新课标人教A版高中数学必修4单元测试月考一)
【名师一号】2014-2015学年高中数学 三角恒等变换单元测评 新人教A版必修4

三角恒等变换(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.已知sin(α-β)cos α-cos(α-β)sin α=45,且β是第三象限角,则cos β2的值等于A .±55 B .±255C .-55D .-255解析:由已知,得sin[(α-β)-α]=sin(-β)=45,得sin β=-45.∵β在第三象限,∴cos β=-35.∴cos β2=±1+cos β2=± 15=±55. 答案:A2.若tan α=3,则sin2αcos 2α的值等于 A .2 B .3 C .4 D .6解析:sin2αcos 2α=2sin αcos αcos 2α=2tan α=2³3=6. 答案:D3.函数y =cos2x +sin2x cos2x -sin2x 的最小正周期为A .2πB .π C.π2D.π4解析:y =1+tan2x 1-tan2x =tan ⎝ ⎛⎭⎪⎫2x +π4,∴T =π2. 答案:C4.设a =sin14°+cos14°,b =sin16°+cos16°,c =62,则a ,b ,c 的大小关系是 A .a <b <cB .b <a <cC .c <b <aD .a <c <b解析:a =2sin59°,b =2sin61°,c =2sin60°, ∴a <c <b . 答案:D5.函数y =sin x cos x +3cos 2x -3的图像的一个对称中心是 A.⎝⎛⎭⎪⎫2π3,-32B.⎝ ⎛⎭⎪⎫5π6,-32C.⎝ ⎛⎭⎪⎫-2π3,32D.⎝⎛⎭⎪⎫π3,-3解析:y =12sin2x +32(1+cos2x )-3=12sin2x +32²cos2x -32=sin ⎝ ⎛⎭⎪⎫2x +π3-32,令2x+π3=k π,x =k π2-π6(k ∈Z ),当k =2时,x =5π6,对称中心是⎝ ⎛⎭⎪⎫56π,-32. 答案:B6.已知点P (cos α,sin α),Q (cos β,sin β),则|PQ →|的最大值是 A. 2 B .2 C .4D.22解析:PQ →=(cos β-cos α,sin β-sin α),则 |PQ →|=β-cos α2+β-sin α2=2-α-β,故|PQ →|的最大值为2. 答案:B7.若(4tan α+1)(1-4tan β)=17,则tan(α-β)的值为 A.14 B.12C .4D .12 解析:由已知得:4(tan α-tan β)=16(1+tan αtan β),即tan α-tan β1+tan αtan β=4,所以tan(α-β)=4. 答案:C8.函数f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6的值域为A .[-2,2]B .[-3,3]C .[-1,1]D.⎣⎢⎡⎦⎥⎤-32,32 解析:因为f (x )=sin x -32cos x +12sin x =3²⎝ ⎛⎭⎪⎫32sin x -12cos x =3sin ⎝ ⎛⎭⎪⎫x -π6,所以函数f (x )的值域为[-3,3].答案:B9.函数y =sin ⎝⎛⎭⎪⎫2x -π3-sin2x 的一个单调递增区间是A.⎣⎢⎡⎦⎥⎤-π6,π3B.⎣⎢⎡⎦⎥⎤π12,712πC.⎣⎢⎡⎦⎥⎤512π,1312πD.⎣⎢⎡⎦⎥⎤π3,5π6解析:y =sin ⎝ ⎛⎭⎪⎫2x -π3-sin2x =-sin ⎝ ⎛⎭⎪⎫2x +π3,其增区间是函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的减区间,即π2+2k π≤2x +π3≤3π2+2k π,∴π12+k π≤x ≤7π12+k π,当k =0时,x ∈⎣⎢⎡⎦⎥⎤π12,7π12.答案:B10.已知sin2α=35⎝ ⎛⎭⎪⎫π2<2α<π,tan(α-β)=12,则tan(α+β)的值为A .-2B .-1C .-211D.211解析:由sin2α=35,且π2<2α<π,可得cos2α=-45,所以tan2α=-34,所以tan(α+β)=tan[2α-(α-β)]=tan2α-α-β1+tan2αα-β=-2.答案:A第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.若π4<α<β<π2,sin α+cos α=a ,sin β+cos β=b ,则a ,b 的大小关系是__________.解析:sin α+cos α=2sin ⎝ ⎛⎭⎪⎫α+π4,sin β+cos β=2sin ⎝ ⎛⎭⎪⎫β+π4,因为π4<α<β<π2,所以π2<α+π4<β+π4<3π4,所以sin ⎝ ⎛⎭⎪⎫α+π4>sin ⎝ ⎛⎭⎪⎫β+π4,所以a >b .答案:a >b12.已知θ∈⎝ ⎛⎭⎪⎫π2,π,1sin θ+1cos θ=22,则sin ⎝ ⎛⎭⎪⎫2θ+π3的值为__________. 解析:由已知条件可得sin ⎝⎛⎭⎪⎫θ+π4=sin2θ,又θ∈⎝ ⎛⎭⎪⎫π2,π,可知θ+π4+2θ=3π,即θ=11π12,sin ⎝ ⎛⎭⎪⎫2θ+π3=sin 13π6=12. 答案:1213.已知cos αcos(α+β)+sin αsin(α+β)=-35,β是第二象限角,则tan2β=__________.解析:由已知可得,cos β=-35,可求tan β=-43,∴tan2β=247.答案:24714.关于函数f (x )=cos2x -23sin x cos x ,下列命题:①存在x 1,x 2,当x 1-x 2=π时,f (x 1)=f (x 2)成立;②f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增;③函数f (x )的图像关于点⎝⎛⎭⎪⎫π12,0成中心对称图形;④将函数f (x )的图像向左平移5π12个单位长度后将与y =2sin2x 的图像重合.其中正确命题的序号是__________(注:把你认为正确的序号都填上). 解析:∵f (x )=2sin ⎝ ⎛⎭⎪⎫π6-2x=2sin ⎝⎛⎭⎪⎫2x +5π6=2sin2⎝⎛⎭⎪⎫x +5π12,∴周期T =π,故①正确;∵π2≤2x +5π6≤3π2,解得x ∈⎣⎢⎡⎦⎥⎤-π6,π3,∴⎣⎢⎡⎦⎥⎤-π6,π3是其递减区间,故②错误;∵对称中心的横坐标满足2x +5π6=k π(k ∈Z )⇒x =k π2-5π12(k ∈Z ),当k =1时,得③正确;应该是向右平移,故④不正确. 答案:①③三、解答题:本大题共4小题,满分50分.15.(12分)已知A ,B ,C 为△ABC 的三个内角,且A <B <C ,sin B =45,cos(2A +C )=-45,求cos2A 的值.解:∵A <B <C ,A +B +C =π, ∴0<B <π2,A +C >π2,0<2A +C <π.∵sin B =45,∴cos B =35.∴sin(A +C )=sin(π-B )=45,cos(A +C )=-35.(4分)∵cos(2A +C )=-45,∴sin(2A +C )=35.(8分)∴sin A =sin[(2A +C )-(A +C )] =35³⎝ ⎛⎭⎪⎫-35-⎝ ⎛⎭⎪⎫-45³45 =725. ∴cos2A =1-2sin 2A =527625.(12分)16.(12分)已知函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π4. (1)求f (x )的定义域与最小正周期;(2)设α∈⎝ ⎛⎭⎪⎫0,π4,若f ⎝ ⎛⎭⎪⎫α2=2cos2α,求α的大小.解:(1)由2x +π4≠π2+k π,k ∈Z ,得x ≠π8+k π2,k ∈Z ,所以f (x )的定义域为{x ∈R |x ≠π8+k π2,k ∈Z }.(4分)f (x )的最小正周期为π2.(6分)(2)由f ⎝ ⎛⎭⎪⎫α2=2cos2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos2α,即sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝⎛⎭⎪⎫α+π4=2(cos 2α-sin 2α),整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).(8分)因为α∈⎝⎛⎭⎪⎫0,π4,所以sin α+cos α≠0.因此(cos α-sin α)2=12,即sin2α=12.(10分)由α∈⎝ ⎛⎭⎪⎫0,π4,得2α∈⎝⎛⎭⎪⎫0,π2.所以2α=π6,即α=π12.(12分)17.(13分)设f (x )=6cos 2x -3sin2x . (1)求f (x )的最大值及最小正周期;(2)若锐角α满足f (α)=3-23,求tan ⎝ ⎛⎭⎪⎫45α的值.解:(1)f (x )=6³1+cos2x2-3sin2x=3+3cos2x -3sin2x =23⎝⎛⎭⎪⎫32cos2x -12sin2x +3=23cos ⎝⎛⎭⎪⎫2x +π6+3,(4分) 故f (x )的最大值为23+3.最小正周期T =2π2=π.(6分)(2)由f (α)=3-23,得23cos ⎝⎛⎭⎪⎫2α+π6+3=3-23,故cos ⎝ ⎛⎭⎪⎫2α+π6=-1.(8分) 又由0<α<π2,得π6<2α+π6<7π6,故2α+π6=π, 解得α=512π.(10分)从而tan ⎝ ⎛⎭⎪⎫45α=tan π3= 3.(13分) 18.(13分)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π3+2sin ⎝ ⎛⎭⎪⎫3π2-x .(1)求函数f (x )的单调减区间;(2)求函数f (x )的最大值并求f (x )取得最大值时的x 的取值集合; (3)若f (x )=65,求cos ⎝ ⎛⎭⎪⎫2x -π3的值.解:f (x )=2cos x cos π3+2sin x sin π3-2cos x=cos x +3sin x -2cos x =3sin x -cos x=2sin ⎝⎛⎭⎪⎫x -π6.(1)令2k π+π2≤x -π6≤2k π+32π(k ∈Z ),∴2k π+2π3≤x ≤2k π+5π3(k ∈Z ),∴单调递减区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3(k ∈Z ).(4分)(2)f (x )取最大值2时,x -π6=2k π+π2(k ∈Z ),则x =2k π+2π3(k ∈Z ). ∴f (x )的最大值是2,取得最大值时的x 的取值集合是{x |x =2k π+2π3,k ∈Z }.(8分)(3)f (x )=65即2sin ⎝⎛⎭⎪⎫x -π6=65,∴sin ⎝⎛⎭⎪⎫x -π6=35.∴cos ⎝ ⎛⎭⎪⎫2x -π3=1-2sin 2⎝⎛⎭⎪⎫x -π6=1-2³⎝ ⎛⎭⎪⎫352=725.(13分)。
