2013年广州黄埔区中考数学模拟试题
2013年广州中考数学一模试题及答案

(第9题图)A B C D2013年中考数学一模试题第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.3-的相反数是( )A .3B .3-C .13-D .132.广州市发改委最近发布2010-2011年《广州经济社会形势与展望》白皮书中指出:今年全年重点建设项目完成投资82 600 000 000元。
这个数用科学记数法表示为( ) A .9106.82⨯元B .101026.8⨯元C .1110826.0⨯ 元D .以上三种表示都正确 3.下列图案中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.若∠A =34°,则∠A 的余角的度数为( )A .54°B .56°C .146°D .66°5.已知一次函数1+=kx y ,若y 随x 的增大而减小,则该函数的图象经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限6.如图,DE 是ABC ∆的中位线,则ADE ∆与ABC ∆的面积之比是( ) A .1:2 B .1:4 C .1:3D .2:17.下列运算正确的是( ) A .24±= B .336a a a += C .9132=-D .222)(n m n m -=-8.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能...是( )9.如图,BD 是⊙O 的直径,CBD ∠=30,则∠A 的度数为( ) A .30B .45C .60D .7510.已知关于x 的方程xkx =+12有一个正的实数根, 则k 的取值范围是( ) A .k <0 B .k >0C .k ≤0D .k ≥0第二部分(非选择题 共120分)(第18题图)二、填空题(本大题共6小题,每小题3分,满分18分.)11.函数=y x 的取值范围是 .12.某班50名学生在一次考试中,分数段在90~100分的频率为0.1,•则该班在这个分数段的学生有_________人.13.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是14.方程组⎩⎨⎧=+=-836032y x y x 的解是 .15.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若ABC ∆与△111A B C 是位似图形, 且顶点都在格点上,则位似中心的坐标是 . 16.观察下列的等式:39211==-(即3×1)331089221111==-(即3×11) 333110889222111111==-(即3×111)由此猜想=-4434421L 444344421L2011402222211111 .三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式x 23-≤12x+.18.(本小题满分9分)如图,已知平行四边形ABCD .(1)用直尺和圆规作出ADC ∠的平分线DE ,交AB 于点E ,(保留作图痕迹,不要求写作法); (2)求证:AD AE =.19.(本小题满分10分)已知0142=+-a a ,求代数式)2)(2(2)2(2-+-+a a a 的值.20.(本小题满分10分)如下图,小红袋子中有4张除数字外完全相同的卡片,小明袋子中有3张除数字外完全相同的卡片,若先从小红袋子中抽出一张数字为a 的卡片,再从小明袋子中抽出一张数字为b 的卡片,两张卡片中的数字,记为),(b a 。
2013年广州中考数学模拟试题题型 (7)

- 1 -锻炼时间(h DCBA2013年广州中考数学模拟试题题型101、己知1纳米=0.000000001米,则27纳米用科学记数法.....表示为( ). A. 27×10-9 B. 2.7×10-8 C. 2.7×10-9 D. -2.7×1082、期中考试后,小波的讲义夹里放了8K 大小的试卷纸共12页,其中语文4页、数学2页、英语6页,他随机从讲义夹中抽出1页,是数学卷的概率是( ).A.21 B. 31 C. 61 D. 1213、下列多项式中,完全平方式是 ( )A .22--x x B .22+-x x C .122--x x D .122+-x x 4、折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处. 若AB =38, ∠B =30°, 则DE 的长是( ).A. 6B. 4C. 34D. 235、为了解毕业班学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.那么关于该班45名同学一周参加体育锻炼时间的说法错误的是( ) A .众数是9 B .中位数是9C .平均数是9D .锻炼时间不低于9小时的有14人6、分解因式:3654a a -=7、在函数y =中,自变量x 的取值范围是_________8、 AB 是⊙O 的直径,C 、D 是圆上的两点(不与A 、B 重合),BC =2 cm ,tan ∠ADC=1,则AB =______.9、如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的, ,依此类推,则由正n 边形“扩展”而来的多边形的边数为______.10、在甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为__________.11、求值:0112sin 602-⎛⎫+- ⎪⎝⎭12、化简求值:a a a a a a a ÷--++--22121222,其中12+=a 。
2013年历年广州市初三数学中考一模试题及答案

广州市初三级数学科第一次模拟考试(考试时间: 120分钟,满分:150 分。
) 一、选择题(每小题3分,共30分) 1.-3的绝对值是( ) A.13 B.13- C.3 D.3- 2.下列运算中正确的是( )A.326a a a = B.347()a a = C.632a a a ÷= D.5552a a a +=3.据人民网5月20日电报道:中国森林生态系统年涵养水源量4947.66亿立方米,相当于12个三峡水库2009年蓄水至175米水位后库容量,将4947.66亿.用科学记数法表示为( )A.134.9476610⨯ B.124.9476610⨯ C.111094766.4⨯ D.104.9476610⨯ 4.如图,将ABC △绕点C 顺利针方向旋转40︒得A CB ''△,若AC A B ''⊥,则BAC ∠等于( )A.50︒ B.60︒ C.70︒ D.80︒5.如图,已知梯形ABCD 的中位线为EF ,且AEF △的面积为26cm ,则梯形ABCD 的面积为( )A.212cm B.218cm C.224cm D.230cm 6.下列命题中,正确命题的序号是( ) ①一组对边平行且相等的四边形是平行四边形 ②一组邻边相等的平行四边形是正方形 ③对角线相等的四边形是矩形 ④对角互补的四边形内接于圆A.①② B.②③ C.③④ D.①④7.一组数据2、1、5、4的方差和中位数分别是( ) A .2.5和2 B .1.5和3 C .2.5和3 D .1.5和28.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .1a >- B .10a a >-≠且第4题图 第5题图C .1a <-D .12a a <-≠-且9.如图是四棱锥(底面是矩形,四条侧棱等长),则它的俯视图是( )10.如图,已知Rt ΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( )A .84π5 B .24π C .168π5D .12π二.填空题(每小题3分,共18分) 11.分解因式:2327a -=_____________. 12.函数2x y -=的自变量x 的取值范围是__________.13.如图,在平面直角坐标系中,点A 的坐标 为(1,4),将线段O A 绕点O 顺时针旋转90°得到 线段OA′,则点A′的坐标是 .14.如图5所示,AB 是O ⊙的直径,弦DC 与AB 相交于点E ,若50ACD ∠=°,则DAB ∠_____________.15.如图6所示,某班上体育课,甲、乙两名同学分别站在C 、D 的位置时,乙的影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距____________米.16.已知函数1+-=x y 的图象与x 轴、y 轴分ACB第10题图A .B .C .D .第9题图y xA B C DO别交于点C 、B ,与双曲线xky =交于点A 、D , 若AB+CD= BC ,则k 的值为 .三、解答题(共102分)17、(9分)计算:10122cos60(32π)2-⎛⎫-+-+- ⎪⎝⎭°18、(9分)先化简,再求值:2211()11a a a a++÷--,其中2a =19、(10分)如图,点P 在平行四边形ABCD 的CD 边上,连结BP 并延长与AD 的延长线交于点Q .(1)求证:DQP ∆∽CBP ∆;(2)当DQP ∆≌CBP ∆,且8=AB 时,求DP 的长.20、(10分)今年“五一”假期,某数学活动小组组织一次登山活动.他们从山脚下A 点出发沿斜坡AB 到达B 点,再从B 点沿斜坡BC 到达山顶C 点,路线如图所示.