第二讲 四 渐开线与摆线

合集下载

高中数学人教A版选修4-4学案 第二讲四渐开线与摆线

高中数学人教A版选修4-4学案 第二讲四渐开线与摆线

庖丁巧解牛知识·巧学一、渐开线的产生过程我们可以把一条没有弹性的绳子绕在一个圆盘上,在绳的外端系上一枝铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,那么铅笔画出的曲线就是圆的渐开线,相应的定圆叫做基圆(如图2-4-1).图2-4-1也可以使用计算机在软件中进行模拟渐开线的图象.渐开线在实际生活和生产中比较常见.在机械工业中,广泛地使用齿轮传递动力,由于渐开线齿形的齿轮磨损少传动平稳,制造安装较为方便,因此大多数齿轮采用这种齿形.设计加工这种齿轮要依据圆的渐开线方程.在物理问题中,许多问题都要涉及到渐开线问题,因为它是有关传动力学的基础.在数学中,我们都学习过三角函数,其图象的画法,是首先根据单位圆上的点进行平移,实际上也是圆的渐开线问题.深化升华圆的渐开线是研究最多的一种渐开线.但是并不是只有一种渐开线,除了圆的渐开线之外,还有正方形的渐开线,长方形的渐开线,椭圆的渐开线等.只需把圆的渐开线中的基圆换成相应的图形即可得到相应的渐开线.研究这些渐开线可以仿照圆的渐开线建立相应的参数方程,进一步得出其性质.二、摆线的概念和产生过程圆的摆线就是一个圆沿着一条定直线无滑动地滚动时圆周上一个定点的轨迹.我们可以在自行车轮子上喷一个白色的印记,观察自行车在笔直的道路上运动时形成的轨迹来理解圆的摆线,也可以借助教具或计算机软件,观察圆在直线上滚动时圆上定点的轨迹.圆的摆线又叫旋轮线.市面上曾经流行过一种可绘制曲线的器具,它包含一个在圆周上刻满锯齿的小圆形板,以及一个在内外圆周上都刻有锯齿的大圆环形板.把玩之时,将小圆板放在大圆环板内部,并让锯齿套合而使小圆板沿着大圆环板滚动.将笔插入小圆板上的一个小洞,随着小圆板的滚动,铅笔就会描绘出一条曲线,这条曲线实际上也是摆线的一种(如图2-4-2).图2-4-2摆线在生产和实际中有着广泛的应用.最速降线是平摆线,椭圆是特殊的内摆线——卡丹转盘,圆摆线齿轮与渐开线齿轮,收割机、翻土机等机械装置的摆线原理与设计,星形线与公共汽车门,少齿差行星减速器,摆线转子油泵,旋转活塞发动机的缸体曲线,以及多边形切削等等,都与摆线是分不开的.其实沿着倒放的摆线弧不仅速度最快,而且有一个奇怪的性质,如果在这条曲线不同的高度放一个小球使其沿曲线下滑,你会惊奇地发现他们同时到达了底端,这就是摆线的等时性.这个性质是物理学家惠更斯发现的,并用这个原理巧妙地设计出了摆线时钟.摆线这个名词正是由于这种曲线被用来改进钟摆而得名.摆线也有很多种类型,我们课本中给出的只是其中一种类型,它是由圆上的一个定点在一条定直线上的运动轨迹,也叫平摆线或者旋轮线.除此之外还有很多种摆线.知识拓展比如,当一个小圆在一个大圆的外部沿着大圆作不滑的滚动时,小圆圆周上的点所描绘的旋轮线称为外摆线;小圆内部与外部的点所描绘的旋轮线称为外次摆线.它们都是很优美的图形,在很多绘图和设计中经常用到.圆的外摆线根据两个圆的半径关系也有很多种类型,在设计中有不同的用处.三、圆的渐开线的参数方程我们以基圆圆心O为原点,一条直径所在的直线为x轴建立直角坐标系,根据动点满足的条件和向量的有关性质,可以得到圆的渐开线的参数方程为(φ为参数).根据渐开线的定义和求解参数方程的过程,可知其中的字母r是指基圆的半径,参数φ是指绳子外端运动时绳子上的定点M相对于圆心的张角.方法归纳根据圆的渐开线的参数方程(φ为参数)消去参数φ,可以得到圆的渐开线的普通方程:xcos()+ysin()=r.四、圆的摆线的参数方程根据摆线上任意一点的运动轨迹,取定直线为x轴,动点的其中一个位置为原点建立直角坐标系,根据几何知识可得圆的摆线的参数方程为(φ为参数).根据圆的摆线的定义和建立参数方程的过程可知其中的字母r是指定圆的半径,它决定了摆线的某方面的大小情况.参数φ是指圆上定点相对于某一定点运动所张开的角度大小.用参数方程描述运动规律时,常常比用普通方程更为直接、简便.根据方程画出曲线十分费时;而利用参数方程把两个变量x、y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难.而对于参数方程,我们可以根据参数的取值求出坐标的关系,相比之下比普通方程更为直观.所以,在研究圆的渐开线和圆的摆线时主要使用参数方程,而不去讨论其普通方程.问题·探究问题1 我们知道,在直线的参数方程中,参数t具有相应的几何意义,根据其几何意义可以给我们研究问题带来很多方便.那么,圆的渐开线和摆线的参数方程中的参数φ是否也具有一定的几何意义呢?探究:根据渐开线的定义和求解参数方程的过程,可知其中的字母r是指基圆的半径,而参数φ是指绳子外端运动时绳子上的定点M相对于圆心的张角.