2022版新教材高中数学第四章指数函数与对数函数专题强化练4变换作图及其应用新人教A版必修第一册

专题强化练4变换作图及其应用一、选择题1.(2020河北石家庄一中高一上期中,)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<02.(2020山东青岛二中高一上期末,)函数f(x)=2-|x|-1的图象大致为()3.(2020安徽安庆高一上期末,)某数学课外兴趣小组对函数f(x)=2|x-1|的图象与性质进行了探究,得到下列四个结论:①函数f(x)的值域为(0,+∞);②函数f(x)在区间[0,+∞)上单调递增;③函数f(x)的图象关于直线x=1对称;④函数f(x)的图象与直线y=-a2(a∈R)不可能有交点.则其中正确结论的个数为()A.1B.2C.3D.44.()设函数f(x)={|2x-1|,x≤2,-x+5,x>2,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)5.(多选)(2021山东师大附中高一上期中,)已知函数f(x)=x2+2x+2|x+1|+a,则下列结论正确的是()A.对于任意实数a,f(x)>0B.对于任意实数a,函数f(x)的图象为轴对称图形C.存在实数a,使得f(x)在(-∞,-1)上单调递减D.存在实数a,使得关于x的不等式f(x)≥5的解集为(-∞,-2]∪[0,+∞)二、填空题6.(2020黑龙江大庆实验中学高一上月考,)函数y=|3x-2|+m的图象不经过第二象限,则实数m的取值范围是(用区间表示).7.(2020河北唐山一中高一上期中,)若函数f(x)=(12)|1-x|+m的图象与x轴有公共点,则m的取值范围是.8.(2020湖北荆州中学高一上月考,)若关于x的方程|x2-4|x|+3|=k有4个不相等的实数根,则实数k应满足的条件是.9.(2020山东烟台高一上期末,)已知函数f(x)=3|x+a|(a∈R)满足f(x)=f(2-x),则实数a的值为;若f(x)在[m,+∞)上单调递增,则实数m的最小值为.三、解答题10.(2020福建厦外高一上期中,)已知函数f(x)=|(13)x-1|-a.(1)若a=0,画出函数f(x)的图象,并指出其单调区间;(2)讨论方程f(x)=0的实数解的个数.答案全解全析一、选择题1.D由函数f(x)的图象知f(x)单调递减,则0<a<1,又知f(x)的图象是将指数函数y=a x(0<a<1)的图象向左平移得到的,故b<0,故选D.2.B易得x∈R,且f(x)=f(-x),所以函数f(x)=2-|x|-1是偶函数,排除C;f(x)=2-|x|-1=(12)|x|-1,当x>0时,f(x)=(12)x-1∈(-1,0),且是减函数,故选B.3.B作出函数f(x)=2|x-1|的图象,如图,由图象可知,函数f(x)的值域为[1,+∞),①错误;函数f(x)在区间[0,1)上单调递减,在[1,+∞)上单调递增,②错误;函数f(x)的图象关于直线x=1对称,③正确;因为y=-a2≤0,所以函数f(x)的图象与直线y=-a2(a∈R)不可能有交点,④正确.正确结论的个数为2,故选B.解题模板研究指数型函数的性质,借助图象是常见的手段,画出简图后很多问题可迎刃而解.4.B作出函数f(x)的图象如图所示.不妨设a<b<c,则1-2a=2b-1=-c+5∈(0,1),∴2a+2b=2,c∈(4,5),从而2c∈(24,25)=(16,32),因此16+2<2a+2b+2c<32+2,即2a+2b+2c的取值范围是(18,34).故选B.解题模板本题的实质是确定方程解的范围,借助图象是解题的要点,利用图象可以得到各个解的范围,进而解决问题.5.BCD函数f(x)=x2+2x+2|x+1|+a=(x+1)2+2|x+1|-1+a,设g(x)=(x+1)2,h(x)=2|x+1|,其图象分别是由y=x2,y=2|x|的图象向左平移1个单位长度而得到,因此都关于直线x=-1对称,故f(x)的图象关于直线x=-1对称,故B正确;易得g(x)min=g(-1)=0,h(x)min=h(-1)=1,所以f(x)min=0+1-1+a=a,当a<0时,选项A错误;由于函数g(x)和函数h(x)在(-∞,-1)上均为减函数,所以f(x)在(-∞,-1]上单调递减,故C正确;由于函数f(x)的图象关于直线x=-1对称,f(x)在(-∞,-1]上单调递减,在[-1,+∞)上单调递增,所以若关于x的不等式f(x)≥5的解集为(-∞,-2]∪[0,+∞),则f(-2)=2+a=5,解得a=3,故D正确.故选BCD.二、填空题6.答案(-∞,-2]解析作出函数y=|3x-2|的图象如图所示.由图可知,若函数y=|3x-2|+m的图象不经过第二象限,则需将函数y=|3x-2|的图象至少向下平移2个单位长度,则m≤-2,故答案为(-∞,-2].7.答案[-1,0)解析作出函数g(x)=(12)|1-x|={(12)x-1,x≥1,2x-1,x<1的图象如图所示.由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数f(x)=(12)|1-x|+m的图象与x轴有公共点,则{1+x≥0,x<0,解得-1≤m<0.故答案为[-1,0).8.答案k=0或1<k<3解析设f(x)=|x2-4|x|+3|,当x≥0时,f(x)=|x2-4x+3|,其图象是由y=x2-4x+3(x≥0)的图象在x轴及其上方的部分不变,在x轴下方的部分对称到x轴上方而得到的,易知f(x)是偶函数,故f(x)的大致图象如图所示.由图象知,当k=0或1<k<3时,方程|x2-4|x|+3|=k有4个不相等的实数根.9.答案-1;1解析由f(x)=f(2-x),可得f(0)=f(2),∴3|a|=3|2+a|,即|a|=|2+a|,解得a=-1.∴f(x)=3|x-1|={3x-1,x≥1, 31-x,x<1,易知f(x)在(-∞,1)上单调递减,在[1,+∞)上单调递增.若f(x)在[m,+∞)上单调递增,则m≥1,∴m的最小值为1.故答案为-1;1.三、解答题10.解析(1)当a=0时,f(x)=|(13)x-1|,其图象如图所示.由图象可知,f(x)的单调递增区间为(0,+∞),f(x)的单调递减区间为(-∞,0).(2)方程f(x)=0可化为|(13)x-1|=a.由(1)中图知,当a<0时,方程f(x)=0无实数解;当a=0时,方程f(x)=0有唯一实数解;当0<a<1时,方程f(x)=0有两个不相等的实数解;当a≥1时,方程f(x)=0有唯一实数解.综上,当a<0时,方程f(x)=0没有实数解,当a=0或a≥1时,方程f(x)=0有且仅有一个实数解,当0<a<1时,方程f(x)=0有两个不相等的实数解.。
人教A版必修四高一第二学期数学第一次月考试题.docx

高中数学学习材料唐玲出品云阳中学高一第二学期数学第一次月考试题(2007级)时量90分钟,满分100分一、选择题:(本大题共有6小题,每小题5分,共30分.)1.把o 495-表示成360o k θ⋅+(k ∈Z )的形式,则θ(θ>0)可以是 ( ) A .-1350 B .450 C .2250 D .13502.在直角坐标系中,若α与β的终边关于y 轴对称,则下列等式恒成立的是( ) A .βπαsin )sin(=+ B .βπαsin )sin(=- C .βαπsin )2sin(-=- D .βαsin )sin(=-3.如果点)cos 2,cos (sin θθθP 位于第三象限,那么角θ所在象限是( ) A.第一象限 B .第二象限 C .第三象限 D .第四象限 4.函数sin(2)3y x π=-的单调递减区间是 ( )A .2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ B .5112,2()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ C .22,2()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D .511,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ 5.为了得到函数R x x y ∈+=),32cos(π的图象,只需把函数x y 2cos =的图象( )A .向左平行移动3π个单位长度B .向右平行移动3π个单位长度C .向左平行移动6π个单位长度D .向右平行移动6π个单位长度6.已知函数()sin ,()tan()2x f x g x x ππ+==-,则 ( ) A .()f x 与()g x 都是奇函数 B .()f x 与()g x 都是偶函数C .()f x 是奇函数,()g x 是偶函数D .()f x 是偶函数,()g x 是奇函数 二、填空题:本题共4小题,每小题5分,共20分.7.函数11cos ,()23y x x R π=-∈的最大值y = ,此时自变量x 的取值集合是8.不等式1)32tan(≤+πx 的解集是9.如图,单摆从某点开始来回摆动,离开平衡位置O 的 距离S 厘米和时间t 秒的函数关系为:6sin(2)6S t ππ=+,那么单摆来回摆动一次所需的时间为 秒. 10.函数y=)4sin(π-x 的定义域是答 题 卷一、选择题:(本大题共有6小题,每小题5分,共30分.)题号 1 2 3 4 5 6 答案二、填空题:本题共4小题,每小题5分,共20分.7. 8. 9. 10.三、解答题:本大题共4小题,共50分,解答应写出文字说明,证明过程或演算步骤.11.(8分) 已知54cos -=α,求sin ,tan αα的值。
2020年高中数学 人教A版 必修4 单元测试卷 平面向量(含答案解析)

7
7
∴Error!解得 m=2,n= ,∴D(2, ),故选 A.225.答案为:D.