斜坡AB 的长为1040米,斜坡BC 的长为400米,在C 点测得B 点的俯角为30°,已知A 点海拔121米,C 点海拔721米.(1)求B 点的海拔;(2)求斜坡AB 的坡度.21.(12分)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品品牌型号、价格甲乙型号 A B C D E 单价(元/台)60004000250050002000(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A 型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A 型号电脑可以是多少台?22.(12分)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.⑴求2008年底至2010年底该市汽车拥有量的年平均增长率;⑵为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011年初起每年新增汽车数量最多不超过多少万辆.23、(12分)如图,BD 为⊙O 的直径,AB =AC ,AD 交B C 于点E ,AE =2,ED =4, (1)求证:△ABE ∽△ADB ;(2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接FA ,试判断直线FA 与⊙O 的位置关系,并说明理由.24、(14分)如图,在Rt ABC △中,906024BAC C BC ∠=∠==°,°,,点P 是BC 边上的动点(点P 与点B C 、不重合),过动点P 作PD BA ∥交AC 于点D . (1)若ABC △与DAP △相似,则APD ∠是多少度?(2)试问:当PC 等于多少时,APD △的面积最大?最大面积是多少?(3)若以线段AC 为直径的圆和以线段BP 为直径的圆相外切,求线段BP 的长.25、(14分)已知:m 、n 是方程2650x x -+=的两个实数根,且m<n ,抛物线2y x bx c=-++的图像经过点A(m ,0)、B(0,n). (1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.60°A D C BP ODCEAFB答案一、选择题(本大题共10题,每题3分,共30分)题号 1 2 3 4 5 67 8 9 10 答案CDCACDCDCA二、填空题(本大题共6题,每题3分,共18分.注:答案不正确、不完整均不给分) 11. ()()333-+a a 12.2x ≥且3x ≠13.(4,-1)14. 40° 15. 116.43-三、解答题(本大题共9题,共102分) 17、(9分)解:原式122212=+-⨯+ ……8分(每算对一个给2分) 4=. ……9分 18、(9分)解:原式=()()()()21111111a a a a a a a⎡⎤++-⨯⎢⎥+-+-⎢⎥⎣⎦………………………4分=211a -. ………………………7分 当2a =时, 原式=1121=-.………………………9分 19、(10分)(1)证明: Θ四边形ABCD 是平行四边形,∴AB ∥CD , ∴∠QDC=∠C . ………………………4分 又∠DPQ=∠BPC , ∴△DQP ∽△CBP . ………………………5分 (2) 当△DQP ≌△CBP 时,PQ=PB ,所以P 是QB 的中点.又DP ∥AB ,所以DP 是△ABQ 的中位线.所以DP=21AB=4. 解法二:Θ△DQP ≌△CBP , ∴ DP=CP=21DC . ………………………7分Θ四边形ABCD 是平行四边形,∴AB=CD . ………………………9分∴ DP= 21AB =4. ………………………10分20、(10分)解:(1)过点C 作CF ⊥AM ,F 为垂足,过点B 作BE ⊥AM ,BD ⊥CF ,E 、D 为垂足. ……1分∵在C 点测得B 点的俯角为30°,∴∠CBD =30°,…………………………………2分 又∵BC =400米,∴CD =400×sin 30°=400×12=200(米)……………4分∴B 点的海拔为721-200=521(米………………5分(2)∵BE =521-121=400(米),AB =1040米,…………………6分∴960AE =(米). ………………………8分∴AB 的坡度400596012AB BE i AE ===,…………………………………………9分 所以斜坡AB 的坡度为1:2.4. …………………………………………………10分 21、(12分)解:(1)树状图如下:…………………3分共有6种选购方案:(,)A D 、(B ,D )、(C ,D )、(A ,E )、(B ,E )、(C ,E ).1(.3P A 型号被选中)= …………………5分(2) 设购买A 型号x 台,由(1)知当选用方案(,)A D 时:由已知9200060005000(36)100000x x +-≤≤ …………………7分得8880x --≤≤,不符合题意. …………………8分 当选用方案()A E ,时,由已知:9200060002000(36)100000x x +-≤≤ …………………10分得57.x ≤≤ …………………11分 答:购买A 型号电脑可以是5台,6台或7台. …………………12分 22、(12分)解:(1)设2008年底至2010年底该市汽车拥有量的年平均增长率是x ,……1分 根据题意,75(1+x )2=108……………………………………………………4分 1+x=±1.2∴x 1=0.2=20% x 2=﹣2.2(不合题意,舍去)……………………………5分 答:2008年底至2010年底该市汽车拥有量的年平均增长率是20%…………6分 (2)设从2011年初起每年新增汽车数量为y 万辆,由题意得: ……………7分(108×0.9+y )×0.9+y≤125.48…………………………………………………10分 解得y≤20答:从2011年初起每年新增汽车数量最多不超过2023、(12分) 解:(1)证明:∵AB =AC ,∴∠ABC =∠C .…………1分∵∠C =∠D ,∴∠ABC =∠D . …………2分又∵∠BAE =∠EAB ,∴△ABE ∽△ADB .………3分 (2)∵△ABE ∽△ADB , ∴AB AEAD AB=, …………4分 ∴2()(24)2=12AB AD AE AE ED AE ==+=+⨯,··……5分(3)直线FA 与⊙O 相切,理由如下:…………………7分 连接OA ,∵BD 为⊙O 的直径,∴∠BAD =90°,…………………8分∴BD ==BF =BO=12BD =10分 ∵AB=90BF BO AB OAF ===o ,可证∠,…………………11分 ∴直线FA 与⊙O 相切. …………………12分 24、(14分)解:(1)当△ABC 与△DAP 相似时,∠APD 的度数是60°或30°.…………………2分 (2)设PC x =,∵PD BA ∥,90BAC ∠=°,∴90PDC ∠=°, 又∵60C ∠=°,∴24cos6012AC ==g °,1cos602CD x x ==g °, ∴1122AD x =-,而sin 60PD x ==g°, ∴11112222APD S PD AD x x ⎛⎫==- ⎪⎝⎭g g g △ …………………4分22(24)12)88x x x =--=--+.…………………6分 ∴PC 等于12时,APD △的面积最大,最大面积是8分 (3)设以BP 和AC 为直径的圆心分别为1O 、2O ,过 2O 作 2O E BC ⊥于点E , 设1O ⊙的半径为x ,则2BP x =.显然,12AC =,∴26O C =,∴6cos603CE ==g °,∴2O E ==,124321O E x x =--=-,…………………10分又∵1O ⊙和2O ⊙外切, ∴126O O x =+.在12Rt O O E △中,有2221221O O O E O E =+,∴222(6)(21)x x +=-+,…………………12分 解得:8x =, ∴216BP x ==.…………………14分 25、(14分)解:(1)解方程2650x x -+=,得125,1x x ==…………………1分 由m<n ,有m =1,n =5所以点A 、B 的坐标分别为A (1,0),B (0,5).…………………2分60AD CBPO 2O 1 E。
2013黄浦区中考数学一模试卷及答案