如图2-4-3,其中的∠AOB即是角φ.显然点M由参数φ唯一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐标转化为与三角函数有关的问题,使求解过程更加简单.同样,根据圆的摆线的定义和建立参数方程的过程可知其中的字母r是指定圆的半径,它决定了摆线的某方面的大小情况.参数φ是指圆上定点相对于某一定点运动所张开的角度大小.如图2-4-4,根据参数的几何意义也可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.图2-4-3 图2-4-4问题2 对渐开线和摆线的理解是本节学习的关键,要理解其形成过程和图象的特点及在实际中的应用,还应该从多方面收集信息.那么,我们可以从哪些方面来加强对渐开线和摆线的理解?探究:由于渐开线和摆线的图形比较复杂,对应的参数方程也不容易理解,即使给出参数方程也很难根据方程画出相应的图形;反过来,根据图形也不容易得到相应的参数方程.因此,要理解渐开线和摆线的有关性质可以结合实际从以下几方面进行考虑:首先,由于渐开线和摆线在物理和机械制造中有着广泛的应用,我们可以通过走访物理专家和相关的机械制造专家来了解其在实际生产中的应用,结合有关的问题和图纸来加深对概念和性质的理解.摆线还在美术设计中被广泛应用,我们可以找有关美术老师或者通过欣赏一些美术作品来理解数学中的美感.其次,根据现代信息技术的发展的特点,可以在网上搜索相关资料,通过这些资料来了解渐开线和摆线问题的发展过程,和同学讨论一些相关的性质.另外,我们可以通过手工绘图和电脑绘图相对比,通过对比来理解渐开线和摆线的形成过程,还可以使用一些像几何画板等类似软件来描述渐开线和摆线图形的形成过程,认识其有关的性质.典题·热题例1给出某渐开线的参数方程(φ为参数),根据参数方程可以看出该渐开线的基圆半径是_________,且当参数φ取时对应的曲线上的点的坐标是__________. 思路解析:本题考查对渐开线参数方程的理解.根据一般情况下基圆半径为r的渐开线的参数方程(φ为参数)进行对照可知,这里的r=3,即基圆半径是3.然后把φ=分别代入x和y,可得即得对应的点的坐标.答案:3 (,3)误区警示本题易错的解法是:把摆线的参数方程当作渐开线的参数方程,把相应的值代入摆线方程,或者把参数当成横坐标x的值,令x=再求出y值.例2已知一个圆的摆线过一定点(1,0),请写出该摆线的参数方程.思路分析:根据圆的摆线的参数方程的表达式(φ为参数)可知,只需求出其中的r,也就是说,摆线的参数方程由圆的半径唯一来确定,因此只需把点(1,0)代入参数方程求出r值再代入参数方程的表达式.解:令r(1-cosφ)=0可得cosφ=1,所以φ=2kπ(k∈Z).代入x=r(φ-sinφ)可得x=r(2kπ-sin2kπ)=1.所以r=.又根据实际情况可知r是圆的半径,故r>0.所以,应有k>0且k∈Z,即k∈N*.所以,所求摆线的参数方程是(φ为参数)(其中k∈N*).误区警示本题易错点是误把点(1,0)中的1或0当成φ的值,代入参数方程中求出x和y 的值,再计算r的值;或者在求出cosφ=1时,直接得出φ=0,从而导致答案不全面.例3给出半径为3的圆,分别写出对应的渐开线的参数方程和摆线的参数方程.思路分析:首先根据条件建立直角坐标系,对于渐开线可以以圆的圆心为原点,一条半径所在直线为x轴,对于摆线可以以圆上的某一定点为圆心以那条定直线所在直线为x轴,建立直角坐标系.圆的渐开线的参数方程和摆线的参数方程由圆的半径唯一确定.解:先求圆的渐开线方程,以圆的圆心为原点,一条半径所在直线为x轴,建立直角坐标系,又根据条件圆的半径是3,所以,渐开线的参数方程是(φ为参数);再求圆的摆线方程,以圆上的某一定点为圆心,以定直线所在直线为x轴,建立直角坐标系.又根据条件圆的半径是3,所以摆线的参数方程是(φ为参数).例4已知圆的直径为2,其渐开线的标准参数方程对应的曲线上两点A、B对应的参数分别是和,求A、B两点的距离.思路分析:首先根据圆的直径可知半径为1,写出渐开线的标准参数方程,再根据A、B对应的参数代入参数方程可得对应的A、B两点的坐标,然后使用两点之间的距离计算公式可得A、B之间的距离.解:根据条件可知圆的半径是1,所以对应的渐开线参数方程是(φ为参数),分别把φ=和φ=代入,可得A、B两点的坐标分别为A(),B(,1).那么,根据两点之间的距离公式可得A、B两点的距离为|AB|=即点A、B之间的距离为.深化升华本节主要内容是圆的渐开线和摆线的定义和参数方程.要解决有关的问题首先要理解这两个定义和参数方程的推导过程,还要牢记两个参数方程.给出圆的半径要能写出对应的参数方程,根据参数方程能写出某对应参数的坐标,从而再解决其他问题.本例题就是对这些知识的综合考查,要注意前后知识的联系,特别是两点之间的距离公式也要熟记.。