解析:由题意,得 a·b=3×(-3)+4×1=-5,|a|=5,|b|= 10,
a·b -5 1
则 cos θ=
= =- .
|a||b| 5 10 10
3
sin θ
∵θ∈[0,π],∴sin θ= 1-cos2θ= ,∴tan θ=
22.已知 a=(2+sin x,1),b=(2,-2),c=(sin x-3,1),d=(1,k)(x∈R,k∈R). ππ
(1)若 x∈[- , ],且 a∥(b+c),求 x 的值; 22
(2)若函数 f(x)=a·b,求 f(x)的最小值; (3)是否存在实数 k 和 x,使得(a+d)⊥(b+c)?若存在,求出 k 的取值范围;若不存在, 请说明理由.
3.在△ABC 中,AB=BC=3,∠ABC=60°,AD 是边 BC 上的高,则A→D·A→C的值等于( )
9 A.-
4
9
27
B.
C.
D.9
4
4
4.已知四边形 ABCD 的三个顶点 A(0,2),B(-1,-2),C(3,1),且B→C=2A→D,则顶点 D 的坐标
为( ) 7
A.(2, ) 2
答案解析
1.答案为:D. 解析:A 中,两向量的夹角不确定,故 A 错;B 中,若 a⊥b,a⊥c,b 与 c 反方向, 则不成立,故 B 错;C 中,应为A→B=O→B-O→A,故 C 错; D 中,因为 b⊥c,所以 b·c=0,所以(a+c)·b=a·b+c·b=a·b,故 D 正确.
2.答案为:B. 对 A,a 与 b 若其中一个为 0,不合题意,错误.对 B,零向量是 0,正确;对 C,方向相 同且长度相等的向量叫做相等向量,错误;对 D,共线向量所在直线可能平行,也可能重 合,错误.故选 B.
高中数学 第四章 指数函数与对数函数 4.4 对数函数一课一练(含解析)新人教A版必修第一册-新人教

第四章指数函数与对数函数4.4对数函数第1课时对数函数的概念及图像与性质 考点1对数函数的概念1.(2019·某某某某一中高一期中)与函数y =10lg(x -1)相等的函数是()。
A.y =(√x -1)2B.y =|x -1|C.y =x -1D.y =x 2-1x+1 答案:A 解析:y =10lg(x -1)=x -1(x >1),而y =(√x -12=x -1(x >1),故选A 。
2.(2019·某某公安一中单元检测)设集合A ={x |y =lg x },B ={y |y =lg x },则下列关系中正确的是()。
A.A ∪B =AB.A ∩B =⌀C.A =BD.A ⊆B 答案:D解析:由题意知集合A ={x |x >0},B ={y |y ∈R},所以A ⊆B 。
3.(2019·某某南安一中高一第二阶段考试)设函数f (x )={x 2+1,x ≤1,lgx ,x >1,则f (f (10))的值为()。
A.lg101B.1 C.2D.0 答案:C解析:f (f (10))=f (lg10)=f (1)=12+1=2。
4.(2019·东风汽车一中月考)下列函数是对数函数的是()。
A.y =log a (2x )B.y =lg10xC.y =log a (x 2+x )D.y =ln x 答案:D解析:由对数函数的定义,知D 正确。
5.(2019·某某调考)已知f (x )为对数函数,f (12)=-2,则f (√43)=。
答案:43解析:设f (x )=log a x (a >0,且a ≠1),则log a 12=-2,∴1a 2=12,即a =√2,∴f (x )=lo g √2x ,∴f (√43)=log √2√43=log 2(√43)2=log 2243=43。
6.(2019·某某中原油田一中月考)已知函数f (x )=log 3x ,则f (√3)=。
人教A版(2019)高中数学必修第一册第四章指数函数与对数函数单元测试卷

《第四章 指数函数与对数函数》测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )=log 2 (x 2-3x -4)的单调递减区间为( ) A .(-∞,-1)B .(-∞,-1.5)C .(1.5,+∞)D .(4,+∞)2.若函数(是自变量)是指数函数,则的取值范围是( ) A .且 B .且 C .且 D . 3.函数为增函数的区间是( ) A .B .C .D .4.已知函数y =log a (3-ax )在[0,1]上单调递减,则a 的取值范围是( ) A .(0,1) B .(1,3) C .(0,3)D .[3,+∞]5.若实数满足,则( ) A .B .C .D .6.已知定义域为R 的偶函数f (x )在(-∞,0]上单调递减,且f ( ) = 2,则不等式f (log 4x )>2的解集为( )A .(0, )∪(2,+∞)B .(2,+∞)C .(0, )∪( , + ∞ )D .(0, )7.三个数,,之间的大小关系是( )A .B .C .D .()21xy a =-x a 0a >1a ≠0a ≥1a ≠12a >1a ≠12a ≥2213x xy -+⎛⎫= ⎪⎝⎭[)1,-+∞(],1-∞-[)1,+∞(],1-∞,a b 3412a b ==11a b+=121516120.3a =0.32b =2log 0.3c =a c b <<c a b <<c b a <<b c a <<2121222228.已知函数,给出下述论述,其中正确的是( )A .当时,的定义域为B .一定有最小值C .当时,的值域为D .若在区间上单调递增,则实数的取值范围是二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.下列运算结果中,一定正确的是( ) A . B .CD10.已知函数,下面说法正确的有( )A .的图像关于原点对称B .的图像关于轴对称C .的值域为D .对于任意的,且,恒成立11.若,,则( ) A . B . C .D .12.已知函数f (x )=x 2-2x+a 有两个零点x 1,x 2,以下结论正确的是( ) A .a <1 B .若x 1≠x 2,则= C .f (-1)=f (3) D .函数y=f (∣x ∣)有四个零点三、填空题:本大题共4小题,每小题5分.()()2lg 1f x x ax a =+--0a =()f x R ()f x 0a =()f x R ()f x [)2,+∞a {}4|a a ≥-347a a a ⋅=()326a a -=a =π=-()2121x x f x -=+()f x ()f x y ()f x ()1,1-12,x x ∈R 12x x ≠()()12120f x f x x x -<-104a =1025b =2a b +=1b a -=281g 2ab >lg 6b a ->2x 11x 1+a213.当_________. 14.函数的值域是________.15.若,则________.16.函数的定义域为______,最小值为______.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)解下列方程.(1); (2(3).18.(12分)求下列函数的定义域、值域.(1); (2).19.(12分)(1)求函数的单调区间;(2)求函数的单调区间.2x <3=23x y -=1232494log 7log 9log log a ⋅⋅=a =()()212log 23f x x x =--+32381x -=256550x x -⨯+=313x xy =+421x xy =-+261712x x y -+⎛⎫=⎪⎝⎭21181722xxy ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭20. 已知函数.(1)当时,求函数的零点;(2)若有零点,求的取值范围。
人教新课标A版 高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷
人教新课标A版高中数学必修4 第一章三角函数 1.5 函数y=sin(wx+φ) 同步测试A卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2018高三上·黑龙江期中) 函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A . 向右平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向左平移个单位长度2. (2分)把函数的图象向右平移个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是()A .B .C .D .3. (2分) (2019高三上·临沂期中) 函数(其中)的图象如图所示,为了得到的图象,只需将图象()A . 向右平移个单位长度B . 向左平移个单位长度C . 向右平移个单位长度D . 向左平移个单位长度4. (2分)用“五点法”作y=2sin2x的图象是,首先描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,5. (2分) (2020高三上·兴宁期末) 由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后,所得图象对应的函数解析式为()A .B .C .D .6. (2分)函数在一个周期内的图象如图所示,则此函数的解析式是()A .B .C .D .7. (2分)要得到函数y=cos(2x+1)的图象,只需将函数y=cos2x的图象()A . 向左平移1个单位B . 向右平移1个单位C . 向左平移个单位D . 向右平移个单位8. (2分)已知函数f(x)=cos2x与g(x)=cosωx(ω>0)的图象在同一直角坐标系中对称轴相同,则ω的值为()A . 4B . 2C . 