A B C D B CA 黄浦区2012学年度第一学期九年级期终考试数 学 试 卷 2013年1月17日(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1. 如果△ABC ∽△DEF (其中顶点A 、B 、C 依次与顶点D 、E 、F 对应),那么下列等式中不一定成立的是(A )A D ∠=∠(B )A DB E ∠∠=∠∠ (C )AB =DE (D )AB DEAC DF=2. 如图,地图上A 地位于B 地的正北方,C 地位于B 地的北偏东︒50方向,且C 地到A 地、B 地的距离相等,那么C 地位于A 地的(A )南偏东︒50方向 (B )北偏西︒50方向(C )南偏东︒40方向(D )北偏西︒40方向3. 将抛物线2y x =向左平移2个单位,则所得抛物线的表达式是(A )()22+=x y (B )()22-=x y (C )22+=x y (D )22-=x y4. 如图,△PQR 在边长为1个单位的方格纸中,它的顶点在小正方形顶点位置,其中点A 、B 、C 、D 也是小正方形的顶点,那么与△PQR 相似的是(A )以点P 、Q 、A 为顶点的三角形 (B )以点P 、Q 、B 为顶点的三角形 (C )以点P 、Q 、C 为顶点的三角形 (D )以点P 、Q 、D 为顶点的三角形(第2题) (第4题) (第6题) 5. 抛物线232y x x =+-与坐标轴(含x 轴、y 轴)的公共点的个数是(A )0 (B )1 (C )2 (D )36. 如图,在△ABC 中,∠ACB =90︒,CD 为边AB 上的高,已知BD =1,则线段AD 的长是 (A )sin 2A (B )cos 2A (C )tan 2A (D )cot 2A 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】B C P D A · R Q · · ·D EO B A 7. 已知74x y =,则x y x y +-的值为 ▲ .8. 计算:()()23a b a b -++= ▲ .9. 已知两个相似三角形的周长比为2∶3,且其中较大三角形的面积是36,那么其中较小三角形的面积是▲ .(第10题) (第11题) (第17题)10. 如图,第一象限内一点A ,已知OA =5,OA 与x 轴正半轴所成的夹角为α,且2tan =α,那么点A 的坐标是 ▲ . 11. 如图,某人沿一个坡比为1∶3的斜坡(AB )向前行走了10米,那么他实际上升的垂直高度是 ▲ 米. 12. 抛物线322++=x x y 的顶点坐标是 ▲ .13. 如果抛物线()a x x a y ++-=322的开口向下,那么a 的取值范围是 ▲ .14. 若1x 、2x 是方程04322=--x x 的两个根,则2121x x x x ++⋅的值为 ▲ . 15. 已知二次函数()y f x =图像的对称轴是直线2x =,如果()()34f f >,那么 ()3f - ▲ ()4f -. (填“>”或“<”) 16. 已知点P 是二次函数224y x x =-+图像上的点,且它到y 轴的距离为2,则点P 的坐标是 ▲ .17. 如图,E 是正方形ABCD 边CD 的中点,AE 与BD 交于点O ,则tan AOB ∠= ▲ .18. 在Word 的绘图中,可以对画布中的图形作缩放,如下图1中正方形ABCD (边AB 水平放置)的边长为3,将它在“设置绘图画布格式→大小→缩放”中,高度设定为75%,宽度设定为50%,就可以得到下图2中的矩形1111A B C D ,其中11350% 1.5A B =⨯=,11375% 2.25A D =⨯=.实际上Word 的内部是在画布上建立了一个以水平线与竖直线为坐标轴的平面直角坐标系,然后赋予图形的每个点一个坐标(),x y ,在执行缩放时,是将每个点的坐标作变化处理,即由(),x y 变为()%,%x n y m ⨯⨯,其中%n 与%m 即为设定宽度与高度的百分比,最后再由所得点的新坐标生成新图形. O x yA αA 1 D C 1AD⇒ MON ⇒A BC D现在画布上有一个△OMN ,其中90O ∠=︒,MO NO =,且斜边MN 水平放置(如图3),对它进行缩放,设置高度为150%,宽度为75%,得到新图形为△O 1M 1N 1(如图4),那么111cos O M N ∠的值为 ▲ .(图1) (图2) (图3) (图4)三、解答题:(本大题共7题,满分78分) 19. (本题满分10分)计算:222sin 60cos 60cot 304cos 45︒-︒︒-︒.20. (本题满分10分,第(1)、(2)小题满分各5分)如图,点E 是平行四边形ABCD 边BC 上一点,且BE ∶EC =2∶1,点F 是边CD 的中点,AE 与BF交于点O .(1)设a AB =,b AD =,试用a 、b 表示AE ; (2)求BO ∶OF 的值.21. (本题满分10分)已知二次函数的图像经过点()8,0-与()5,3-,且其对称轴是直线1x =.求此二次函数的解析式,并求出此二次函数图像与x 轴公共点的坐标.22. (本题满分10分,第(1)、(2)小题满分各5分)如图,在△ABC 中,90C ∠=︒,4AC =,6BC =,点D 是边BC 上一点, 且CAD B ∠=∠.(1)求线段CD 的长;(2)求sin BAD ∠的值. M 1O 1N 1 B OE DFA23. (本题满分12分,第(1)、(2)小题满分各6分)如图,点D 是Rt △ABC 斜边AB 上一点,点E 是直线AC 左侧一点,且EC ⊥CD , ∠EAC =∠B .(1)求证:△CDE ∽△CBA ;(2)如果点D 是斜边AB 的中点,且23tan =∠BAC ,试求CBA CDE S S ∆∆的值.(CDE S ∆表示△CDE 的面积, CBA S ∆表示△CBA 的面积)24. (本题满分12分,第(1)、(2)、(3)小题满分各4分)已知二次函数32++=bx ax y 的图像与x 轴交于点A ()0,1与B ()0,3,交y 轴于点C ,其图像顶点为D .(1)求此二次函数的解析式;(2)试问△ABD 与△BCO 是否相似?并证明你的结论;(3)若点P 是此二次函数图像上的点,且PAB ACB ∠=∠, 试求点P 的坐标.25. (本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) 如图,在等腰梯形ABCD 中,AD ‖BC ,AD =2,AB =5,53sin =∠B ,点E 是边BC 上的一个动点(不与点B 、C 重合),作∠AEF =∠AEB ,使边EF 交边CD 于点F (不与点C 、D 重合),设BE=x ,CF=y .(1)求边BC 的长;(2)当△ABE 与△CEF 相似时,求BE 的长; E D C A O xy(3)求y 关于x 的函数关系式,并写出定义域.(备用图)黄浦区2012学年度第一学期九年级期终考试数学参考答案与评分标准一、选择题1.C 2.A 3.A 4.B 5.D 6.D 二、填空题 7.1138.5a b + 9.16 10.5,251110 12.()1,2- 13.2a < 14.12- 15.> 16.()()2,4,2,12- 17.3 185三、解答题19.解:原式()2231222342⨯-⎝⎭-⨯(4分)31242322⨯--(3分) D B CA DB CA FE322-(1分)=322+--------------------------------------------------------------------------(2分) 20.解:(1)∵BE ∶EC =2∶1,∴2233BE BC b ==,-----------------------------------------------------------(2分) ∴AE AB BE =+=23a b +.--------------------------------------------------(3分)(2)作FG ‖BC 交AE 于点G ,------------------------------------------------------(1分)∵点F 是边CD 的中点,∴FG 是梯形ECDA 的中位线,设EC =k ,BE =2 k ,则AD =3 k ,∴FG =2 k ,--------------------------------------------------------------------------(2分)∴BO ∶OF = BE ∶FG =1∶1, --------------------------------------------------(1分) ∴BO ∶OF 的值为1. -------------------------------------------------------------(1分) 21.解:设二次函数解析式为2y ax bx c =++,----------------------------------------------(1分)则859312c a b c b a ⎧⎪-=⎪-=++⎨⎪⎪-=⎩,------------------------------------------------------------------(3分) 解得128a b c =⎧⎪=-⎨⎪=-⎩,----------------------------------------------------------------------------(3分)∴二次函数解析式为228y x x =--.-------------------------------------------------(1分) 令2280x x --=,------------------------------------------------------------------------(1分) 解得122,4x x =-=,∴图像与x 轴公共点为()2,0-与()4,0.----------------------------------------------(1分)22.解:(1)∵,C C CAD B ∠=∠∠=∠,∴△CDA ∽△CAB ,----------------------------------------------------------------(2分) ∴CD CACA CB=,----------------------------------------------------------------------(1分)∴2246CA CD CB ===83.