数,c 、d 互为倒数,则310m n cd ++-的值为.15.在3-、4、5、6-这四个数中,任取两个数相乘,所得的积最大是 ,所得的积最小是 .16.某出租车的收费标准是:起步价5元(即行驶距离不超过3千米都需要付5元车费),超过3千米后,每增加1千米,加收1.5元.某人乘这种出租车从甲地到乙地共支付车费29元,设此人从甲地到乙地的路程为x 千米,则x 的最大值是 .三、解答题17.计算(1)()()()3524---+-+(2)221232éùæöæö-+-+-ç÷ç÷êúèøèøëû18.先化简,再求值()()22342223a b a b ---+,其中21a b ==-,19.请画出数轴,将下列各数:0, 3.5-,3-,4,113,4.5,表示在数轴上,并用“<”连接起来.20.小明从家A 出发,向西走了300米到超市B ,继续向西走了150米到文具店C ,又向东走了700米到达快递超市D ,最后回到家.(1)用一个单位长度表示100米,以东为正方向,家A 为原点,画出数轴并在数轴上标明A B C D ,,,的位置;(2)小明家A 到快递超市D 多远?(3)小明一共行走了多少米?21.某果园老板从果园里随机摘取了取部分水果样品,检测抽取样品每个的质量是否符合标准,超过的部分用正数来表示,不足的部分用负数来表示,准确记录如下表:与标准质量的差值/克4-―20135个数235453(1)这批水果样品的总质量比按标准质量计算的总质量多还是少?多或少几克?(2)若每个水果的标准质量为50克,成本为0.5元/克,则抽取样品的总成本是多少元?(3)在(2)的条件下,该水果正常情况下按每克加价50%后,按克称重出售.但这批水果是抽检过的样品,所以在出售时打八折,并且在售出过程中还会有10%的质量损耗,求这批抽检的水果的总利润是多少元?22.已知:b 是最小的正整数,且a 、b 满足()230c a b -++=,请回答问题(1)请直接写出a ,b ,c 的值:a =________;b =________;c =________;(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即02x ££时),请化简式子:1123x x x +--++(请写出化简过程)23.如图是某种窗户的形状(实线为窗框),其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为m a .(结果用p 表示)(1)求窗户的面积;(2)求窗框的总长;(3)若1a =,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用.24.把四张形状大小完全相同的小长方形卡片(如图1),分两种不同形式不重叠的放在一个底面长为m ,宽为n 的长方形盒子底部(如图2,3),盒子底面未被卡片覆盖的部分用阴影表示.设图2中阴影部分图形的周长为1l ,图3中两个阴影部分图形的周长的和为2l ,(1)用含m ,n 的式子表示图2阴影部分的周长1l (2)若1254l l =,求m ,n 满足的关系?1.C【分析】本题考查了正数和负数的应用.用正数和负数可以表示一对相反的量,如果收入记作正,则支出则记作负.【详解】解:若收入100元记作100+元,则20-元可表示为支出20元,故选:C .2.B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中1||10a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将9600000用科学记数法表示应为69.610´.故选:B .3.A【分析】本题考查了同类项的定义:所含字母相同,相同字母的指数也相同的项叫同类项.根据同类项的定义列出方程,再求解即可.【详解】解:∵单项式3a x y +与5b xy -是同类项,∴311a b +==,,解得2a =-,1b =,∴()()()2024202420242111a b +=-+=-=.故选:A .4.B【分析】本题考查了正整数、负整数、有理数的加减法.先分别根据正整数、负整数的定义求出a 、b 、c 的值,再代入计算有理数的加减法即可.【详解】解:由题意得:1a =,1b =-,0c =,则1(1)00a b c ++=+-+=,故选:B .5.B【分析】根据有理数乘方法则计算即可得答案.【详解】-22=-4,故选:B .【点睛】本题考查有理数乘方,熟练掌握运算法则是解题关键.6.A【分析】观察数轴得:0,b a b a <<>,即可求解.【详解】解:观察数轴得:0,b a b a <<>,故B ,C ,D 选项错误,不符合题意;A 选项正确,符合题意.故选:A【点睛】本题主要考查了有理数与数轴,绝对值的意义,有理数的大小比较,观察数轴得到0,b a b a <<>是解题的关键.7.A【分析】本题考查了同类项,单项式522x a b +与36y a b --的和仍是单项式,说明两个单项式是同类项,相同字母的指数相等,所以得到53x +=,62y -=,解出2x =-,8y =,最后得到x y +的值.理解两个单项式的和仍是单项式,说明这两个单项式是同类项是解答本题的关键.【详解】解:∵关于a ,b 的单项式522x a b +与36y a b --的和仍是单项式,∴53x +=,62y -=,∴2x =-,8y =,∴286x y +=-+=,故选:A .8.D【分析】根据合并同类项的法则判断A 、B ;根据乘法分配律判断C 、D .【详解】解:A 、65-=a a a ,故错误,不符合题意;B 、a 与2a 不是同类项,不能合并,故错误,不符合题意;C 、()a b a b -+=--,故错误,不符合题意;D 、()222a b a b +=+,故正确,符合题意;故选:D .【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.9.B【分析】根据小于0的数为负数判断①,根据多项式的次数是最高次项的次数可判断②,根据单项式的系数是单项式中的数字因数可判断③,根据0的绝对值等于0可判断④,根据有理数包含整数和分数可判断⑤.