1D .9. (2分) (2017高一下·禅城期中) 三角函数y=sin(﹣2x)+cos2x的振幅和最小正周期分别为()A . ,B . ,πC . ,D . ,π10. (2分) (2016高一下·岳阳期中) 若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A . 5B . 4C . 3D . 211. (2分)用“五点法”作函数y=cos2x,x∈R的图象时,首先应描出的五个点的横坐标是()A . 0,,π,,2πB . 0,,,,πC . 0,π,2π,3π,4πD . 0,,,,12. (2分) (2016高三上·红桥期中) 函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A . 2,﹣B . 2,﹣C . 4,﹣D . 4,13. (2分)函数在区间上单调递减,且函数值从1减小到-1,那么此函数图象与y轴交点的纵坐标为()A .B .C .D .14. (2分)(2017·合肥模拟) 已知函数f(x)=Asin(ωx+ )﹣1(A>0,ω>0)的部分图象如图,则对于区间[0,π]内的任意实数x1 , x2 , f(x1)﹣f(x2)的最大值为()A . 2B . 3C . 4D . 615. (2分)(2020·海南模拟) 将函数的图象向左平移个单位长度后得到曲线,再将上所有点的横坐标伸长到原来的倍得到曲线,则的解析式为()A .B .C .D .二、填空题 (共5题;共5分)16. (1分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=________17. (1分)(2016·杭州模拟) 函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则函数表达式为________;若将该函数向左平移1个单位,再保持纵坐标不变,横坐标缩短为原来的倍得到函数g (x)=________.18. (1分) (2015高三上·河西期中) 已知角φ的终边经过点P(1,﹣2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于,则 =________.19. (1分)(2016·新课标Ⅲ卷理) 函数y=sinx﹣ cosx的图象可由函数y=sinx+ cosx的图象至少向右平移________个单位长度得到.20. (1分) (2017高一上·安庆期末) 已知函数f(x)=sin(ωx+φ+ )(ω>0,0<φ≤ )的部分图象如图所示,则φ的值为________.三、解答题 (共5题;共25分)21. (5分) (2019高一上·郁南月考) 已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(,)此点与相邻最低点之间的曲线与x轴交于点(,0)且φ∈(- ,)(1)求曲线的函数表达式;(2)用“五点法”画出函数在[0,2 ]上的图象.22. (5分) (2020高一上·武汉期末) 已知函数 .(1)用五点法画出该函数在区间的简图;(2)结合所画图象,指出函数在上的单调区间.23. (5分)已知函数y=sin(2x+ )+1.(1)用“五点法”画出函数的草图;(2)函数图象可由y=sinx的图象怎样变换得到?24. (5分) (2019高一下·蛟河月考) 函数的一段图像过点,如图所示.(1)求在区间上的最值;(2)若 ,求的值.25. (5分)(2017·黑龙江模拟) 某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:wx+φ0π2πxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O 最近的对称中心.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共5分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共25分)21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
人教版高中数学必修四第一章单元测试(一)及参考答案
人教版高中数学必修四第一章单元测试(一)及参考答案2018-201年必修四第一章训练卷三角函数(一)注意事项:1.答题前请填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上。
2.选择题请用2B铅笔将答案标号涂黑,非选择题请用签字笔直接答在答题卡上。
3.考试结束后,请将试题卷和答题卡一并上交。
一、选择题1.sin²120°等于( )A。
±33B。
2C。
±3/2D。
1/22.已知点P的坐标为(sin(3π/4)。
cos(3π/4)),则点P落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A。
π/4B。
3π/4C。
5π/4D。
7π/43.已知tanα=3/4,α∈(3π/2.2π),则cosα的值是( )A。
±4/5B。
±3/5C。
±5/4D。
±5/34.已知sin(2π-α)=4/5,α∈(2π/3.π),则sinα+cosα的值等于( )A。
1/7B。
-1/7C。
-7D。
75.已知函数f(x)=sin(2x+θ)的图象关于直线x=π/8对称,则θ可能取值是( )A。
π/2.3π/2B。
-π/4C。
4πD。
4π/36.若点P(sinα-cosα。
tanα)在第一象限,则在[0,2π)内α的取值范围是( )A。
(π/2.π)B。
(0.π/2)C。
(π/3.π/2)D。
(π/4.π/3)7.已知a是实数,则函数f(x)=1+asinax的图象不可能是( )A。
一条直线B。
一段正弦曲线C。
一段余弦曲线D。
一段正切曲线8.为了得到函数y=sin(2x+π/3)的图象向左平移π/12个单位,应该将x改为( )A。
2x+π/12B。
2x-π/12C。
2(x+π/12)D。
2(x-π/12)A.将函数y=cos2x的图象向右平移π/6个单位长度。
B.已知函数y=Asin(ωt+φ)的图象如右图所示,当t=1/100秒时,电流强度是5A。
高中数学 第一章 三角函数 5.1正弦函数的图像 新人教A版必修4-新人教A版高一必修4数学试题
§5 正弦函数的性质与图像 5.1 正弦函数的图像1.问题导航(1)用“五点法”作正弦函数图像的关键是什么?(2)利用“五点法”作y =sin x 的图像时,x 依次取-π,-π2,0,π2,π可以吗?(3)作正弦函数图像时应注意哪些问题? 2.例题导读P 27例1.通过本例学习,学会用五点法画函数y =a sin x +b 在[0,2π]上的简图. 试一试:教材P 28练习题你会吗?1.正弦函数的图像与五点法(1)图像:正弦函数y =sin x 的图像叫作正弦曲线,如图所示.(2)五点法:在平面直角坐标系中常常描出五个关键点(它们是正弦曲线与x 轴的交点和函数取最大值、最小值时的点):(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0),用光滑的曲线顺次将它们连接起来,得到函数y =sin x 在[0,2π]上的简图,这种画正弦曲线的方法为“五点法”.(3)利用五点法作函数y =A sin x (A >0)的图像时,选取的五个关键点依次是:(0,0),⎝ ⎛⎭⎪⎫π2,A ,(π,0),⎝ ⎛⎭⎪⎫32π,-A ,(2π,0). 2.正弦曲线的简单变换函数y =sin x 与y =sin x +k 图像间的关系.当k >0时,把y =sin x 的图像向上平移k 个单位长度得到函数y =sin x +k 的图像; 当k <0时,把y =sin x 的图像向下平移|k |个单位长度得到函数y =sin x +k 的图像.1.判断正误.(正确的打“√”,错误的打“×”) (1)函数y =sin x 的图像与y 轴只有一个交点.( )(2)函数y =sin x 的图像介于直线y =1与y =-1之间.( )(3)用五点法作函数y =-2sin x 在[0,2π]上的图像时,应选取的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,-2,(π,0),⎝ ⎛⎭⎪⎫32π,2,(2π,0).( ) (4)将函数y =sin x ,x ∈[-π,π]位于x 轴上方的图像保持不变,把x 轴下方的图像沿x 轴翻折到x 轴上方即可得到函数y =|sin x |,x ∈[-π,π]的图像.( )解析:(1)正确.观察正弦函数的图像知y =sin x 的图像与y 轴只有一个交点.(2)正确.观察正弦曲线可知正弦函数的图像介于直线y =1与y =-1之间.(3)正确.在函数y =-2sin x ,x ∈[0,2π]的图像上起关键作用的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,-2,(π,0),⎝ ⎛⎭⎪⎫32π,2,(2π,0). (4)正确.当x ∈[-π,π]时,y =|sin x |=⎩⎪⎨⎪⎧sin x ,sin x ≥0,-sin x ,sin x <0,于是,将函数y =sin x ,x ∈[-π,π]位于x 轴上方的图像保持不变,把x 轴下方的图像翻折到x 轴上方即可得函数y =|sin x |,x ∈[-π,π]的图像.答案:(1)√ (2)√ (3)√ (4)√2.用五点法画y =sin x ,x ∈[0,2π]的图像时,下列点不是关键点的是( ) A.⎝ ⎛⎭⎪⎫π6,12 B.⎝ ⎛⎭⎪⎫π2,1 C .(π,0) D .(2π,0)解析:选A.用五点法画y =sin x ,x ∈[0,2π]的图像,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0). 