----------------------------------------------------------(2分) (2)作BH ⊥AD ,垂足为H ,-------------------------------------------------------------(1分) 在Rt △ACD 中,22413AD AC CD =+=-------------------------------(1分) 在Rt △ABC 中,22213AB AC BC =+=--------------------------------(1分)∵∠H =∠C ,∠ADC =∠BDH , ∴△ADC ∽△BDH , ∵BH AC BD AD =,即1010133134133BH ==---------------------------(1分) ∴在Rt △ABH 中,5sin 13BH BAH AB ∠==.----------------------------------(1分) 23.解:(1)∵EC ⊥CD ,ACB ∠为直角,∴ACE BCD ∠=∠,又∠EAC =∠B ,∴△CAE ∽△CBD ,-----------------------------------------------------------------(2分)∴CA CBCE CD=,又∠ACB =∠ECD ,----------------------------------------------(2分) ∴△CDE ∽△CBA . ------------------------------------------------------------------(2分) (2)∵23tan =∠BAC , ∴32CB CA =,----------------------------------------------------------------------------(2分) 令CB =3k ,CA =2k , 则2213AB AC BC k =+=.--------------------------------------------------(1分)又点D 是斜边AB 的中点, ∴1132CD AB ==.------------------------------------------------------------(1分) ∵△CDE ∽△CBA ,∴21336CDE CBA S CD S CB ∆∆⎛⎫== ⎪⎝⎭.----------------------------------------------------------(2分) 24.解:(1)由题意知309330a b a b ++=⎧⎨++=⎩,-------------------------------------------------------(2分)解得14a b =⎧⎨=-⎩,------------------------------------------------------------------------(1分)所以二次函数解析式是243y x x =-+.----------------------------------------(1分)(2)△ABD 与△BCO 相似.由(1)知:()0,3C ,()2,1D -.-----------------------------------------------(1分) 于是2,2AB AD BD ===32,3BC OB OC ===,即DA DB ABOB OC BC==,--------------------------------------------------------------(2分) 所以△ABD 与△BCO 相似. -------------------------------------------------------(1分)(3)设()2,43P x x x -+,作PQ ⊥x 轴,垂足为Q ,作AH ⊥BC ,垂足为H . 易知△ABH 为等腰直角三角形,则2AH BH ==由PAB ACB ∠=∠,90AQP CHA ∠=∠=︒,所以△APQ 与△CAH 相似,-------------------------------------------------------(2分) 于是PQ AHAQ CH=, 即243112x x x -+=-, 解得1257,22x x ==, 所以点P 的坐标为53,24⎛⎫-⎪⎝⎭或75,24⎛⎫⎪⎝⎭.-----------------------------------------(2分) 25.解:(1)作AH ⊥BC ,垂足为H ,------------------------------------------------------------(1分)在Rt △ABH 中,AB =5,53sin =∠B , 则sin 3AH AB B =⋅∠=,224BH AB AH =-=,--------------------(2分)由等腰梯形ABCD 知,BC=AD +2BH=10. --------------------------------------(1分) (2)由题意知,∠B=∠C ,当△ABE 与△CEF 相似时,∠BEA=∠CEF 或∠BEA=∠CFE ,----------(1分) ①当∠BEA=∠CEF 时,又∠BEA=∠AEF ,∠BEA +∠AEF +∠CEF =180︒, 即∠BEA=60︒.于是在Rt △AEH 中,cot 3cot 603EH AH AEH =⋅∠=︒=,所以BE=BH +HE =43+--------------------------------------------------------(2分) ②当∠BEA=∠CFE 时,又∠BEA=∠AEF , 即∠CFE=∠AEF ,则AE ‖DC ,又AD ‖BC , 所以四边形ADCE 为平行四边形,则CE=AD=2,于是BE=BC -CE =8. ---------------------------------------------------------------(2分) (3)延长EF 交AD 的延长线于点P ,作PQ ⊥AE ,垂足为Q , ∵AD ‖BC ,∴∠BEA=∠EAP ,又 ∠BEA=∠AEF ,∴∠EAP=∠AEP ,∴12AQ AE =. 又∵∠EHA=∠AQP =90︒, ∴△AHE ∽△PQA ,∴AP EA AQ EH =,即()282524AQ EA x x AP EH x ⋅-+==-.-------------------------(2分) 又∵AD ‖BC ,∴CF CEDF PD=, 即()2108255224y xx x y x -=-+---, 解得22101404001639x x y x x -+=-+,定义域为410x <<.-----------------------(3分)。
2013年广州市中考数学模拟试卷(二)

2013年广东省广州市中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)2.(3分)(2013•广州二模)函数y=的自变量x的取值范围是()....5.(3分)(2013•广州二模)方程的解为()6.(3分)(2013•广州二模)如图,△ABC为⊙O的内接三角形,∠OBC=50°,则∠A等于()2.C D.10.(3分)(2013•广州二模)已知Rt△ABC的斜边AB=5cm,直角边AC=4cm,BC=3cm,以直线AB为轴旋转一二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2013•广州二模)七边形的内角和为_________度,外角和为_________度.12.(3分)(2013•广州二模)化简:•=_________.13.(3分)(2013•广州二模)已知△ABC中,D、E分别是AB、AC边的中点,则=_________.14.(3分)(2013•广州二模)一个不透明的袋子里装有3个红球,4个黄球,5个白球,每个球除颜色外其它都相同,搅匀后随机从中摸出一个球是黄球的概率是_________.15.(3分)(2013•广州二模)将点A(0,6)绕着原点顺时针方向旋转60°得到点B,则点B的坐标为_________(结果用根号表示).16.(3分)(2013•广州二模)如图,正方形ABCD、DEFG、FHIJ在直线MN的同一侧,点B、C、E、H、I均在直线MN上,正方形ABCD、FHIJ的面积分别为13、23,则正方形DEFG的面积为_________.三、解答题(本大题共9小题,满分102分.)17.(9分)(2013•广州二模)解方程:=+118.(9分)(2013•广州二模)如图,E、F分别是矩形ABCD的边AD、BC上的点,且AE=CF.求证:四边形EBFD 为平行四边形.19.(10分)(2013•广州二模)为提高同学们体育运动水平,增强体质,九年毕业年级规定:每周三下午人人参与1小时体育运动.项目有篮球、排球、羽毛球和乒乓球.下面是九年(2)班某次参加活动的两个不完整统计图(图1和图2).根据图中提供的信息,请解答以下问题:(1)九年(2)班共有多少名学生?(2)计算参加乒乓球运动的人数,并在条形统计图(图1)中,将表示“乒乓球”的部分补充完整;(3)求出扇形统计图中“羽毛球”扇形圆心角的度数.20.