【详解】解:①当a <0时,-a 是正数,故说法错误;②多项式﹣3a 2b +7a 2b 2﹣2ab +1的次数是4,故说法错误;③单项式229xy -的系数为29-,故说法错误;④若|x |=﹣x ,则x ≤0,故说法错误;⑤一个有理数不是整数就是分数,故说法正确,综上,正确的说法有一个,故选:B .【点睛】本题考查负数、多项式的次数、单项式的系数、绝对值以及有理数的分类,理解各自的概念是解答的关键.10.A【分析】本题考查了图形的变化类.根据图形的变化,后一个图形的正方形的个数都比前一个图形的正方形的个数多3个,第n 个图形的正方形的个数为()324n -+即可求解.【详解】解:观察图形可知:图②中共有4个正方形,即304´+;图③中共有7个正方形,即314´+;图④中共有10个正方形,即324´+;……图n 中共有正方形的个数为()324n -+;所以第2024个图中共有正方形的个数为:()32024246070-+=.故选:A .11.12024 120242024-【分析】本题主要考查相反数,倒数和绝对值的定义.相反数:只有符号不同的两个数互为相反数, 倒数:如果两个数的乘积等于1,那么这两个数就叫做互为倒数,绝对值:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值,根据定义解题即可.【详解】解:12024-的相反数是12024,12024-的绝对值是:1120242024-=,12024-的倒数是2024-,故答案为:12024,12024,2024-.12.2【分析】本题考查了合并同类项,同类项的定义;所含字母相同,且相同字母的指数也相同的两个单项式是同类项,求出m n ,的值,代入计算即可.【详解】解:∵23m x y +与21n x y -的差是单项式,∴23m x y +与21n x y -是同类项,∴22m +=,11n -=,解得:0m =,2n =,∴022m n +=+=,故答案为:2.13.10-【分析】本题主要考查了有理数的加减运算和化简绝对值,根据已知()*a b a b b a =---,代入数值运算求出即可.【详解】解:∵()*a b a b b a =---,∴()()()2*323325510-=-----=--=-.故答案为:10-.14.7-【分析】根据相反数的定义得出0m n +=,根据倒数的定义得出1cd =,即可求解.【详解】解:∵m 、n 互为相反数,c 、d 互为倒数,∴0m n +=,1cd =,∴310031107m n cd ++-=+´-=-,故答案为:7-.【点睛】本题主要考查了相反数和倒数的定义,解题的关键是掌握相反数相加的0,乘积为1的两个数互为倒数.15. 20 30-【分析】本题考查有理数的乘法法则和有理数的大小比较.根据两数相乘,同号得正、异号得负求两数的积,再由正数大于负数,即可求解.【详解】解:∵()36=184520-´-<´=,∴积最大是20,∵()()()()56465343´-<´-<´-<´-,∴积最小是()5630´-=-,故答案为:20,30-.16.19【分析】本题考查了一元一次不等式的应用.已知从甲地到乙地共需支付车费29元,从甲地到乙地经过的路程为x 千米,从而根据题意列出不等式,从而得出答案.【详解】解:因支付车费为29元,所以x 肯定大于3千米,故有()1.53529x -+£,解得:19x £.可求出x 的最大值为19千米.故答案为:19.17.(1)0(2)156-【分析】本题主要考查了有理数的混合运算,按照混合运算法则计算即可.(1)有理数加减运算,从左向右计算即可;(2)先算乘方,再算乘除,最后再算加减.【详解】(1)解:()()()3524---+-+3524=-++-0=;(2)解:221232éùæöæö-+-+-ç÷ç÷êúèøèøëû43466æö=--+ç÷èø674=--156=-.18.21612a b -,76【分析】本题考查了整式的加减-化简求值.先将多项式去括号,再合并同类项,然后将a 和b 的值代入计算即可得出答案.【详解】解:()()22342223a b a b ---+2212646a b a b =-+-21612a b =-,当2a =,1b =-时,原式()2162121=´-´-6412=+76=.19.数轴见解析,13.530144.53-<-<<<<.【分析】本题考查了有理数的大小比较,在数轴上表示有理数.先在数轴上标记各个数,根据数轴上的点表示的数:右边的数总比左边的数大,可得答案.【详解】解:如图,在数轴上表示各数如下:∴13.530144.53-<-<<<<.20.(1)见解析(2)小明家A 到快递超市D 距离为250米;(3)小明一共行走了1400米.【分析】本题主要考查有理数加减法在实际中的运用,掌握数轴表示有理数的方法,数轴上求两点之间距离的方法,有理数加减法的运算等知识是解题的关键.(1)根据数轴表示有理数的方法即可求解;(2)运用数轴求两点之间的距离的方法即可求解;(3)运用有理数的加减法运算即可求解.【详解】(1)解:小明从家A 出发,用一个单位长度表示100米,以东为正方向,∴以小明家A 为原点,根据题意,小明到各点的位置如图所示,;(2)解:由(1)中数轴图示可知,小明家A 到快递超市D 距离为250米;(3)解:小明行走的路程为3001507502501400+++=米.答:小明一共行走了1400米.21.(1)这批样品的总质量比按标准质量计算的总质量多,多22克(2)抽取样品的总成本是560元(3)全部销售完这批抽检的袋装商品的总利润是44.8元【分析】本题考查正负数的意义,有理数混合运算的实际应用.理解题意和正负数的意义,正确列出算式是解题关键.(1)计算出超过和不足的质量和,如果是正数,即多,如果是负数,即少;(2)先求出抽取样品的总质量,再乘以0.5元/克即可;(3)求出售出的总质量和售价,再根据总利润=售价×总质量求解即可.【详解】(1)解:()()24325041533520´-+´-+´+´+´+´=,答:这批样品的总质量比按标准质量计算的总质量多,多22克.(2)解:()23545350201120+++++´+=克,11200.5560´=元,答:抽取样品的总成本是560元.(3)解:()1120110%1008´-=克,()0.50.550%0.80.6+´´=元,10080.656044.8´-=元,答:全部销售完这批抽检的袋装商品的总利润是44.8元.22.(1)1a =-,1b =,3c =;(2)46x +或28x +.