3.用五点法画y =sin x ,x ∈[0,2π]的简图时,所描的五个点的横坐标的和是________.解析:0+π2+π+3π2+2π=5π.答案:5π4.(1)正弦曲线在(0,2π]内最高点坐标为________,最低点坐标为________. (2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像形状________,位置________.(填“相同”或“不同”)解析:(1)由正弦曲线知,正弦曲线在(0,2π]内最高点为⎝ ⎛⎭⎪⎫π2,1,最低点为⎝ ⎛⎭⎪⎫3π2,-1.(2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像,形状相同,位置不同.答案:(1)⎝ ⎛⎭⎪⎫π2,1⎝ ⎛⎭⎪⎫3π2,-1 (2)相同 不同1.y =sin x ,x ∈[0,2π]与y =sin x ,x ∈R 的图像间的关系(1)函数y =sin x ,x ∈[0,2π]的图像是函数y =sin x ,x ∈R 的图像的一部分. (2)因为终边相同的角有相同的三角函数值,所以函数y =sin x ,x ∈[2k π,2(k +1)π],k ∈Z 且k ≠0的图像与函数y =sin x ,x ∈[0,2π]的图像形状完全一致,因此将y =sin x ,x ∈[0,2π]的图像向左、向右平行移动(每次移动2π个单位长度)就可得到函数y =sin x ,x ∈R 的图像.2.“几何法”和“五点法”画正弦函数图像的优缺点(1)“几何法”的实质是利用正弦线进行的尺规作图,这样作图较精确,但较为烦琐. (2)“五点法”的实质是在函数y =sin x 的一个周期内,选取5个分点,也是函数图像上的5个关键点:最高点、最低点及平衡点,这五个点大致确定了函数一个周期内图像的形状.(3)“五点法”是画三角函数图像的基本方法,在要求精确度不高的情况下常用此法,要切实掌握好.另外与“五点法”作图有关的问题经常出现在高考试题中.3.关于“五点法”画正弦函数图像的要点 (1)应用的前提条件是精确度要求不是太高. (2)五个点必须是确定的五点.(3)用光滑的曲线顺次连接时,要注意线的走向,一般在最高(低)点的附近要平滑,不要出现“拐角”现象.(4)“五点法”作出的是一个周期上的正弦函数图像,要得到整个正弦函数图像,还要“平移”.用五点法作正弦型函数的图像用五点法画函数y =2sin x -1,x ∈[0,2π]的简图. (教材P 27例1)[解] 步骤:①列表:x 0 π2 π 3π22π sin x 0 1 0 -1 0 y -1 1 -1 -3 -1②描点:在平面直角坐标系中描出下列五个点:(0,-1),⎝ ⎛⎭⎪⎫π2,1,(π,-1),⎝ ⎛⎭⎪⎫3π2,-3,(2π,-1). ③连线:用光滑曲线将描出的五个点连接起来,得函数y =2sin x -1,x ∈[0,2π]的简图,如图所示.方法归纳作形如函数y =a sin x +b ,x ∈[0,2π]的图像的步骤1.(1)函数f (x )=a sin x +b ,(x ∈[0,2π])的图像如图所示,则f (x )的解析式为( )A .f (x )=12sin x +1,x ∈[0,2π]B .f (x )=sin x +12,x ∈[0,2π]C .f (x )=32sin x +1,x ∈[0,2π]D .f (x )=32sin x +12,x ∈[0,2π](2)用五点法作出下列函数的简图. ①y =2sin x ,x ∈[0,2π]; ②y =2-sin x ,x ∈[0,2π].解:(1)选A.将图像中的特殊点代入f (x )=a sin x +b ,x ∈[0,2π],不妨将(0,1)与⎝ ⎛⎭⎪⎫π2,1.5代入得⎩⎪⎨⎪⎧a sin 0+b =1,a sin π2+b =1.5,解得b =1,a =0.5,故f (x )=12sin x +1,x ∈[0,2π].(2)①列表:x 0 π2 π 3π22π y =sin x 0 1 0 -1 0 y =2sin x 0 2 0 -2 0描点并将它们用光滑的曲线连接起来,如图所示.②列表:x 0 π2π 3π2 2π y =sin x 0 1 0 -1 0 y =2-sin x 2 1232描点并将它们用光滑的曲线连接,如图:利用正弦函数的图像求函数的定义域求函数f (x )=lg (sin x )+16-x 2的定义域. (教材P 30习题1-5 A 组T 4)[解] 由题意,x 满足不等式组⎩⎪⎨⎪⎧sin x >0,16-x 2≥0, 即⎩⎪⎨⎪⎧-4≤x ≤4,sin x >0,作出y =sin x 的图像,如图所示.结合图像可得:该函数的定义域为[-4,-π)∪(0,π).方法归纳一些三角函数的定义域可以借助函数图像直观地观察得到,同时要注意区间端点的取舍.有时利用图像先写出在一个周期区间上的解集,再推广到一般情况.2.求函数y =log 21sin x-1的定义域.解:为使函数有意义,需⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0⇔0<sin x ≤12.根据正弦曲线得,函数定义域为⎝ ⎛⎦⎥⎤2k π,2k π+π6∪⎣⎢⎡⎭⎪⎫2k π+5π6,2k π+π,k ∈Z .利用正弦函数的图像确定方程解的个数在同一坐标系中,作函数y =sin x 和y =lg x 的图像,根据图像判断出方程sinx =lg x 的解的个数.(教材P 30习题1-5 A 组T 1(1))[解] 建立坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图像,再依次向右连续平移2π个单位,得到y =sin x 的图像.作出y =lg x 的图像,如图所示.由图像可知方程sin x =lg x 的解有3个.若本例中的函数y =lg x 换为y =x 2,则结果如何?解:在同一直角坐标系中画出函数y =x 2和y =sin x 的图像,如图所示.由图知函数y =x 2和y =sin x 和图像有两个交点,则方程x 2-sin x =0有两个根.方法归纳方程根(或个数)的两种判断方法(1)代数法:直接求出方程的根,得到根的个数.(2)几何法:①方程两边直接作差构造一个函数,作出函数的图像,利用对应函数的图像,观察与x 轴的交点个数,有几个交点原方程就有几个根.②转化为两个函数,分别作这两个函数的图像,观察交点个数,有几个交点原方程就有几个根.3.(1)函数y =2sin x 与函数y =x 的图像的交点有( ) A .2个 B .3个 C .4个 D .5个 (2)研究方程10sin x =x (x ∈R )根的个数.解:(1)选B.在同一直角坐标系中作出函数y =2sin x 与y =x 的图像,由图像可以看出有3个交点.(2)如图所示,当x ≥4π时,x 10≥4π10>1≥sin x ;当x =52π时,sin x =sin 52π=1,x10=5π20,1>5π20,从而x >0时,有3个交点,由对称性知x <0时,有3个交点,加上x =0时的交点为原点,共有7个交点.即方程有7个根.思想方法数形结合思想的应用求满足下列条件的角的X 围.(1)sin x ≥12;(2)sin x ≤-22.[解] (1)利用“五点法”作出y =sin x 的简图,过点⎝ ⎛⎭⎪⎫0,12作x 轴的平行线,在[0,2π]上,直线y =12与正弦曲线交于⎝ ⎛⎭⎪⎫π6,12,⎝ ⎛⎭⎪⎫5π6,12两点.结合图形可知,在[0,2π]内,满足y ≥12时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π6≤x ≤5π6.因此,当x ∈R 时,若y ≥12,则x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π6≤x ≤2k π+56π,k ∈Z .(2)同理,满足sin x ≤-22的角的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪5π4+2k π≤x ≤74π+2k π,k ∈Z .[感悟提高] 形如sin x >a (<a )的不等式,求角x 的X 围,一般采用数形结合的思想来解题,具体步骤:(1)画出y =sin x 的图像,画直线y =a . (2)若解sin x >a ,则观察y =sin x 在直线y =a 上方的图像.这部分图像对应的x 的X围,就是所求的X 围.若解sin x <a ,则观察y =sin x 在直线y =a 下方的图像.这部分图像对应的x 的X 围,就是所求的X 围.1.函数y =1-sin x ,x ∈[0,2π]的大致图像是( )解析:选B.利用五点法画图,函数y =1-sin x ,x ∈[0,2π]的图像一定过点(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,1),⎝ ⎛⎭⎪⎫32π,2,(2π,1),故B 项正确. 2.已知点M ⎝ ⎛⎭⎪⎫π4,b 在函数f (x )=2sin x +1的图像上,则b =________. 解析:b =f ⎝ ⎛⎭⎪⎫π4=2sin π4+1=2. 答案:23.若函数f (x )=2sin x -1-a 在⎣⎢⎡⎦⎥⎤π3,π上有两个零点,则实数a 的取值X 围是________.解析:令f (x )=0得2sin x =1+a .作出y =2sin x 在x ∈⎣⎢⎡⎦⎥⎤π3,π上的图像,如图所示. 要使函数f (x )在⎣⎢⎡⎦⎥⎤π3,π上有两个零点,需满足3≤1+a <2,所以3-1≤a <1. 答案:[3-1,1),[学生用书单独成册])[A.基础达标]1.关于正弦函数y =sin x 的图像,下列说法错误的是( ) A .关于原点对称 B .有最大值1C .与y 轴有一个交点D .关于y 轴对称解析:选D.