(10分)(2004•杭州)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年运输的总收入为72万元,需要支出的各种费用为40万元.(1)问该船运输第几年开始盈利?(盈利即指总收入减去购船费及所有支出费用之差为正值)(2)若该船运输满15年要报废,报废时旧船卖出可收回5万元,求这15年的年平均盈利额(精确到0.1万元).21.(12分)(2011•白云区模拟)如图,⊙O是△ABC外接圆,直径AB=12,∠A=2∠B.(1)∠A=_________°,∠B=_________°;(2)求BC的长(结果用根号表示);(3)连接OC并延长到点P,使CP=OC,连接PA,画出图形,求证:PA是⊙O的切线.22.(12分)(2013•广州二模)如图,在平面直角坐标系中,直线l是第二、四象限的角平分线.(1)实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(﹣2,0),请在图中分别标明B(﹣1,5)、C(3,2)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;(2)归纳与发现:结合图观察以上三组点的坐标,你会发现坐标平面内任一点P(a,b)关于第二、四象限的角平分线l的对称点P'的坐标为_________(不必证明);(3)运用与拓展:已知两点D(﹣1,﹣3)、E(2,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出点Q的坐标.23.(12分)(2013•广州二模)如图,是反比例函数的图象,且k是一元二次方程x2+x﹣6=0的一个根.(1)求方程x2+x﹣6=0的两个根;(2)确定k的值;(3)若m为非负实数,对于函数,当x1=m+1及x2=m+2时,说明y1与y2的大小关系.24.(14分)(2013•广州二模)如图,直线AM∥BN,AE、BE分别平分∠MAB、∠NBA.(1)∠AEB的度数为_________;(2)请证明(1)中你所给出的结论;(3)过点E任作一线段CD,使CD交直线AM于点D,交直线BN于点C,线段AD、BC、AB三者间有何等量关系?试证明你的结论.25.(14分)(2003•黄冈)已知经过A、B、C三点的二次函数图象如图所示.(1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t取值范围;(3)将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.2013年广东省广州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)2.(3分)(2013•广州二模)函数y=的自变量x的取值范围是()....5.(3分)(2013•广州二模)方程的解为()6.(3分)(2013•广州二模)如图,△ABC为⊙O的内接三角形,∠OBC=50°,则∠A等于()A=2.C D.=10.(3分)(2013•广州二模)已知Rt△ABC的斜边AB=5cm,直角边AC=4cm,BC=3cm,以直线AB为轴旋转一CD==为半径的圆的周长ππ×π二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)(2013•广州二模)七边形的内角和为900度,外角和为360度.12.(3分)(2013•广州二模)化简:•=4a2.13.(3分)(2013•广州二模)已知△ABC中,D、E分别是AB、AC边的中点,则=.的中位线,所以=故答案为14.(3分)(2013•广州二模)一个不透明的袋子里装有3个红球,4个黄球,5个白球,每个球除颜色外其它都相同,搅匀后随机从中摸出一个球是黄球的概率是.个球,从中摸出一个球是黄球的概率是=.15.(3分)(2013•广州二模)将点A(0,6)绕着原点顺时针方向旋转60°得到点B,则点B的坐标为(3,3)(结果用根号表示).,16.(3分)(2013•广州二模)如图,正方形ABCD、DEFG、FHIJ在直线MN的同一侧,点B、C、E、H、I均在直线MN上,正方形ABCD、FHIJ的面积分别为13、23,则正方形DEFG的面积为36.三、解答题(本大题共9小题,满分102分.)17.(9分)(2013•广州二模)解方程:=+118.(9分)(2013•广州二模)如图,E、F分别是矩形ABCD的边AD、BC上的点,且AE=CF.求证:四边形EBFD 为平行四边形.19.(10分)(2013•广州二模)为提高同学们体育运动水平,增强体质,九年毕业年级规定:每周三下午人人参与1小时体育运动.项目有篮球、排球、羽毛球和乒乓球.下面是九年(2)班某次参加活动的两个不完整统计图(图1和图2).根据图中提供的信息,请解答以下问题:(1)九年(2)班共有多少名学生?(2)计算参加乒乓球运动的人数,并在条形统计图(图1)中,将表示“乒乓球”的部分补充完整;(3)求出扇形统计图中“羽毛球”扇形圆心角的度数.20.(10分)(2004•杭州)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年运输的总收入为72万元,需要支出的各种费用为40万元.(1)问该船运输第几年开始盈利?(盈利即指总收入减去购船费及所有支出费用之差为正值)(2)若该船运输满15年要报废,报废时旧船卖出可收回5万元,求这15年的年平均盈利额(精确到0.1万元).21.(12分)(2013•广州二模)如图,⊙O是△ABC外接圆,直径AB=12,∠A=2∠B.(1)∠A=60°,∠B=30°;(2)求BC的长(结果用根号表示);(3)连接OC并延长到点P,使CP=OC,连接PA,画出图形,求证:PA是⊙O的切线.AB=65=622.(12分)(2013•广州二模)如图,在平面直角坐标系中,直线l是第二、四象限的角平分线.(1)实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(﹣2,0),请在图中分别标明B(﹣1,5)、C(3,2)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;(2)归纳与发现:结合图观察以上三组点的坐标,你会发现坐标平面内任一点P(a,b)关于第二、四象限的角平分线l的对称点P'的坐标为(﹣b,﹣a)(不必证明);(3)运用与拓展:已知两点D(﹣1,﹣3)、E(2,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出点Q的坐标.的交点,解方程组:解方程组:得,﹣)23.(12分)(2013•广州二模)如图,是反比例函数的图象,且k是一元二次方程x2+x﹣6=0的一个根.(1)求方程x2+x﹣6=0的两个根;(2)确定k的值;(3)若m为非负实数,对于函数,当x1=m+1及x2=m+2时,说明y1与y2的大小关系.24.(14分)(2013•广州二模)如图,直线AM∥BN,AE、BE分别平分∠MAB、∠NBA.(1)∠AEB的度数为90°;(2)请证明(1)中你所给出的结论;(3)过点E任作一线段CD,使CD交直线AM于点D,交直线BN于点C,线段AD、BC、AB三者间有何等量关系?试证明你的结论.25.(14分)(2003•黄冈)已知经过A、B、C三点的二次函数图象如图所示.(1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为s,求s与t之间的函数关系式及自变量t取值范围;(3)将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.﹣,),)坐标代入其中,﹣x+3﹣﹣(﹣t+;x+2x+m﹣x.(,(﹣,﹣)或(,(﹣,﹣)。
【VIP专享】黄埔区2013年4月份11日二模数学中考考试试卷和答案

1. 本试卷含三个大题,共 25 题;
黄浦区 2013 年九年级学业考试模拟考
(时间 100 分钟,满分 150 分)
数学试卷
2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律;
3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的
6、如图, E 、 F 分别是平行四边形 ABCD 边 BC 、 CD 的中点, AE 、 AF 交 BD 于点 G 、 H ,若 △ AGH
的面积为 1,则五边形 CEGHF 的面积是( )
A.1
二、填空题(本大题共 12 题,每题 4 分,满分 48 分)
7、计算 a6 a3
8、分解因式: x3 x2 x 1
主要步骤。
一、选择题(本大题共 6 题,每题 4 分,满分 24 分)
1、一件衬衫原价是 90 元,现在打八折出售,那么这件衬衫现在的售价是(
A. 82 元
2、下列二次根式中, 2 的同类根式是(
A. 4
3、方程 x2 2x 3 0 的实数根的个数是(
A.3
B. 80 元
B. 6
B. 2
C.72 元
)
)
B
C. x 3
D.18 元
D. 10
D. 0
A G
(升 6 升 )
2013.4.11
E
D. x 3
)
D H
F
C
5、我们把两个能够完全重合的图形称为全等图形,则下列命题中真命题是( ) A.有一条边长对应相等的两个矩形是全等图形 B.有一个内角对应相等的两个菱形是全等图形 C.有两条对角线对应相等的两个矩形是全等图形 D.有两条对角线对应相等的两个菱形是全等图形
2013年广东省中考数学模拟试卷