【分析】本题考查了数轴与绝对值:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数a -;③当a 是零时,a 的绝对值是零.(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定1x +,1x -,3x +的符号,然后根据绝对值的意义即可化简.【详解】(1)解:∵b 是最小的正整数,∴1b =.∵()230c a b -++=∴300c a b -=ìí+=î,∴1a =-,1b =,3c =;(2)解:∵02x ££,∴10x +>,30x +>,当01x ££时,10x -£,当12x <£时,10x ->,∴当01x ££时,1123x x x +--++()1123x x x =++-++1126x x x =++-++46x =+;当12x <£时,1123x x x +--++()()1123x x x =+--++1126x x x =+-+++28x =+.综上所述,1125x x x +--+-的值为46x +或28x +.23.(1)()2214m 2a p æö+ç÷èø(2)()()15m a p +(3)制作这种窗户需要的费用是654002p æö+ç÷èø元【分析】本题考查了列代数式表示实际问题,解题的关键是分清数量关系,抓住关键词语,正确的列出代数式.(1)窗户的面积4=个小正方形的面积+半圆的面积;(2)窗框用料的总长度为所有小正方形的边长之和+半个圆的弧长3+条半径;(3)总费用为:玻璃的费用+窗框的费用.【详解】(1)解:窗户的面积21222a a a p =+´,22142a a p æö=+ç÷èø2m ;(2)窗框的总长123842a a a a p =´+++,15a a p =+,(15)(m)a p =+;(3)21425(15)202a a p p æö+´++´ç÷èø214125(15)1202p p æö=+´´++´´ç÷èø25100(20300)2p p æö=+++ç÷èø654002p =+(元).\制作这种窗户需要的费用是654002p +元.24.(1)22m n+(2)23m n =【分析】本题考查整式加减的应用:(1)观察图形,可知,阴影部分的周长等于长方形ABCD 的周长,计算即可;(2)设小卡片的宽为x ,长为y ,则有2y x m +=,再将两阴影部分的周长相加,通过合并同类项即可求解2l ,根据1254l l =,即可求m 、n 的关系式.【详解】(1)解:由图可知,阴影部分的周长等于长方形ABCD 的周长,故()1222m n m n l =+=+;(2)设小长形卡片的宽为x ,长为y ,则2y x m +=,∴2y m x =-,所以两个阴影部分图形的周长的和为:()()2222m n y n x +-+-()()22222m n m x n x =+-++-222424m n m x n x =+-++-4n =,即2l 为4n ∵1254l l =,∴52244m n n+=´整理得:23m n =.。
人教版七年级数学上册期中测试卷-有参考答案
人教版七年级数学上册期中测试卷-有参考答案一、选择题(本题共12小题 每小题4分 共48分 在每小题给出的四个选项中 只有一项是符合题目要求的 请用2B 铅笔把答题卡上对应题目答案标号涂黑)1.(4分)古人都讲“四十不惑” 如果以40岁为基准 张明50岁 记为+10岁 那么王横25岁记为( )A .25岁B .﹣25岁C .﹣15岁D .+15岁【分析】以40岁为基准 张明50岁 记为+10岁 25减去40即可解答.【解答】解:以40岁为基准 张明50岁 记为+10岁那么王横25岁记为25﹣40=﹣15(岁).故选:C .2.(4分)中国信息通信研究院测算.2020﹣2025年 中国5G 商用带动的息消费规模将超过8万亿元 直接带动经济总产出达10.6万亿元 其中数据10.6万亿用科学记数法表示为( )A .10.6×104B .1.06×1013C .10.6×1013D .1.06×108【分析】科学记数法的表示形式为a ×10n 的形式 其中1≤|a |<10 n 为整数.确定n 的值时 要看把原数变成a 时 小数点移动了多少位 n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时 n 是正整数;当原数的绝对值<1时 n 是负整数.【解答】解:10.6万亿=10600000000000=1.06×1013.故选:B .3.(4分)下列说法正确的是( )A .52xy 的系数是﹣5 B .单项式a 的系数为1 次数是0C .﹣5232b a 的次数是6D .x y +x ﹣1是二次三项式 【分析】直接利用单项式的次数与系数确定方法、多项式的次数与项数确定方法分别判断得出答案.【解答】解:A .﹣的系数是﹣ 故此选项不合题意;B .单项式a 的系数为1 次数是1 故此选项不合题意;C.﹣的次数是﹣故此选项不合题意;D.xy+x﹣1是二次三项式故此选项符合题意;故选:D.4.(4分)下列各组整式中不是同类项的是()A.3a2b与﹣2a2b B.2xy与5yxC.2x3y2与﹣x2y3D.5和0【分析】根据同类项的定义:所含字母相同相同字母的指数也相同判断即可.【解答】解:A、3a2b与﹣2a2b所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;B、2xy与5yx所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;C、2x3y2与﹣x2y3所含字母相同但相同字母的指数不相同不是同类项故本选项符合题意;D、5和0都是常数项所有常数项都是同类项故本选项不符合题意;故选:C.5.(4分)如图A B C D E为某未标出原点的数轴上的五个点且AB=BC=CD=DE则点C所表示的数是()A.2B.7C.11D.12【分析】先根据点A、E表示的数求出线段AE的长度再根据长度相等的线段表示相同的单位长度求出AB、BC、CD、DE的长即可解答【解答】解:∵AE=17﹣(﹣3)=20又∵AB=BC=CD=DE AB+BC+CD+DE=AE∴DE=AE=5∴D表示的数是17﹣5=12 C表示的数是17﹣5×2=7故选:B.6.