正弦函数y =sin x 的图像如图所示.根据y =sin x ,x ∈R 的图像可知A ,B ,C 均正确,D 错误. 2.函数y =sin x 的图像与函数y =-sin x 的图像关于( ) A .x 轴对称 B .y 轴对称 C .原点对称D .直线y =x 对称解析:选A.在同一直角坐标系中画出函数y =sin x 与函数y =-sin x 在[0,2π]上的图像,可知两函数的图像关于x 轴对称.3.下列函数图像相同的是( ) A .y =sin x 与y =sin(x +π)B .y =sin ⎝ ⎛⎭⎪⎫x -π2与y =sin ⎝ ⎛⎭⎪⎫π2-xC .y =sin x 与y =sin(-x )D .y =sin(2π+x )与y =sin x解析:选D.对A ,由于y =sin(x +π)=-sin x ,故排除A ;对B ,由于y =sin ⎝⎛⎭⎪⎫π2-x =-sin ⎝⎛⎭⎪⎫x -π2,故排除B ;对C ,由于y =sin(-x )=-sin x ,故排除C ;对D ,由于y=sin(2π+x )=sin x ,故选D.4.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析:选D .当x =-π2时,y =-sin ⎝ ⎛⎭⎪⎫-π2=1,故排除A 、B 、C ,选D . 5.函数y =x sin x 的部分图像是( )解析:选A .函数y =x sin x 的定义域为R ,令f (x )=x sin x ,则f (-x )=(-x )sin(-x )=x sin x =f (x ),知f (x )为偶函数,排除B 、D ;当x ∈⎝⎛⎭⎪⎫0,π2时,f (x )>0,故排除C ,故选A.6.在[0,2π]上,满足sin x ≥22的x 的取值X 围为________.解析:在同一直角坐标系内作出y =sin x 和y =22的图像如图,观察图像并求出交点横坐标,可得到x 的取值X 围为⎣⎢⎡⎦⎥⎤π4,34π.答案:⎣⎢⎡⎦⎥⎤π4,34π7.函数y =sin x 的图像和y =x2π的图像交点个数是________. 解析:在同一直角坐标系内作出两个函数的图像如图所示:由图可知交点个数是3. 答案:38.已知sin x =m -1且x ∈R ,则m 的取值X 围是________. 解析:由y =sin x ,x ∈R 的图像知,-1≤sin x ≤1, 即-1≤m -1≤1,所以0≤m ≤2. 答案:0≤m ≤29.用“五点法”画出函数y =3-sin x (x ∈[0,2π])的图像. 解:(1)x 0 π2 π 32π2π y =sin x 0 1 0 -1 0 y =3-sin x 3 2 3 4 3(2)10.若函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点,求k 的取值X 围.解:f (x )=⎩⎪⎨⎪⎧3sin x ,0≤x ≤π,-sin x ,π<x ≤2π,作出函数的图像如图:由图可知当1<k <3时函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点.[B.能力提升]1.若y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,2π3,则函数的值域为( )A.⎝⎛⎭⎪⎫22,1 B.⎣⎢⎡⎦⎥⎤22,1 C .(1,2]D .[1,2]解析:选B.画出函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,2π3的图像如图所示,可知y ∈⎣⎢⎡⎦⎥⎤22,1.2.设a >0,对于函数f (x )=sin x +asin x(0<x <π),下列结论正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值也无最小值解析:选B.f (x )=sin x +a sin x =1+asin x.因为0<x <π,所以0<sin x ≤1.所以1sin x≥1.所以1+asin x≥a +1.所以f (x )有最小值而无最大值. 故选B.3.已知f (sin x )=x 且x ∈⎣⎢⎡⎦⎥⎤0,π2,则f ⎝ ⎛⎭⎪⎫12=________.解析:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以sin x =12时,x =π6, 所以f ⎝ ⎛⎭⎪⎫12=f ⎝⎛⎭⎪⎫sin π6=π6. 答案:π64.若x 是三角形的最小角,则y =sin x 的值域是________.解析:不妨设△ABC 中,0<A ≤B ≤C ,得0<A ≤B ,且0<A ≤C ,所以0<3A ≤A +B +C ,而A +B +C =π,所以0<3A ≤π,即0<A ≤π3. 若x 为三角形中的最小角,则0<x ≤π3, 由y =sin x 图像知y ∈⎝ ⎛⎦⎥⎤0,32. 答案:⎝⎛⎦⎥⎤0,32 5.用“五点法”作出函数y =1-2sin x ,x ∈[-π,π]的简图,并回答下列问题:(1)观察函数图像,写出满足下列条件的x 的区间.①y >1;②y <1.(2)若直线y =a 与y =1-2sin x ,x ∈[-π,π]有两个交点,求a 的取值X 围. 解:列表如下:x -π -π2 0 π2π sin x 0 -1 0 1 01-2sin x 1 3 1 -1 1描点连线得:(1)由图像可知图像在y =1上方部分时y >1,在y =1下方部分时y <1,所以当x ∈(-π,0)时,y >1;当x ∈(0,π)时,y <1.(2)如图所示,当直线y =a 与y =1-2sin x 有两个交点时,1<a <3或-1<a <1. 所以a 的取值X 围是{a |1<a <3或-1<a <1}.6.(选做题)已知函数y =f (x )为奇函数,且是⎝ ⎛⎭⎪⎫-12,12上的减函数,f (1-sin α)+f (1-sin 2α)<0,求α的取值X 围.解:由题意可知f (1-sin α)<-f (1-sin 2α).因为f (x )是奇函数,所以-f (1-sin 2α)=f (sin 2α-1),所以f (1-sin α)<f (sin 2α-1).又由f (x )是⎝ ⎛⎭⎪⎫-12,12上的减函数, 所以⎩⎪⎨⎪⎧-12<1-sin α<12,-12<sin 2α-1<12,1-sin α>sin 2α-1,所以⎩⎪⎨⎪⎧12<sin α<32,12<sin 2α<32,sin 2α+sin α-2<0, 解得22<sin α<1, 所以2k π+π4<α<2k π+π2(k ∈Z )或2k π+π2<α<2k π+3π4(k ∈Z ), 所以α的取值X 围为⎝⎛⎭⎪⎫2k π+π4,2k π+π2∪⎝ ⎛⎭⎪⎫2k π+π2,2k π+3π4(k ∈Z ).。
新课标人教版高中A版数学目录(超详细完美版)
人教版高中数学A版目录新课标A版必修1•第一章集合与函数概念•第二章基本初等函数(Ⅰ)•第三章函数的应用•单元测试•综合专栏第一章集合与函数概念• 1.1集合• 1.2函数及其表示• 1.3函数的基本性质•实习作业•同步练习•单元测试•本章综合1.1集合• 1.1.1集合的含义与表示• 1.1.2集合间的基本关系• 1.1.3集合的基本运算•本节综合1.2函数及其表示• 1.2.1函数的概念• 1.2.2函数的表示法•本节综合1.3函数的基本性质• 1.3.1单调性与最大(小)值• 1.3.2奇偶性•本节综合实习作业同步练习单元测试本章综合第二章基本初等函数(Ⅰ)• 2.1指数函数• 2.2对数函数• 2.3幂函数•同步练习•单元测试•本章综合2.1指数函数• 2.1.1指数与指数幂的运算• 2.1.2指数函数及其性质•本节综合2.2对数函数• 2.2.1对数与对数运算• 2.2.2对数函数及其性质•本节综合2.3幂函数同步练习单元测试本章综合第三章函数的应用• 3.1函数与方程• 3.2函数模型及其应用•实习作业•同步练习•单元测试•本章综合3.1函数与方程• 3.1.1方程的根与函数的零点• 3.1.2用二分法求方程的近似解•本节综合3.2函数模型及其应用• 3.2.1几类不同增长的函数模型• 3.2.2函数模型的应用实例•本节综合实习作业同步练习单元测试本章综合单元测试综合专栏新课标A版必修2•第一章空间几何体•第二章点、直线、平面之间的位置关系•第三章直线与方程•第四章圆与方程•单元测试综合专栏第一章空间几何体• 1.1空间几何体的结构• 1.2空间几何体的三视图和直观图• 1.3空间几何体的表面积与体积•复习参考题•实习作业•同步练习•单元测试•本章综合•第二章点、直线、平面之间的位置关系• 2.1空间点、直线、平面之间的位置关系• 2.2直线、平面平行的判定及其性质• 2.3直线、平面垂直的判定及其性质•同步练习•单元测试•本章综合第三章直线与方程• 3.1直线的倾斜角与斜率• 3.2直线的方程• 3.3直线的交点坐标与距离公式•同步练习•单元测试•本章综合第四章圆与方程• 4.1圆的方程• 4.2直线、圆的位置关系• 4.3空间直角坐标系•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修3•第一章算法初步•第二章统计•第三章概率•单元测试•综合专栏第一章算法初步• 1.1算法与程序框图• 1.2基本算法语句• 1.3算法与案例•同步练习•单元测试•本章综合1.1算法与程序框图• 1.1.1算法的概念• 1.1.2程序框图和算法的逻辑结构•本节综合1.2基本算法语句• 1.2.1输入、输出、赋值语句• 1.2.2条件语句• 1.2.3循环语句•本节综合1.3算法与案例同步练习单元测试本章综合第二章统计• 2.1随机抽样• 2.2用样本估计总体• 2.3变量间的相关关系•实习作业•同步练习•单元测试•本章综合2.1随机抽样• 2.1.1简单随机抽样• 