2013年广东省中考数学模拟试卷(二十二)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)计算的结果是()2.(3分)(2010•荆州)在电子显微镜下测得一个圆球体细胞的直径是5×10﹣5cm,2×103个这样的细胞排成的细胞4.(3分)(2009•湛江)沃尔玛商场为了了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示,根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()5.(3分)如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()7.(3分)不等式组的解集在数轴上可表示为(). B . ..8.(3分)均匀地向一个如图所示的容器中注水,最后把容器注满,在注水的过程中水面的高度h 随时间t 变化的函数图象大致是( ).CD .9.(3分)(2010•台湾)如图为一个平行四边形ABCD ,其中H 、G 两点分别在BC 、CD 上,AH ⊥BC ,AG ⊥CD ,且AH 、AC 、AG 将∠BAD 分成∠1、∠2、∠3、∠4四个角.若AH=5,AG=6,则下列关系何者正确( )10.(3分)(2007•舟山)如图,正三角形ABC 内接于圆O ,动点P 在圆周的劣弧AB 上,且不与A ,B 重合,则∠BPC 等于( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.(4分)若x+=2,则x= _________ 或 _________ .12.(4分)(2011•岳阳)分解因式:a 4﹣1= _________ . 13.(4分)(2010•虹口区一模)在△ABC 中,∠C=90°,AB=4,AC=1,则cosA 的值是 _________ .14.(4分)已知,则= _________ .15.(4分)如果一个多边形的每一个外角都等于30°,那么这个多边形是 _________ 边形.16.(4分)(2010•江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是_________.三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2010•长沙)计算:.18.(5分)(2010•汕头)先化简,再求值,其中x=.19.(5分)(2007•双柏县)如图,在某建筑物AC上,挂着“多彩贵州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为60°,求宣传条幅BC 的长.(小明的身高不计,结果精确到0.1米)四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?21.(8分)(1)如图所示,若反比例函数解析式为y=,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)M1的坐标是_________.(2)请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得k﹦_________,若点P的坐标为(m,0)时,则b﹦_________;(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.22.(8分)(2011•威海)甲乙二人玩一个游戏:每人分别抛掷一个质地均匀的小立方体(每个面分别标有数字1,2,3,4,5,6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜,你认为这个游戏公平吗?试说明理由.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求+的值.2点A(x1,y1)、B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,试判断y1与y2的大小关系.24.(9分)以△ABC的两边AB、AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当△ABC为直角三角形时,AM与DE的位置关系是_________,线段AM与DE的数量关系是_________;(2)将图①中的等腰Rt△ABD绕点A沿逆时针方向旋转θ°(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.25.(9分)(2009•龙岩)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连接BC、AD.(1)求C点的坐标及抛物线的解析式;(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1:3两部分?若存在,求出P点坐标;若不存在,请说明理由.2013年广东省中考数学模拟试卷(二十二)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)计算的结果是()(为正整数)可算出(=(2.(3分)(2010•荆州)在电子显微镜下测得一个圆球体细胞的直径是5×10﹣5cm,2×103个这样的细胞排成的细胞=|a|(==4.(3分)(2009•湛江)沃尔玛商场为了了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示,根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()5.(3分)如图,我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图中我国四大银行的商标图案中轴对称图形的是()=27.(3分)不等式组的解集在数轴上可表示为().B...,∴在数轴上表示为8.(3分)均匀地向一个如图所示的容器中注水,最后把容器注满,在注水的过程中水面的高度h随时间t变化的函数图象大致是().C D.9.(3分)(2010•台湾)如图为一个平行四边形ABCD,其中H、G两点分别在BC、CD上,AH⊥BC,AG⊥CD,且AH、AC、AG将∠BAD分成∠1、∠2、∠3、∠4四个角.若AH=5,AG=6,则下列关系何者正确()10.(3分)(2007•舟山)如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于()二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)若x+=2,则x=2或.,12.(4分)(2011•岳阳)分解因式:a4﹣1=(a2+1)(a+1)(a﹣1).13.(4分)(2010•虹口区一模)在△ABC中,∠C=90°,AB=4,AC=1,则cosA的值是.cosA=.故答案为:14.(4分)已知,则=.===k===故答案为:15.(4分)如果一个多边形的每一个外角都等于30°,那么这个多边形是十二边形.16.(4分)(2010•江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是±3.三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2010•长沙)计算:.;18.(5分)(2010•汕头)先化简,再求值,其中x=.•时,原式.19.(5分)(2007•双柏县)如图,在某建筑物AC上,挂着“多彩贵州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为60°,求宣传条幅BC 的长.(小明的身高不计,结果精确到0.1米)×四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?千克.本题的等量关系为:)﹣21.(8分)(1)如图所示,若反比例函数解析式为y=,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)M1的坐标是(﹣1,2).(2)请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得k﹦﹣1,若点P的坐标为(m,0)时,则b﹦m;(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.y=的图象上,故=3+﹣=3+,)3+﹣22.(8分)(2011•威海)甲乙二人玩一个游戏:每人分别抛掷一个质地均匀的小立方体(每个面分别标有数字1,2,3,4,5,6),落定后,若两个小立方体朝上的数字之和为偶数,则甲胜;若两个小立方体朝上的数字之和为奇数,则乙胜,你认为这个游戏公平吗?试说明理由.=.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求+的值.2点A(x1,y1)、B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,试判断y1与y2的大小关系.﹣﹣=+==24.(9分)以△ABC的两边AB、AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当△ABC为直角三角形时,AM与DE的位置关系是AM⊥DE,线段AM与DE的数量关系是DE=2AM;(2)将图①中的等腰Rt△ABD绕点A沿逆时针方向旋转θ°(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.AM=FBAM=AM=25.(9分)(2009•龙岩)如图,抛物线y=x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连接BC、AD.(1)求C点的坐标及抛物线的解析式;(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1:3两部分?若存在,求出P点坐标;若不存在,请说明理由.x x+2,得﹣x x+2••(S,解得;S,解得;,)或(,。