(4分)下列各组数中数值相等的是()A.32与23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.3×22与(3×2)2【分析】先根据有理数的乘方和有理数的乘法进行计算再根据求出的结果进行判断即可.【解答】解:A .∵32=9 23=8∴32≠23 故本选项不符合题意;B .∵﹣23=﹣8 (﹣2)3=﹣8∴﹣23=(﹣2)3 故本选项符合题意;C .∵﹣32=﹣9 (﹣3)2=9∴﹣32≠(﹣3)2 故本选项不符合题意;D .∵3×22=3×4=12 (3×2)2=62=36∴3×22≠(3×2)2 故本选项不符合题意;故选:B .7.(4分)如果a b 互为相反数 c d 互为倒数 m 的绝对值是2 那么cd m m b a 2212-++⨯的值( ) A .2 B .3 C .4 D .不确定【分析】根据a b 互为相反数 c d 互为倒数 m 的绝对值是2 可以得到a +b =0 cd =1 m 2=4 然后代入所求式子计算即可.【解答】解:∵a b 互为相反数 c d 互为倒数 m 的绝对值是2∴a +b =0 cd =1 m 2=4∴=×+4﹣2×1=0+4﹣2=2故选:A .8.(4分)某快递公司受新一次疫情影响 4月份业务量比3月份下降了30% 由于采取了科学的防控措施 5月份疫情明显好转 该快递公司5月份业务量比4月份增长了40% 若设该快递公司3月份业务量为a 则5月份的业务量为( )A .(1﹣30%+40%)aB .(30%+40%)aC .(40%﹣30%)aD .(1﹣30%)(1+40%)a 【分析】先表示出4月份业务量是(1﹣30%)a 再根据5月份业务量比4月份增长了40% 即可列出代数式.【解答】解:∵该快递公司3月份业务量为a 4月份业务量比3月份下降了30%∴4月份业务量是(1﹣30%)a∵5月份业务量比4月份增长了40%∴5月份业务量是(1+40%)(1﹣30%)a故选:D .9.(4分)已知m n 满足6m ﹣8n +4=2 则代数式12n ﹣9m +4的值为( )A .0B .1C .7D .10【分析】将6m ﹣8n +4=2移项变形后 可以与12n ﹣9m +4建立联系 进而计算即可.【解答】解:∵6m ﹣8n +4=2∴8n ﹣6m ﹣2=0∴4n ﹣3m ﹣1=0∴12n ﹣9m ﹣3=0∴12n ﹣9m +4=7 故选:C .10.(4分)下列说法正确的个数有( )(1)若a 2=b 2 则|a |=|b |;(2)若a 、b 互为相反数 则1-=ba ;(3)绝对值相等的两数相等;(4)单项式7×102a 4的次数是6;(5)﹣a 一定是一个负数;(6)平方是本身的数是1 A .1 B .2 C .3D .4 【分析】根据去绝对值法则 相反数的定义 绝对值的性质 单项式的定义 有理数的分类以及性质作答.【解答】解:(1)若a 2=b 2 则|a |=|b | 原说法正确;(2)若a 、b 互为相反数且ab ≠0时 原说法错误;(3)绝对值相等的两数相等或互为相反数 原说法错误;(4)单项式7×102a 4的次数是4 原说法错误;(5)当a =0时 说法“﹣a 一定是一个负数”错误;(6)平方是本身的数是1或0 原说法错误.故选:A .11.(4分)已知|a |=2 b 2=25 3c =27 且ab >0 则a ﹣b +c 的值为( )A .10B .6C .3D .6或者0【分析】先根据绝对值的性质 乘方的性质求得a 、b 、c 再根据ab >0 分情况代值计算便可.【解答】解:∵|a |=2 b 2=25 3c =27∴a =±2 b =±5 c =3∴a、b同号∴当a=2 b=5 c=3时a﹣b+c=2﹣5+3=0;当a=﹣2 b=﹣5 c=3时a﹣b+c=﹣2+5+3=6;故选:D.12.(4分)如图在矩形ABCD中放入正方形AEFG正方形MNRH正方形CPQN点E在AB上点M、N在BC上若AE=4 MN=3 CN=2 则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.8【分析】设AB=DC=a AD=BC=b用含a、b的代数式分别表示BE BM DG PD.再表示出图中右上角阴影部分的周长及左下角阴影部分的周长然后相减即可.【解答】解:矩形ABCD中AB=DC AD=BC.正方形AEFG中AE=EF=FG=AG=4.正方形MNRH中MN=NR=RH=HM=3.正方形CPQN中CP=PQ=QN=CN=2.设AB=DC=a AD=BC=b则BE=AB﹣AE=a﹣4 BM=BC﹣MN﹣CN=b﹣3﹣2=b﹣5 DG=AD﹣AG=b﹣4 PD=CD﹣CP=a﹣2.∴图中右上角阴影部分的周长为2(DG+DP)=2(b﹣4+a﹣2)=2a+2b﹣12.左下角阴影部分的周长为2(BM+BE)=2(b﹣5+a﹣4)=2a+2b﹣18∴图中右上角阴影部分的周长与左下角阴影部分的周长的差为(2a+2b﹣12)﹣(2a+2b﹣18)=6.故选:B.二、填空题(本题共4个小题每小题4分共16分答题请用黑色墨水笔或签字笔直接答在答题卡相应13.(4分)已知x y满足|x﹣5|+(x﹣y﹣1)2=0 则(x﹣y)2021的值是.【分析】根据绝对值和偶次方的非负数的性质求出x、y的值再代入计算即可.【解答】解:∵|x﹣5|+(x﹣y﹣1)2=0 而|x﹣5|≥0 (x﹣y﹣1)2≥0∴x﹣5=0 x﹣y﹣1=0解得x=5 y=4∴(x﹣y)2021=12021=1.故答案为:1.14.(4分)如图a b c d e f均有有理数图中各行各列及两条对角线上三个数的和都相等则a﹣b+c﹣d+e﹣f的值为.a4﹣1b3cd e f【分析】先找出具有已知量最多且含有公共未知量的行或列即4﹣1+a=d+3+a得到d=0 再以4+b+0=b+3+c解得c=2 以此类推求出各个字母的值即可得出结论.【解答】解:由题意得:4﹣1+a=d+3+a解得:d=0.∵4+b+0=b+3+c∴c=1.∵4﹣1+a=a+1+f∴f=2.∴a﹣1+4=4+3+2∴a=6 b=5 e=7.∴a﹣b+c﹣d+e﹣f=6﹣5+1﹣0+7﹣2=7.故答案为:7.15.(4分)若多项式2x3﹣8x2+x﹣1与多项式x3+(3m+1)x2﹣5x+7的差不含二次项则m的值为.