2.1.2系统抽样• 2.1.3分层抽样•本节综合2.2用样本估计总体• 2.2.1用样本的频率分布估计总体• 2.2.2用样本的数字特征估计总体•本节综合2.3变量间的相关关系• 2.3.1变量之间的相关关系• 2.3.2两个变量的线性相关•本节综合实习作业同步练习单元测试本章综合第三章概率• 3.1随机事件的概率• 3.2古典概型• 3.3几何概型•同步练习•单元测试•本章综合3.1随机事件的概率• 3.1.1随机事件的概率• 3.1.2概率的意义• 3.1.3概率的基本性质•本节综合3.2古典概型• 3.2.1古典概型• 3.2.2随机数的产生•本节综合3.3几何概型• 3.3.1几何概型• 3.3.2均匀随机数的产生•本节综合同步练习单元测试本章综合单元测试综合专栏新课标A版必修4•第一章三角函数•第二章平面向量•第三章三角恒等变换•单元测试•综合专栏第一章三角函数• 1.1任意角和弧度制• 1.2任意的三角函数• 1.3三角函数的诱导公式• 1.4三角函数的图象与性质• 1.5函数y=Asin(ωx+ψ)• 1.6三角函数模型的简单应用•同步练习•单元测试•本章综合第二章平面向量• 2.1平面向量的实际背景及基本概念• 2.2平面向量的线性运算• 2.3平面向量的基本定理及坐标表示• 2.4平面向量的数量积• 2.5平面向量应用举例•同步练习•单元测试•本章综合第三章三角恒等变换• 3.1两角和与差的正弦、余弦和正切公式• 3.2简单的三角恒等变换•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修5•第一章解三角形•第二章数列•第三章不等式•单元测试•综合专栏第一章解三角形• 1.1正弦定理和余弦定理• 1.2应用举例• 1.3实习作业•探究与发现解三角形的进一步讨论•同步练习•单元测试•本章综合第二章数列• 2.1数列的概念与简单表示法• 2.1等差数列• 2.3等差数列的前n项和• 2.4等比数列• 2.5等比数列的前n项和•同步练习•单元测试•本章综合第三章不等式• 3.1不等关系与不等式• 3.2一元二次不等式及其解法• 3.3二元一次不等式(组)与简单的线性• 3.4基本不等式:•同步练习•单元测试•本章综合单元测试综合专栏新课标A版选修一•新课标A版选修1-1•新课标A版选修1-2新课标A版选修1-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章导数及其应用•月考专栏•期中专栏•期末专栏•单元测试•综合专栏第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•单元测试•本章综合第二章圆锥曲线与方程• 2.1椭圆• 2.2双曲线• 2.3抛物线•同步练习•单元测试•本章综合第三章导数及其应用• 3.1变化率与导数• 3.2导数的计算• 3.3导数在研究函数中的应用• 3.4生活中的优化问题举例•同步练习•单元测试•本章综合月考专栏期中专栏期末专栏单元测试新课标A版选修1-2•第一章统计案例•第二章推理与证明•第三章数系的扩充与复数的引入•第四章框图•月考专栏•期中专栏•期末专栏•单元测试•本章综合点击这里展开-- 查看子节点索引目录,更精确地筛选资料!第一章统计案例• 1.1回归分析的基本思想及其初步应用• 1.2独立性检验的基本思想及其初步应用•实习作业•同步练习•综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明•同步练习•综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•综合第四章框图• 4.1流程图• 4.2结构图•同步练习•综合月考专栏期中专栏期末专栏单元测试本章综合新课标A版选修二•新课标人教A版选修2-1•新课标人教A版选修2-2•新课标人教A版选修2-3新课标人教A版选修2-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章空间向量与立体几何•单元测试•本册综合第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•本章综合第二章圆锥曲线与方程• 2.1曲线与方程• 2.2椭圆• 2.3双曲线• 2.4抛物线•同步练习•本章综合第三章空间向量与立体几何• 3.1空间向量及其运算• 3.2立体几何中的向量方法•同步练习•本章综合单元测试本册综合新课标人教A版选修2-2•第一章导数及其应用•第二章推理与证明•第三章数系的扩充与复数的引入•单元测试•本册综合第一章导数及其应用• 1.1变化率与导数• 1.2导数的计算• 1.3导数在研究函数中的应用• 1.4生活中的优化问题举例• 1.5定积分的概念• 1.6微积分基本定理• 1.7定积分的简单应用•同步练习•本章综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明• 2.3数学归纳法•同步练习•本章综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•本章综合单元测试本册综合新课标人教A版选修2-3•第一章计数原理•第二章随机变量及其分布•第三章统计案例•单元测试•本册综合第一章计数原理• 1.1分类加法计数原理与分步乘法计.• 1.2排列与组合• 1.3二项式定理•同步练习•本章综合第二章随机变量及其分布• 2.1离散型随机变量及其分布列• 2.2二项分布及其应用• 2.3离散型随机变量的均值与方差• 2.4正态分布•同步练习•本章综合第三章统计案例• 3.1回归分析的基本思想及其初步应用• 3.2独立性检验的基本思想及其初步•本章综合•同步练习单元测试本册综合新课标A版选修三•新课标A版选修3-1•新课标A版选修3-3•新课标A版选修3-4新课标A版选修3-1•第一讲早期的算术与几何•第二讲古希腊数学•第三讲中国古代数学瑰宝•第四讲平面解析几何的产生•第五讲微积分的诞生•第六讲近代数学两巨星•第七讲千古谜题•第八讲对无穷的深入思考•第九讲中国现代数学的开拓与发展•单元测试•本册综合第一讲早期的算术与几何•一古埃及的数学•二两河流域的数学•三丰富多彩的记数制度•同步练习•本章综合第二讲古希腊数学•一希腊数学的先行者•二毕达哥拉斯学派•三欧几里得与《原本》•四数学之神──阿基米德•同步练习•本章综合第三讲中国古代数学瑰宝•一《周髀算经》与赵爽弦图•二《九章算术》•三大衍求一术•四中国古代数学家•同步练习•本章综合第四讲平面解析几何的产生•一坐标思想的早期萌芽•二笛卡儿坐标系•三费马的解析几何思想•四解析几何的进一步发展•同步练习•本章综合第五讲微积分的诞生•一微积分产生的历史背景•二科学巨人牛顿的工作•三莱布尼茨的“微积分”•同步练习•本章综合第六讲近代数学两巨星•一分析的化身──欧拉•二数学王子──高斯•同步练习•本章综合第七讲千古谜题•一三次、四次方程求根公式的发现•二高次方程可解性问题的解决•三伽罗瓦与群论•四古希腊三大几何问题的解决•同步练习•本章综合第八讲对无穷的深入思考•一古代的无穷观念•二无穷集合论的创立•三集合论的进一步发展与完善•同步练习•本章综合第九讲中国现代数学的开拓与发展•一中国现代数学发展概观•二人民的数学家──华罗庚•三当代几何大师──陈省身•同步练习•本章综合单元测试本册综合新课标A版选修3-3•第一讲从欧氏几何看球面•第二讲球面上的距离和角•第三讲球面上的基本图形•第四讲球面三角形•第五讲球面三角形的全等•第六讲球面多边形与欧拉公式•第七讲球面三角形的边角关系•第八讲欧氏几何与非欧几何•单元测试•本册综合第一讲从欧氏几何看球面•一平面与球面的位置关系•二直线与球面的位置关系和球幂定理•三球面的对称性•同步练习•本章综合第二讲球面上的距离和角•一球面上的距离•二球面上的角•同步练习•本章综合第三讲球面上的基本图形•一极与赤道•二球面二角形•三球面三角形•同步练习•本章综合第四讲球面三角形•一球面三角形三边之间的关系•二、球面“等腰”三角形•三球面三角形的周长•四球面三角形的内角和•同步练习•本章综合第五讲球面三角形的全等•1.“边边边”(s.s.s)判定定理•2.“边角边”(s.a.s.)判定定理•3.“角边角”(a.s.a.)判定定理•4.“角角角”(a.a.a.)判定定理•同步练习•本章综合第六讲球面多边形与欧拉公式•一球面多边形及其内角和公式•二简单多面体的欧拉公式•三用球面多边形的内角和公式证明欧拉公式•同步练习•本章综合第七讲球面三角形的边角关系•一球面上的正弦定理和余弦定理•二用向量方法证明球面上的余弦定理•三从球面上的正弦定理看球面与平面•四球面上余弦定理的应用──求地球上两城市间的距离•同步练习•本章综合第八讲欧氏几何与非欧几何•一平面几何与球面几何的比较•二欧氏平行公理与非欧几何模型──庞加莱模型•三欧氏几何与非欧几何的意义•同步练习•本章综合单元测试本册综合新课标A版选修3-4•第一讲平面图形的对称群•第二讲代数学中的对称与抽象群的概念•第三讲对称与群的故事•综合专栏•单元测试第一讲平面图形的对称群•平面刚体运动•对称变换•平面图形的对称群•同步练习•本章综合第二讲代数学中的对称与抽象群的概念•n元对称群S•多项式的对称变换•抽象群的概念•同步练习•本章综合第三讲对称与群的故事•带饰和面饰•化学分子的对称群•晶体的分类•伽罗瓦理论•同步练习•本章综合综合专栏单元测试新课标A版选修四•新课标人教A版选修4-1•选修4-2•新课标A版选修4-4•新课标A版选修4-5新课标人教A版选修4-1•第一讲相似三角形的判定及有关性质•第二讲直线与圆的位置关系•第三讲圆锥曲线性质的探讨•单元测试•本册综合第一讲相似三角形的判定及有关性质•一平行线等分线段定理•二平行线分线段成比例定理•三相似三角形的判定及性质•四直角三角形的射影定理•同步练习•本章综合第二讲直线与圆的位置关系•一圆周角定理•二圆内接四边形的性质与判定定理•三圆的切线的性质及判定定理•四弦切角的性质•五与圆有关的比例线段•同步练习•本章综合第三讲圆锥曲线性质的探讨•一平行射影•二平面与圆柱面的截线•三平面与圆锥面的截线•同步练习•本章综合单元测试本册综合选修4-2•第一讲线性变换与二阶矩阵•第二讲变换的复合与二阶矩阵的乘法•第三讲逆变换与逆矩阵•第四讲变换的不变量与矩阵的特征向量•单元测试•本册综合第一讲线性变换与二阶矩阵•一线性变换与二阶矩阵•二二阶矩阵与平面向量的乘法•三线性变换的基本性质•同步练习•本章综合第二讲变换的复合与二阶矩阵的乘法•一复合变换与二阶短阵的乘法•二矩阵乘法的性质•同步练习•本章综合第三讲逆变换与逆矩阵•一逆变换与逆矩阵•二二阶行列式与逆矩阵•三逆矩阵与二元一次方程组•同步练习•本章综合第四讲变换的不变量与矩阵的特征向量•一变换的不变量---矩阵的特征向量•二特征向量的应用•同步练习•本章综合单元测试本册综合新课标A版选修4-4•第一章坐标系•第二章参数方程•单元测试•本册综合第一章坐标系• 