2013年广东省中考数学模拟试题(一)和答案

2013年广东省中考全真模拟试题(一)一、选择题(本大题5小题,每小题3分,共15分) 1. 下列各式中与2是同类二次根式是()ABCD2.已知点(,3)A a -是点(2,)B b -关于原点O 的对称点,则a +b 的值为( )A 、6B 、5-C 、5D 、6±3.下列汽车标志中,是中心对称图形的是( )A. B.C D4.用配方法解一元二次方程2430x x -+=时可配方得( )A.2(2)7x -= B.2(2)1x -= C.2(2)1x += D.2(2)2x += 5.如图,O ⊙是ABC △的外接圆,已知50ABO ∠=°,则ACB ∠的大小为( )A .40°B .30°C .45°D .50°二、填空题(本大题5小题,每小题4分,共20分). 6的平方根是 .7.方程x (x -1)=2(x -1)的解为 .8.如图2,⊙O 的直径为10cm ,圆心O 到弦AB 的距离OM 的长为3cm ,则弦AB 的 长是 。
9.已知点P 到⊙O 的最近距离是3cm 、最远距离是7cm ,则此圆的半径是 。
10.如上图,PA 、PB 分别切⊙O 于A 、B ,PA=10cm ,C 是劣弧AB 是的点(不 与点A 、B 重合),过点C 的切线分别交PA 、PB 于点E 、F 。
则△PEF 的周长为 .(第5题)图2三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:20100(1)|(2-+---12.解方程: x(x-2)+x-2=013.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC ① 将△ABC 向x 轴正方向平移5个单位得△A 1B 1C 1,② 再以O 为旋转中心,将△A 1B 1C 1旋转180°得△A 2B 2C 2,画出平移和旋转后的图形,并标明对应字母.14.求值:()x x x x x 224422+÷+++,其中x =2.15.关于x 的一元二次方程230x x k --=有两个不相等的实数根. (1)求k 的取值范围.(2)请选择一个k 的负整数值,并求出方程的根.四、解答题(二)(本大题4小题,每小题7分,共28分)16. 2010年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署,为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2010年当年用于城市基础设施维护与建设资金达到8.45亿元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年黄埔区初中毕业生综合测试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟. 注意事项:1.答卷前,考生务必在答题卡第1面.第3面上用黑色字迹的钢笔或签字笔填写自己的考生号.姓名;填写座位号,再用2B 铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔.圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卡上交,本试卷自留.第一部分 选择题(共30分)一.选择题(每小题3分,共30分)1.实数-1,-3,0,2四个数中,最小的是( * ). (A )0 (B )-1 (C )2 (D )-3 2.如下左几何体的主视图是( * ).3.下列计算正确的是( * ).(A )ab b a 22=+ (B )1)-1--=a a ((C )523a a a =⋅ (D )326a a a =÷ 4.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( * ).(A )l ,2,3 (B )2,4,8 (C )3,7,9 (D )4,4,95.已知点A (-1,0)和点B (1,2),将线段AB 平移至A ’B ’,点A ’与点A 对应.若点A ’的坐标为(1,-3),则点B ’的坐标为( * ).(A )(3,0) (B )(3,-1) (C )(3,0) (D )(-1,3)6.今年我国发现的首例H7N9禽流感确诊病例在上海某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的( * ). (A )众数 (B )方差 (C )平均数 (D )频数 7.某校为了了解九年级学生体育测试成绩情况, 以九年(1)班学生的体育测试成绩为样本,按第2题A B C D ,,,四个等级进行统计,并将统计结果绘制如右两幅统计图,由图中所给信息知,扇形统计图中C 等级所在的扇形圆心角的度数为( * ). (A)72° (B )68° (C) 64° (D )60° 8. 平面内,下列命题为真命题是( * ).(A ) 经过半径外端点的直线是圆的切线 (B ) 经过半径的直线是圆的切线 (C ) 垂直于半径的直线是圆的切线(D ) 经过半径的外端并且垂直于这条半径的直线是圆的切线 9.点M 、点N 均在双曲线xky =(k 为常数)上,点M 的坐标为(2,3),点N 的坐标为(-6,m )则m =( * ).(A )-1 (B )-2 (C )3 (D )1 10.若实数a 、b 在数轴上的位置如图所示,A (1,1y )、 B (2,2y )是函数b ax y +=图象上的两点,则( * ).(A )112<<y y (B )121y y << (C )121<<y y (D )21y 1<<y第二部分 非选择题(共120分)二.填空题(本大题共6题,每小题3分,满分18分) 11.化简3-= * .12有意义,则实数x 的取值范围是 * . 13.若0122=+-a a ,则3422+-a a = * .14.如图,在平行四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =∠,则BC E =∠ * °.15. 如图,已知等边三角形ABC 的边长为1,按图中所示的规律,用5个这样的三角形镶嵌而成的四边形的周长是 * ,用n 个这样的三角形镶嵌而成的四边形的周长为 * .16. 已知点A 、B 、C 的坐标分别为(2,0)、(0,0)、(-1,3),则sin ∠ACB = * .三.解答题第10题CAB第15题┅┅ A E BCD第14题解不等式组:⎩⎨⎧-<-<-12532x x18.(本小题满分9分)如图,在□ABCD 中, AE =CF . 证明:BE =DF 19.(本小题满分10分)已知a 、b 分别是方程0432=--x x 的两个实数根, 求221()a ba b a b b a-÷-+-的值.20.(本小题满分10分)某班从2名男生、3名女生中随机抽取五月校园志愿者.求下列事件的概率: (1)抽取1名学生,恰好是女生; (2)抽取2名学生,恰好一男一女. 21.(本小题满分12分)已知抛物线)6(2)42+-++=m x m x y ((m 为常数,)8-≠m )与x 轴有两个不同的交点A 、B ,点A 、点B 关于直线1=x 对称,抛物线的顶点为C . (1) 并此抛物线的解析式; (2) 求点A 、B 、C 的坐标. 22.(本小题满分12分)为方便市民低碳生活绿色出行,市政府计划改造 如图所示的人行天桥:天桥的高是10米,原坡 面倾斜角∠CAB =45°.(1)若新坡面倾斜角∠CDB =28°,则新坡面的长CD 长是多少?(精确到0.1米) (2)若新坡角顶点D 前留3米的人行道,要使离原坡角顶点A 处10米的建筑物不拆除,新坡面的倾斜角∠CDB 度数的最小值是多少 ?(精确到1°) 23.(本小题满分12分)某市大力建设廉租房,2010年投资了24.5亿元人民币建了廉租房124万平方米.之后廉租房的总面积每年递增,且增长率相等,三年共建廉租房220万平方米. (1)用科学记数法表示:24.5亿= 万; (2)求廉租房建筑面积的年增长率;(3)若其中后两年的建房成本按每年10.7%的增长率上涨,该市后两年建廉租房共需投入约多少亿元人民币?(精确到0.1亿元)第18题第22题 建筑物如图(1),△A DE 可由△CAB 旋转而成,点B 的对应点 是E ,点 A 的对应点是D ,点B 、C 的坐标分别为(3,0), (1,4).(1) 写出点E 的坐标,并利用尺规作图直接在 图(1)中作出旋转中心Q (保留作图痕迹,不写作法);(2) 求直线AE 对应的函数关系式;(3) 将△ADE 沿垂直于x 轴的线段PT 折叠, (点T 在x 轴上,点P 在AE 上,P 与A 、E 不 重合)如图(2),使点A 落在x 轴上,点A 的对 应点为点F .设点T 的坐标为(x ,0),△PTF 与 △ADE 重叠部分的面积为S .① 试求出S 与x 之间的函数关系式(包括自变量x 的取值范围); ② 当x 为何值时,S 的面积最大?