【分析】先列式化简代数式 再根据条件得出x 的二次项系数为0 列出m 的方程进行解答便可.【解答】解:(2x 3﹣8x 2+x ﹣1)﹣[x 3+(3m +1)x 2﹣5x +7]=2x 3﹣8x 2+x ﹣1﹣x 3﹣(3m +1)x 2+5x ﹣7=x 3﹣(3m +9)x 2+6x ﹣8∵多项式2x 3﹣8x 2+x ﹣1与多项式x 3+(3m +1)x 2﹣5x +7的差不含二次项∴3m +9=0∴m =﹣3.故答案为:﹣3.16.(4分)如M ={1 2 x } 我们叫集合M 其中1 2 x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在) 互异性(如x ≠1 x ≠2) 无序性(即改变元素的顺序 集合不变).若集合N ={x 1 2} 我们说M =N .已知集合A ={1 0 a } 集合B ={a 1 |a | ab } 若A =B 则b ﹣a 的值是 .【分析】根据集合的定义和集合相等的条件即可得到答案.【解答】解:∵A =B a ≠0≠0 ∴=0 =1 |a |=a 或=0=a |a |=1 ∴b =0 a =1(舍去)或b =0 a =﹣1∴b ﹣a =0﹣(﹣1)=1故答案为:1.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)计算:(1)2+(﹣3)﹣(﹣5);(2)(﹣143)﹣(+631)﹣2.25+310; (3)(﹣81)÷49×94÷(﹣16); (4)(﹣21+43﹣31)÷(﹣241). 【分析】(1)先化简符号 再计算;(2)把减化为加 再将相加得整数的先相加;(3)把除化为乘 再约分即可;(4)把除化为乘 再用乘法分配律计算.【解答】解:(1)原式=2﹣3+5=4;(2)原式=(﹣1.75﹣2.25)+(﹣6+3)=﹣4﹣3=﹣7;(3)原式=﹣81×××(﹣)=1;(4)原式=(﹣+﹣)×(﹣24)=24×﹣24×+24×=12﹣18+8=2.18.(8分)已知A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y若A+B﹣C=0 求C+A.【分析】直接利用已知得出C进而利用整式的加减运算法则计算得出答案.【解答】解:∵A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y A+B﹣C=0∴C=8x2y﹣6xy2﹣3xy+7xy2﹣2xy+5x2y=13x2y+xy2﹣5xy∴C+A=13x2y+xy2﹣5xy+8x2y﹣6xy2﹣3xy=21x2y﹣5xy2﹣8xy.19.(10分)东江湖蜜桔是我们湖南郴州的特产口感香甜入口即化.科技改变生活当前网络销售日益盛行.湖南某网红主播为了帮助农民脱贫致富在某直播间直播销售东江湖蜜桔计划每天销售20000千克但实际每天的销售量与计划量相比有增减超过计划量记为正不足计划量记为负.下表是该主播在直播带货期间第一周销售蜜桔的情况:星期一二三四五六日蜜桔销售情况(单位:千克)+300﹣400﹣200+100﹣600+1200+500(1)该主播在直播带货期间第一周销售蜜桔最多的一天比最少的一天多销售多少千克?(2)若该主播在直播期间按6元/千克进行蜜桔销售平均快递运费及其它费用为2元/千克则该主播第一周直播带货销售蜜桔为当地农民一共创收多少元?【分析】(1)7天销量求和即可;(2)由7天的总销量即可求解;【解答】解:(1)+1200﹣(﹣600)=1800(千克)答:第一周销售蜜桔最多的一天比最少的一天多销售1800千克.(2)∵20000×7+300﹣400﹣200+100﹣600+1200+500=140900(千克)∴(6﹣2)×140900=563600(元).答:该主播第一周直播带货销售蜜桔为当地农民一共创收563600元.20.(10分)(1)化简:﹣5a ﹣(4a +3b )+(9a +2b );(2)先化简 再求值:2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3) 其中x =3 y =﹣2.【分析】(1)把整式去括号、合并同类项即可;(2)把整式去括号、合并同类项化简后 代入计算即可得出答案.【解答】解:(1)﹣5a ﹣(4a +3b )+(9a +2b )=﹣5a ﹣4a ﹣3b +9a +2b=﹣b ;(2)2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3)=2x 3﹣4y 2﹣x 3+4y 2﹣2x 3=﹣x 3当x =3时原式=﹣33=﹣27.21.(12分)(1)如图 数轴上的点A B C 分别表示有理数a b c .化简:|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |;(2)已知关于x 、y 的多项式(3y ﹣ax 2﹣3x ﹣1)﹣(﹣y +bx ﹣2x 2)中不含x 项和x 2项 且22x a ﹣x +b =0 求代数式:2332x x a ﹣x ﹣b 的值.【分析】(1)由数轴可知 a <﹣2<b <﹣1 0<c <1 据此可得b +2>0 a +c <0 b +1<0 1﹣c >0 再根据绝对值性质去绝对值符号化简可得;(2)多项式合并后 根据结果中不含x 3项和xy 2项 求出a 与b 的值 代入原式计算即可得到结果.【解答】解:(1)∵a <﹣2<b <﹣1 0<c <1∴b +2>0 a +c <0 b +1<0 1﹣c >0∴|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |=﹣a ﹣(b +2)﹣(﹣a ﹣c )﹣(﹣b ﹣1)+1﹣c=﹣a ﹣b ﹣2+a +c +b +1+1﹣c=0.(2)原式=3y ﹣ax 2﹣3x ﹣1+y ﹣bx +2x 2=(2﹣a )x 2﹣(b +3)x +4y ﹣1由题意得2﹣a =0 b +3=0解得a =2 b =﹣3∵x 2﹣x ﹣3=0∴x 2﹣x =3∴原式=x 3﹣3x 2﹣x +3=x 3﹣x 2﹣2x 2﹣x +3=x (x 2﹣x )﹣2x 2﹣x +3=3x ﹣2x 2﹣x +3=2x ﹣2x 2+3=﹣2(x 2﹣x )+3=﹣6+3=﹣3.∴﹣x ﹣b 的值为﹣3.22.