第二讲 四渐开线与摆线

第二讲 四渐开线与摆线

返回
◆数学•选修4-4•(配人教A版)◆
解析:所给的圆的渐开线的参数方程可化为 x=3cos φ+φsin φ, π 所以基圆半径 r=3.然后把 φ= 2 y=3sin φ-φcos φ,
代入方程,可得 y = 3 sin
3π x= 2 , 即 y=3.
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-4•(配人教A版)◆
利用向量来建立摆线的参数方程. 解析:如图所示,设半径为a的圆在x轴上滚动,开始时 定点M在原点O处.取圆滚动时转过的角度 (以弧度为单位) 为参数.当圆滚过φ角时,圆心为点B,圆与x轴的切点为A, 定点M的位置如图所示,∠ABM= .
金品质•高追求
我们让你更放心!
返回
◆数学•选修4-4•(配人教A版)◆
4.基圆半径为 1 的渐开线方程是____________.
x=cos φ+φsin 5. 已知圆的渐开线的参数方程是 y=sin φ-φcos
φ, φ

为参数),则此渐开线对应的基圆的直径是________,当参数 π φ= 时,对应的曲线上的点的坐标为________________. 4
,再代入求出x值.
返回
我们让你更放心!
◆数学•选修4-4•(配人教A版)◆
解析: (1)圆 C 平移后圆心为 O(0,0), 它到直线 x-y-6 2 6 2 =0 的距离为 d= =6,恰好等于圆的半径,所以直线和 2 圆是相切的. (2) 由 于 圆 的 半 径 是 6 , 所 以 可 得 摆 线 方 程 是 x=6φ-6sin φ, (φ 为参数). y=6-6cos φ (3) 令 y = 0 , 得 6 - 6cos φ = 0 ⇒ cos φ = 1 , ∴φ = 2kπ(k∈Z).代入 x=6φ-6sin φ,得 x=12kπ(k∈Z),即圆的 摆线和 x 轴的交点为(12kπ,0)(k∈Z).

人A版数学选修4-4课件:第2讲 4 渐开线与摆线

人A版数学选修4-4课件:第2讲 4 渐开线与摆线
上一页 返回首页 下一页
根据渐开线的定义和求解参数方程的过程可知其中的字母r是指基圆的半 径,参数φ是指绳子外端运动时绳子上的定点M相对于圆心的张角.
上一页
返回首页
下一页
[再练一题]
x=cos φ+φsin φ, 3π π 1.当φ= 2 , 2 时,求出渐开线 上的对应点A,B,并 y=sin φ-φcos φ
【解析】 根据圆的渐开线与摆线的参数方程可知B正确. 【答案】 B
上一页 返回首页 下一页
[质疑· 手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1: 解惑: 疑问 2: 解惑: 疑问 3: 解惑: _____________________________________________________ _______________________________________________________ _____________________________________________________ _______________________________________________________ ______________________________________________________ _______________________________________________________
那么,根据两点之间的距离公式可得A、B两点的距离为|AB|=
3+ 6

3 3-π 2 2 π -2 + 6 -1
1 =6 13-6 3π2-6π-36 3+72. 即A、B两点之间的距离为 1 2 13 - 6 3 π -6π-36 3+72. 6