1.1直角坐标系、平面上的伸缩变换• 1.2极坐标系• 1.3曲线的极坐标方程• 1.4圆的极坐标方程• 1.5柱坐标系与球坐标系•同步练习•本章综合第二章参数方程• 2.1曲线的参数方程• 2.2直线和圆的参数方程• 2.3圆锥曲线的参数方程• 2.4一些常见曲线的参数方程•同步练习•本章综合单元测试本册综合新课标A版选修4-5•第一讲不等式和绝对值不等式•第二讲讲明不等式的基本方法•第三讲柯西不等式与排序不等式•第四讲数学归纳法证明不等式•单元测试•本册综合第一讲不等式和绝对值不等式•一不等式•二绝对值不等式•单元测试•本章综合第二讲讲明不等式的基本方法•一比较法•二综合法与分析法•三反证法与放缩法•单元测试•本章综合第三讲柯西不等式与排序不等式•一二维形式的柯西不等式•二一般形式的柯西不等式•三排序不等式•单元测试•本章综合第四讲数学归纳法证明不等式•一数学归纳法•二用数学归纳法证明不等式•单元测试•本章综合单元测试本册综合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省亭旁中学高一数学(下)月考试卷
答案做在答题卷上 满分150分 时间120分
一、选择题(共10小题,每小题5分)
1.下面四个命题正确的是 ( ) (A). 第一象限角必是锐角 (B).小于90的角是锐角 (C).若cos 0α<,则α是第二或第三象限角 (D).锐角必是第一象限角
2.如果1
cos()2
A π+=-,那么sin()2A π+的值是 ( )
(A ).12- (B )12 (C )33
3.下列四式不能化简为AD 的是 ( )
A .;)++(BC CD A
B B .);+)+(+(CM B
C M B AD
C .;-+BM A
D M B D .;+-CD OA OC
4、如果点)cos 2,cos (sin θθθP 位于第三象限,那么角θ所在象限是( )
A、第一象限 B 、第二象限 C 、第三象限 D 、第四象限
5.为了得到函数sin(2)3
y x π
=-的图像,只需把函数sin(2)6y x π
=+的图像( )
(A )向左平移
4π个长度单位 (B )向右平移4π
个长度单位 (C )向左平移2π个长度单位 (D )向右平移2
π
个长度单位
6. 函数sin(3)4
y x π
=-
的图象是中心对称图形,其中它的一个对称中心是 ( )
(A ) .,012π⎛⎫- ⎪⎝⎭ (B ). 7,012π⎛⎫
- ⎪⎝⎭
(C ). 7,012π⎛⎫ ⎪⎝⎭ (D ). 11,012π⎛⎫ ⎪⎝⎭ 7. 已知x 2sin )x (tan f =,则)1(-f 的值是( ) A 1 B 1- C
2
1
D 0 8.已知3sin 5m m θ-=+,524cos +-=m m θ,其中,2πθπ⎡⎤∈⎢⎥⎣⎦
,则θtan 的值为( ) (A ).125-
(B ). 125 (C). 12
5
- 或43- (D). 与m 的值有关
9..函数)(x f y =的图象如图所示,则)(x f y =的解析式为( )
A.22sin -=x y
B.13cos 2-=x y
C.1)52sin(--=πx y
D. )5
2sin(1π
--=x y
10.定义在R 上的偶函数()f x ,满足(2)()f x f x +=,且()f x 在[]3,2--上是减函数
,
又
,αβ是锐角三角形的两个内角, 则
( )
(A).(sin )(cos )f f αβ> (B). (cos )(cos )f f αβ< (C). (sin )(cos )f f αβ< (D). (sin )(sin )f f αβ<
二、填空题(共7小题,每小题4分) 11、计算:_____4
tan sin 6sin 213
cos 4
tan
422
2
=⋅++
-π
πππ
π
12.一个扇形的弧长与面积的数值都是4,这个扇形中心角的弧度数是________
13、不等式0tan 31≥+x 的解集是 . 14.若AD =(3,4),则与AD 共线的单位向量为
15、函数])3
2
,6[)(8cos(πππ
∈-
=x x y 的最小值是 16. 函数]0,[)(6
2sin(2ππ-∈+=x x y 的单调递减区间是 17 关于函数f (x )= 4 sin ⎪⎭⎫ ⎝
⎛
+3π2x (x ∈R ),有下列命题:
①函数 y = f (x )的表达式可改写为y = 4cos (2x - π
6
);
②函数 y = f (x )是以2π为最小正周期的周期函数;
③函数 y = f (x )的图象关于点⎪⎭⎫
⎝⎛-0 6π,对称; ④函数 y = f (x )的图象向左平移 π
6
个单位得f (x )= 4cos 2x
其中正确的是
三、解答题(共7小题,10+8+8+8+14+12+12) 18.化简:(10
分)(Ⅰ)
)
sin()3sin()cos()
99tan()cos()2sin(πααπαππαπαπα-----+- ;
10π 20
7π o
x
y 2 1
(Ⅱ))()
cos()
sin(Z n n n ∈-+απαπ
19.(8分)已知梯形ABCD 中,AB ∥CD ,且AB=2CD ,M 、N 分别是DC 和AB 的中点,
如图,若AB =a ,AD =b ,试用a ,b 表示BC 和MN 。
20.(8分)已知e 1,e 2是两个不共线的向量,AB =e 1+e 2,CB =-λe 1-8e 2,CD =3e 1-3e 2, 若A 、B 、D 三点在同一条直线上,求实数λ的值.
21. (8分)已知0≤x ≤
2
π
,求函数y =sin 2 x + cos x 的最值
22.(14分)(1)已知2
sin sin 1x x +=,求
24cos cos x x +的值 (2)已知在ABC ∆中,1sin cos 5
A A +=
①求
sin cos A A
②判断ABC ∆是锐角三角形还是钝角三角形 ③求tan A 的值
23.(本小题12分)已知函数)2
||,0,0)(sin()(π
ϕωωϕω<
>>+=A x A x f 在一个周
期内的图象如下图所示。
(1)求函数的解析式;
(2)设π<<x 0,且方程m x f =)(有两个不同的实数根,求实数m 的取值范围和这两个根的和。
.
24.(12分)某港口水的深度y (米)是时间t (240≤≤t ,单位:时)的函数,记作y=f(t), 下t/h 0 3 6 9 12 15 18 21 24 y/m
经常期观察,y=f(t)的曲线可以近似得看成函数b t A y +=ωsin 的图象, (1)试根据以上的数据,求出函数y=f(t)的近似表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5m 或5m 以上时认为是安全的,某船吃水深度(船底离水面的距离)为,试求一天内船舶安全进出港的时间。
高一数学(下)月考试题
答题卡
一、选择题(共10小题,每小题5分)
O 1211π x y 2 1 -2
题号 1 2 3 4 5 6 7 8 9 10 答案
二、填空题(共7小题,每小题4分)
13._______________________
15._______________________
三、解答题(共7小题,10+8+8+8+14+12+12)) 18.(10分)
19.(8分) 班级 姓名 座位号
20.(8分)21.(8分)
22.(14分)
23.(12分)
24.(12分)
高一数学
(下)月考试题
答案
一.选择题DBCBB BBADA
二.填空题8 13.},2
6
/{Z k k x k x ∈+<
≤+-
ππ
ππ
14.(,)或(—,—) π6 16.[—5π6 ,—6π
]
17.
三.解答题
18. (1)1/cosa (2)tan a 19.= — =—
20.λ=2 21.最小值1,最大值2 22.(1).1 (2)—12/25,钝角三角形,—4/3
23. 解:(1)显然A =2,
又图象过(0,1)点,1)0(=∴f , 21sin =∴ϕ,6
,2||π
ϕπϕ=∴< ; 由图象结合“五点法”可知,)0,12
11(
π
对应函数x y sin =图象的点(0,2π), ππ
πω26
1211=+⋅
∴,得2=ω. 所以所求的函数的解析式为:)6
2sin(2)(π
+
=x x f .
(2)如图所示,在同一坐标系中画出
)6
2sin(2π
+
=x y 和m y =(R m ∈)的图象,
由图可知,当2112<<<<-m m 或时,直线m y =与曲线有两个不同的交点,即原方程有两个不同的实数根。
∴m 的取值范围为:2112<<<<-m m 或;
当12<<-m 时,两根和为π/3;当21<<m 时,两根和为4π/3 24 解:(1) 106
sin 3+=t y π
.; (2) 1时至5时,13时至17时.
O 6π 125π 3
2π π x y 2 1
-2。