(12分)对于含绝对值的算式 在有些情况下 可以不需要计算出结果也能将绝对值符号去掉 例如:|7﹣6|=7﹣6;|6﹣7|=7﹣6;|3121-|=3121-;|2131-|=2131-. 观察上述式子的特征 解答下列问题:(1)把下列各式写成去掉绝对值符号的形式(不用写出计算结果):①|23﹣47|= ;②|5232-|= ; (2)当a >b 时 |a ﹣b |= a ﹣b ;当a <b 时 |a ﹣b |= b ﹣a ;(3)计算:2021120221...31412131121-++-+-+-. 【分析】(1)结合有理数加法减法运算法则以及绝对值的意义进行化简;(2)根据绝对值的意义进行化简;(3)根据有理数减法运算法则结合绝对值的意义先化简绝对值 然后根据数字的变化规律进行分析计算.【解答】解:(1)①|23﹣47|=47﹣23;②=﹣;故答案为:47﹣23 ﹣;(2)当a>b时|a﹣b|=a﹣b;当a<b时|a﹣b|=b﹣a;故答案为:a﹣b b﹣a;(3)原式=1﹣+﹣+﹣+•+﹣=1﹣=.23.(12分)【知识回顾】七年级学习代数式求值时遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关求a的值”通常的解题方法是:把x、y看作字母a看作系数合并同类项因为代数式的值与x的取值无关所以含x项的系数为0 即原式=(a+3)x﹣6y+5 所以a+3=0 则a=﹣3.(1)若关于x的多项式(2x﹣3)m+m2﹣3x的值与x无关求m的值【能力提升】(2)7张如图1的小长方形长为a宽为b按照图2方式不重叠地放在大长方形ABCD内大长方形中未被覆盖的两个部分(图中阴影部分)设右上角的面积为S1左下角的面积为S2当AB的长变化时S1﹣S2的值始终保持不变求a与b的等量关系.【分析】(1)根据含x项的系数为0建立方程解方程即可得;(2)设AB=x先求出S1、S2从而可得S1﹣S2再根据“当AB的长变化时S1﹣S2的值始终保持不变”可知S1﹣S2的值与x的值无关由此即可得.【解答】解:(1)(2x﹣3)m+m2﹣3x=2mx﹣3m+m2﹣3x=(2m﹣3)x+3m+m2∵关于x的多项式(2x﹣3)m+m2﹣3x的值与x的取值无关∴2m﹣3=0解得m=.(2)设AB=x由图可知S1=a(x﹣3b)=ax﹣3ab S2=2b(x﹣2a)=2bx﹣4ab则S1﹣S2=ax﹣3ab﹣(2bx﹣4ab)=ax﹣3ab﹣2bx+4ab=(a﹣2b)x+ab.∵当AB的长变化时S1﹣S2的值始终保持不变∴S1﹣S2的值与x的值无关∴a﹣2b=0∴a=2b.24.(14分)定义:数轴上有A B两点若点A到原点的距离为点B到原点的距离的两倍则称点A为点B的2倍原距点.已知点A M N在数轴上表示的数分别为4 m n.(1)若点A是点M的2倍原距点①当点M在数轴正半轴上时则m=;②当点M在数轴负半轴上且为线段AN的中点时判断点N是否是点A的2倍原距点并说明理由;(2)若点M N分别从数轴上表示数10 6的点出发向数轴负半轴运动点M每秒运动速度为2个单位长度点N每秒运动速度为a个单位长度.若点M为点A的2倍原距点时点A恰好也是点N的2倍原距点请直接写出a所有可能的值.【分析】(1)①点A到原点的距离为4 根据定义可知点M到原点距离为2 点M在数轴正半轴进而可求出m.②m<0 则m=﹣2 4﹣(﹣2)=﹣2﹣n得出n的值再根据定义来判断.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点;由|10﹣2t|=2×4求出t 的值将t代入4=2×|6﹣at| 求出a的所有可能值即可.【解答】解:(1)①∴m=±2.∵m>0∴m=2.故答案为:2.②∵m<0∴m=﹣2.∵点M为线段AN的中点∴4﹣(﹣2)=﹣2﹣n解得n=﹣8.∴ON=8 ON=2OA故N点是点A的2倍原距点.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点.∴解①得:t1=9 t2=1.将t1=9代入②得:4=2×|6﹣9t|解得:;将t2=1代入②得:4=2×|6﹣a|解得:a3=4 a4=8.故a所有的可能值为:4 8 .。
2024-2025学年人教版(2024)七年级数学上册期中测试卷
2024-2025学年人教版(2024)七年级数学上册期中测试卷1.某品牌酸奶外包装上标明“净含量:”.随机抽取四种口味的这种酸奶分别称重如下表.其中,净含量不合格的是()种类原味草莓味香草味巧克力味净含量190195203200A.原味B.草莓味C.香草味D.巧克力味2.的相反数是()A.B.C.D.3.绝对值大于且小于的所有负整数的和为()A.B.C.D.4.下列说法:①若m满足,则;②若,则;③若,则是正数;④若三个有理数a,b,c满足,则,其中正确的是有()个A.1B.2C.3D.45.如图所示的“杨辉三角”告诉了我们展开式的各项系数规律,如:第三行的三个数,恰好对应展开式中各项的系数;第四行的四个数恰好对应的系数.根据数表中前四行的数字所反映的规律计算:()A.B.C.D.6.计算机利用的是二进制数,它共有两个数码0,1.将一个十进制数转化为二进制,只需把该数写出若干个数的和,依次写出1或0即可.如为二进制下的五位数,则十进制1025是二进制下的()A.10位数B.11位数C.12位数D.13位数7.下列各式中,不是代数式的是()A.B.C.D.8.已知,,且,则的值为()A.1B.5C.1或5D.1或9.按下图所示的程序进行计算,若输入的数是4,则输出的数是()A.1B.C.D.10.如图,阶梯图的每个台阶上都标有一个数,数列呈现一定的符号变化规律和绝对值的变化规律,请计算()A.1013B.1011C.0D.以上都不对11.气象台记录了某地一周七天的气温变化情况(如下表).星期一二三四五六日气温变化其中正数表示这天与前一天相比气温上升的温度,负数表示这天与前一天相比气温下降的温度.已知上周日的气温是,根据表中数据,请你判断该地本周最低气温是_____.12.定义一种新运算:对于任意实数、,满足,当,时,的最大值为______.13.已知一个数减去2.4的差的绝对值为0,那么这个数是______.14.若规定运算,则______.15.若,则的值是_________.16.