最大值是多少?③ 是否存在这样的点T ,使得△PEF 为直角三角形?若存在,直接写出点T 的坐标;若不存在,请说有理由.25.(本小题满分14分)如图,AB 为⊙O 的直径,AB =4,P 为AB 上一点,过点P 作⊙O 的弦CD , 设∠BCD=m ∠ACD .(1) 已知221+=m m ,求m 的值,及∠BCD 、∠ACD 的度数各是多少? (2) 在(1)的条件下,且21=PB AP ,求弦CD 的长; (3) 当323-2+=PB AP 时,是否存在正实数m , 使弦CD 最短?如果存在,求出m 的值,如果不存在,说明理由.yxEDCB A O第24题(1)第25题2013年黄埔区初中毕业生综合测试数学参考答案及评分标准一.选择题(每小题3分,共30分) 1. D CC CBBA D A二.填空题(本大题共6题,每小题3分,满分18分)11. 3;12. 3≥x ;13. 1;14. 26;15. 7,)1(3-+n ;16. 55 说明:第15题第1空1分,第1空2分 三.解答题 17.⎩⎨⎧-<-<-)()(2121532x x由(1)得4<x ……3分 由(2)得3>x ……6分 所以这个不等式组的解为43<<x ……9分 18.方法一∵四边形ABCD 是平行四边形,∴ AD=BC ,且AD ∥BC .(平行四边形对边平行且相等) ……2分 又∵AE =CF ,(已知)∴ED=BF ,且ED ∥BF . ……4分 ∴四边形EDFB 是平行四边形(对边平行且相等的四边形是平行四边形) ……6分 ∴EB =DF (平行四边形对边相等) ……9分 方法二∵四边形ABCD 是平行四边形,∴ AB =CD ,∠A =∠C .(平行四边形对边相等,对角相等) ……2分 在△AEB 和△CFD 中, ∵AE =CF ,(已知) AB =CD ,∠A =∠C∴△AEB ≌△CFD (SAS ) ……6分 ∴EB =DF (全等三角形对应边相等) ……9分 19. 化简:221()a b a b a b b a -÷-+-=bab b a b a b a a -⨯+--+]1))(([ ……3分 =ba b b a a b b b a a +-=+--+1)()(- ……7分第18题∵a 、b 分别是方程0432=--x x 的两个实数根, ∴a +b =3 ……9分∴221()a b a b a b b a-÷-+-=31- ……10分 20.(1)抽取1名学生,恰好是女生的概率是52……2分(2)分别用男1、男2、女1、女2、女3表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1、男2),(男1、女1),(男1、女2),(男1、女3),(男2、女1),(男2、女2),(男2、女3),(女1、女2),(女1、女3),(女2、女3),共10种,它们出现的可能性相同, ……7分 所有结果中,满足抽取2名学生,恰好一男一女(记为事件A )的结果共有6种, 所以P (A )=53106=. ……10分 21.(1)∵抛物线)6(2)42+-++=m x m x y ((m 为常数,)8-≠m )的对称轴为24+=m x -……2分 而抛物线与x 轴有两个不同的交点A 、B ,点A 、点B 关于直线1=x 对称, ∴124=+m -,6-=m ∴所求抛物经的解析式为x x y 2-2= ……6分 (2)当0=y 时,02-2=x x ,解得01=x ,22=x当0=x 时,1)1(2-22--==x x x y ,解得01=x ,22=x∴点A 、B 、C 的坐标.分别为(0,0),(2,0),(1,-1) ……12分22.(1)∵CDCBCDB =∠sin ∴3.21sin2810sin ≈︒=∠=CDB CB CD ……5分答:新坡面的长为21.3米(2)∵∠CAB =45°,∴AB =CB =10, ……6分又建筑物离原坡角顶点A 处10米,即建筑物离天桥底点B 的距离为20米,……7分 当DB 取最大值时,CDB ∠达最小值,要使建筑物不被拆掉DB 的最大值为20-3=17 ……8分第22题又1710tan ==∠DB CB CDB ,︒≈∠31CDB ……12分 答,若新坡角顶点D 前留3米的人行道,要使离原坡角顶点A 处10米的建筑物不拆除,新坡面的倾斜角的最小值是31°23. (1)用科学记数法表示:24.5亿= 5102.45⨯ 万; ……2分 (2)设该市后两年廉租房建筑面积的年增长率为x ,根据题意,得:220)1(1242=+x ……5分整理,得:024-62312=+x x , 解之,得:2122431431312⨯⨯⨯+±-=x ,∴0.331=x ,-2.332=x (舍去), ……7分答:该市后两年廉租房建筑面积的年增长率为33%.(3)2010年的建房成本为每平方米≈⨯1241000024.51976(元)2011年的建房成本为每平方米≈+)(10.7%119762187(元) 2012年的建房成本为每平方米≈+)(10.7%121872421(元) 2011年建房410.33124124124)1124≈⨯==-+x x ((万平方米) 2012年建房5541-124-220=(万平方米)后两年共投资22282213315589667552421412187=+=⨯+⨯(万元),即约22.3亿元 ……12分 答:后两年共需约投入22.3亿元人民币建廉租房..24.(1)E (5,2), ……1分图略,Q ……3分(2)设直线AE 对应的函数关系式为b kx y +=∵A (1,0)、E (5,2)∴⎩⎨⎧=+=+250b k b k ,解得⎪⎪⎩⎪⎪⎨⎧==21-21b k∴直线AE 对应的函数关系式为21-21x y =……5分 (3)①当点F 在AD 之间时,重叠部分是△PTF .yxEDCB A O第24题(1)则2)1(41)2121)(1(212121S -=--=⋅=⋅=∆x x x PT AT PT TF PEF 当F 与D 重合时,AT =21AD=2,∴31≤<x .当点F 在点D 的右边时,重叠部分是梯形PTDH . ∵△FDH ∽△ADE∴21==AD ED DF HD ,HD =21DF =3]5)12[21-=--x x (则TD HD PT PTDH ⋅+=)(21S 梯形=)5()32121(21x x x -⋅-+-=43521143-2-+x x 当T 与D 重合时,点F 的坐标是(9,0),∴53≤<x . 综上,得⎪⎪⎩⎪⎪⎨⎧≤<-+≤<+-=5343521143-31412141S 22x x x x x x ……9分说明:分段函数对一段2分,没化简不扣分②⎪⎪⎩⎪⎪⎨⎧≤<+≤<=5334311-43-311-41S 22x x x x )()(i)由当31≤<x 时,S 随x 的增大而增大,得3=x 时,S 有取大值,且最大值是1;ii)当53≤<x 时,311=x ,S 4综上i)、ii)所求为当311=x ,S ③存在,T 的坐标为(27,0)和(25,0) (i )当△PFE 以点E 为直角顶点时,作EF ⊥∵△AED ∽△EFD ∴21==AD ED ED DF ∴DF =1,∴点F (6,0) ∴点T (27,0) (ii )当△P ’F ’E 以点F ’为直角顶点时, ∵同样有△AED ∽△EF ’D∴21==AD ED ED DF ’ ∴DF ’=1,∴点F ’(4,0) ∴点T (25,0) 综上(i )、(ii )知,满足条件的点T 坐标有(27,0)和(25,025. (1)由221+=m m ,得 2=m ……1分 连结AD 、BD ∵AB 是⊙O 的直径∴∠ACB =90°,∠ADB =90°又∵∠BCD=2∠ACD ,∠ACB =∠BCD +∠ACD∴∠ACD =30°,∠BCD =60° ……3分 (2)连结AD 、BD ,则∠ABD=∠ACD=30°,AB =4∴AD =2,32=BD ……4分(算出AD 或BD 之一即1分) ∵21=PB AP ,∴34=AP ,38=BP ……5∵∠APC=∠DPB ,∠ACD =∠ABD ∴△APC ∽△DPB ∴BPPCDP AP DB AC ==, ∴3383234=⋅=⋅=⋅DB AP DP AC ①,9163832=⋅=⋅=⋅BP AP DP PC ②同理△CPB ∽△APD ∴AD BC DP BP =,∴316238=⋅=⋅=⋅AD BP DP BC ③, 由①得DP AC 338=,由③得DP BC 316=23316338==::BC AC , 在△ABC 中,AB =4,∴2224)316()338=+DPDP (, ∴372=DP由②916372=⋅=⋅PC DP PC ,得2178=PC ∴217223722178=+=+=PD CP DC方法二由①÷③得23316338==::BC AC , 在△ABC 中,AB =4,72143774=⋅=AC ,7782774=⋅=BC 由③316778=⋅=⋅DP DP BC ,得372=DP 由②916372=⋅=⋅PC DP PC ,得2178=PC ∴217223722178=+=+=PD CP DC ……8分 (3)连结OD ,由323-2+=PB AP ,AB =4, 则323-24+=-AP AP ,则AP AP )()(3-2)32(432--=+,则32-=AP……10分32=-=AP OP要使CD 最短,则CD ⊥AB 于P 于是23cos ==∠OD OP POD ……12分 ︒=∠30POD∴∠ACD =15°,∠BCD =75°∴m =5,故存在这样的m 值,且m =5 ……14分。