丽丽写了一个三位数,个位上的数是最小的质数,十位上的数是最小的合数,且这个三位数是3的倍数,这个数最大是_________.17.明明用500元去买篮球,每个篮球a元.若他买了6个篮球,还剩_____元;若,买6个篮球还剩_______元.18.如图是一个计算程序,若输入a的值为,则输出的结果________.19.计算:(1);(2)20.先化简,再求值:,其中,.21.已知x是最大的负整数的相反数,a是的倒数,b的绝对值是2,且.求的值.22.已知互为相反数,互为倒数,,求的值.23.将如图所示的长为,宽为,高为的大理石运往某地用以建设革命历史博物馆.(1)求每块大理石的体积;(结果用科学记数法表示)(2)如果一列火车总共运送了块大理石,共约重千克,求每块大理石约重多少千克?(结果用科学记数法表示)24.外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定送餐量超过40单(送一次外卖称为一单)的部分记为“”,低于40单的部分记为“”,如表是该外卖小哥一周的送餐量:星期一二三四五六日选餐量(单位:单)(1)送餐最多的一天比送餐最少的一天多送______单;(2)求该外卖小哥这一周平均每天送餐多少单?(3)外卖小哥每天的工资由底薪40元加上送单补贴构成.送单补贴的方案如下:每天送餐量不超过40单的部分,每单补贴4元;超过40单的部分,每单补贴8元.求该外卖小哥这一周工资收入多少元?25.【阅读理解】整体思想是从问题的整体性质出发,突出对问题的整体结构的分析和改造,把某些式子或图形看成一个整体,进行整体处理.它作为一种思想方法在数学学习中有广泛的应用,因为一些问题按常规不容易求某一个(或多个)未知量时,根据题目的结构特征,把某一组数或某一个代数式看作一个整体,找出整体与局部的联系,从而找到解决问题的新途径.例如,求的值,我们将作为一个整体代入,则原式.【教材原题】如图,若,求长方形A与B的面积差.【尝试应用】当时,代数式的值为m,当时,求代数式的值;(用含m的代数式表示)【拓展应用】A,B两地相距60千米,某日,甲从A地出发前往B地,同时,乙从B地出发前往A地.已知甲每小时行a千米,乙每小时行b千米,经过2小时,甲、乙二人相遇.直接写出甲、乙两人相距20千米的时间.26.【概念学习】定义新运算:求若干个相同的有理数(均不等于)的商的运算叫做除方.比加,等,类比有理数的乘方,我们把写作,读作“的圈次方”,写作,读作“的圈次方”.一般地,把记作:,读作“的圈次方”.特别地,规定:.【初步探究】(1)直接写出计算结果:;;(2)若为任意正整数,下列关于除方的说法中,正确的有;(横线上填写序号)A.任何非零数的圈次方都等于B.任何非零数的圈次方都等于它的倒数C.圈次方等于它本身的数是或D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数E.互为相反数的两个数的圈次方互为相反数F.互为倒数的两个数的圈次方互为倒数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数的圈次方写成幂的形式:;(4)计算:.。
七年级数学上册期中模拟卷人教版2024
七年级数学上学期期中模拟卷(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版2024七年级上册1.1-3.2。
5.难度系数:0.85。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,数轴上的两个点分别表示数a 和2-,则a 的值可以是( )A .2B .1-C .4-D .02.在数轴上表示2-的点与原点的距离为( )A .2B .2-C .2±D .03.下列各对数中,互为相反数的是( )A .2与12B .(3)﹣﹣和3+﹣C .(2)﹣﹣与2﹣﹣ D .(5)+﹣与()5+﹣4.若0,0a b <>,则,,,b b a b a ab +-中最大的一个数是( )A .b a -B .b a +C .bD .ab5.根据地区生产总值统一核算结果,2023年上半年,子州县生产总值完成3665000000元,将数据3665000000用科学记数法表示为( )A .6366510⨯B .7366.510⨯C .93.66510⨯D .100.366510⨯6.周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x 杯饮料,y 份沙拉,则他们点的B 餐份数为( )A .10x -B .10y-C .x y-D .10x y--7.如图,a ,b 是数轴上的两个有理数,以下结论:①b a -<-;②0a b +>;③b a a b -<<-<;④+=-a b a b ,其中正确的是( )A .①②③B .②③④C .②③D .②④8.定义一种新运算:*a b ab b =-.例如:1*21220=⨯-=.则()()4*2*3⎡⎤--⎣⎦的值为( )A .3-B .9C .15D .279.已知数a ,b ,c 在数轴上的位置如图所示,化简a b a b a c +--+-的结果为( )A .2a b c ---B .a b c---C .a c--D .2a b c--+10.如图,这是由一些火柴棒摆成的图案,按照这种方式摆下去,摆第20个图案需用火柴棒的根数为( )A .20B .41C .80D .81第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
人教版2022--2023学年度第一学期七年级数学上册期中测试卷及答案
8.下列判断正确的是( )
A.两个数相加,和一定大于其中一个加数B.两数相减,差一定小于被减数
C.两数相乘,积一定大于其中一个因数D.|a|一定是非负数
9.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()
A. B.14 C.5 D.7
10.一根 长 绳子,第一次剪去绳子的 ,第二次剪去剩下绳子的 ,如此剪下去,第100次剪完后剩下绳子的长度是()
【详解】解:如图所示:
【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
例:三个有理数 , , 满足 ,求 的值.
解:由题意得, , , 三个有理数都为正数或其中一个为正数,另两个为负数.
①当 , , 都是正数,即 , , 时,
则: ,
②当 , , 有一个为正数,另两个为负数时,设 , , ,
则: .
综上, 的值为3或-1.
请根据上面的解题思路解答下面的问题:
(1)已知 , ,且 ,求 的值;
则 .
故答案为:55.
【点睛】本题考查了代数式求值,读懂题目运算程序是解题的关键.
15.30
【解析】
【分析】将代数式化为:2(x2+3x)+8,由于代数式x2+3x-5的值等于6,那么x2+3x=11,将其代入代数式并求出代数式的值.
【详解】解:由题意得:
x2+3x-5=6,
即:x2+3x=11,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016----2017年秋季 数学 期中测试卷
七年级 (120分,时间120分)
一、选择题(每小题3分,共30分)
1、-4的倒数是 ( )
A 、4
B 、-4
C 、-41
D 、4
1 2、数轴上到原点的距离是3的数是 ( )
A 、3
B 、-3
C 、±3
D 、6
3、下列各数:0,-2,32,0.5,-5
1,0.333......,-2.3,其中非负数的个数为( )个。
A 、1个 B 、2个 C 、3 个 D 、4个
4、25+(-30)-(-10)+(-15)-20的结果是 ( )
A 、15
B 、-20
C 、-30
D 、30
5、化简a-[b-2a-5(a-b)] ( )
A 、-2a+4b
B 、8a-6b
C 、8a+4b
D 、2a-4b
6、据报道,8月5日参加奥运会开幕式人数约为21.3万人次,用科学记数法表示21.3万是 ( )
A 、2.13×104
B 、2.13×105
C 、 2.13×106
D 、2.13×107
7、下列运算结果正确的是 ( )
A 、3x+3y=6xy
B 、7x-5x=2
C 、4a 2+5a 3=9a 5
D 、6xy 2-4y 2x=2xy 2
8、若a,b 互为相反数,且都不为零,则(a+b-1)(
b a +1)的值为 ( ) A 、0 B 、-1 C 、1 D 、-2
9、一个长方形的一边是2a+3b,另一边是a+b,则这个长方形的周长是 ( )
A 、12a+16b
B 、6a+8b
C 、3a+8b
D 、6a+4b
10、观察下面一列数,探索其规律:-1,21, -31,41 ,-51,6
1,........第2017个数是 ( )
A 、20171
B 、-20171
C 、20161
D 、-2016
1 二、填空题(每小题3分,共30分)
11、-5的相反数的绝对值是 _______________.
12、若关于a,b 的代数式a m b 与a 5b n 是同类项,那么(mn-5)2016=_____________.
13、若(a-3)2x 3y b-2是关于x,y 的5次单项式,则a ≠__________,b=_______.
14、数轴上表示-3和表示5的两点之间的距离是___________.
15、若|x-3|+(y+2)2
=0则(x+y)100=______________. 16、有一种新运算,如果定义为a*b=2a-b,如2*3=2×2-3=1,请计算-2*(2*1)=________.
17、计算 -2 2+|-3|-2=__________.
18、有一道题目是一个多项式减去x 2+14x-6,小明误当成加法计算,结果得到2x 2
-x+3,那
么正确的结果是________________. 19、- 322
3b a 的系数是__________,次数是________. 20、如果|a-b|=b-a,那么a_______b.
三、计算(每小题5分)
21、-3+(-5)-10 22、-22 - (-1)2015×|2-20|÷[2+(-5)]2
23、2(3a 2b - a) - 5a 2b - (4a + 2a 2b) - 2a 24、x 2- [- 4xy+ (xy- x 2) ]- 2xy
四、作图题(8分)
25、画一条数轴,在数轴上描出数字0,-2.5, 4,
12所对应的点。
五、(每题10分)先化简,在求值;
26、 已知代数式 2a 2 - [ a 2 - 2 (a 2 - 3a - 1 ) - 3 ( a 2- 1 - 2a)],其中a=2
1. 27、已知代数式5x 2 y - [4x y 2 - 3(2x y z - 2x 2 y)] + 4(x y 2 - x y z),其中|x-2|+(y-3)2=0,z 是
最小的正整数。
六、应用题(12分)
28、有位出租车司机老王,一天下午以他家为出发点,在东西走向的和平路上营运,如果
规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15, -2, +5 ,
-13,+10, -7, -8, +12, +4, -5, +6.
(1)他将最后一名乘客送到目的地时,离他家有多远?在他家的什么方向?
(2)若每千米的价格是3.5元,这天下午老王的营业额是多少?
答案:
一、选择题
1 、C ; 2、C; 3、D; 4、C; 5、B; 6、C; 7、D; 8、A; 9、B;10、B
二、填空题
11、5; 12、0; 13、3 4;14、8; 15、1; 16、-7 ;17、-3; 18、-29x+15;
19、-2
3 5 ;20、a ≤ b. 三、计算
21、-18; 22、-2; 23、- a 2b - 8a ;24、2x 2+xy
四、作图题 25、(略)数轴4分,每个点1分;
四、先化简,再求值
26、(1)原式=6a 2-12a-5,将 a= 2
1代入得 -9.5。
27、 原式=- x 2y+2xyz ,∵|x-2|+(y-3)2=0,z 是最小的正整数
∴ x=2, y=3,z=1;
∴ -4×3+2×2×3×1=0
28、(1)离他家有17米,向东
(2) 所有数的绝对值和为87.营业额为87×3.5 =304.5.。