渐开线与摆线 课件

渐开线与摆线       课件
由于 r>0,则 cos φ=1,即 φ=2kπ(k∈Z).
代入 x=r(φ-sin φ),得 x=r(2kπ-sin 2kπ)(k∈Z).
因为 x=2,所以 r(2kπ-sin 2kπ)=2,
1
1
即得 r= (∈Z).又 r>0,所以 r= (∈N*).
π
π
1
易知,当 k=1 时,r 取最大值为 .
(∈Z).因为

r 是圆的半径,所以 r>0.所以应有 k>0,且 k∈Z,即 k∈N*.所以所求摆
线的参数1

(-sin),
(1-cos)
(为参数),其中 k∈N*.
6
故 A,B 两点之间的距离为
1
(13-6 3)π2 -6π-36 3 + 72.
6
反思由圆的半径准确写出对应的渐开线的参数方程是解题的关
键.
圆的摆线的参数方程及应用
【例2】 已知一个圆的摆线过一定点(2,0),请写出该圆半径最大
时摆线的参数方程以及对应的渐开线的参数方程.
= (-sin),
π
故所求的圆的摆线的参数方程为
1
= (-sin),
π
1
= (1-cos)
(为参数);
π
圆的渐开线的参数方程为
1
= (cos + sin),
π
1
= (sin-cos)
π
( 为参数).
易错辨析
易错点:考虑不全面而致错
【例3】 已知一个圆的摆线过定点(1,0),请写出该摆线的参数方
程.
错解在摆线的参数方程中,令r(1-cos φ)=0可得cos φ=1,所以φ=0,

高中数学第二讲参数方程2.4渐开线与摆线课件新人教a选

高中数学第二讲参数方程2.4渐开线与摆线课件新人教a选

探究一
探究二
思维辨析
变式训练 2
(φ 为参数).
根据参数方程可以看出该渐开线的基圆的半径是
,当
参数
φ
取π时对应的曲线上的点的坐标是
2
.
分析:本题考查对渐开线参数方程的理解.对照一般情况下基圆
半径为
r
的渐开线的参数方程
������ ������
= =
������������((csions������������-���+���c���o���ss���in���)������),(φ
为参数)可
求 r 的值,然后把 φ=π2代入方程,即得对应的点的坐标.
探究一
探究二
思维辨析
解析:所给的圆的渐开线的参数方程可化为
������ ������
= =
33((csions������������-���+���c���o���ss���i���n)���,���),所以基圆半径
r=3.
把 φ=π2代入方程,可得

.

答案:2
√2 2
+
√2π 8
,
√2 2
-
√2π 8
【例2】 已知生成摆线的圆的直径为80 mm,则摆线的参数方程

.
分析:直接代入摆线的参数方程即可.
解析:由题意知圆的半径为 40 mm,所以所求的摆线的参数方程

������ ������
= =
40(������-sin������), 40(1-cos������) (φ
铅笔,将绳子拉紧,保持绳子与圆相切而逐渐展开,那么笔尖画出的
曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.

第2讲2.4渐开线与摆线

第2讲2.4渐开线与摆线

因为“基”的不同,渐开线有许多形式:
选修4-4
第2讲→渐开线与摆线
知识导学
2.摆线与摆线的参数方程 (1)摆线的定义:
圆沿着直线滚动,圆周上一点在滚动过程中形成的
轨迹叫摆 线 . 也叫旋 轮 线 .
选修4-4
第2讲→渐开线与摆线
知识导学
(2)摆线的方程
y
C
P(x,y)
φ B
设圆的半径为r
O
D A
1 x=π(cos φ+φsin φ), 【解析】: (φ 为参数). y=1 (sin φ-φcos φ) π
选修4-4
第2讲→圆与圆锥曲线的参数方程
题型探究
题型二 渐开线和摆线的参数方程的运用
【例题2】已知圆的渐开线的参数方程是:
x cos sin (为参数) y sin cos
x 2( sin ) (2) (为参数) y 2(1 cos )
选修4-4
第2讲→圆与圆锥曲线的参数方程
题型探究
【感悟提高】 要理解渐开线和摆线的参数方程中各个几何量的意
义, 能根据条件直接套用得出方程.
选修4-4
第2讲→圆与圆锥曲线的参数方程
题型探究
【巩固训练1】已知一个圆的摆线过一定点(2,0), 请写出该圆的半径最大时该摆线的参数方程以及对应 的圆的渐开线的参数方程.
A.4π,2 C.2π,2
B.2π,4 D.4π,4
选修4-4
第2讲→圆与圆锥曲线的参数方程
随堂演练
3.半径为2的基圆的渐开线的参数方程为:
x 2(cos sin ) (为参数) y 2(sin cos ) ___________________________ .

高二数学人教A版选修4-4课件:第二讲 四 渐开线与摆线

高二数学人教A版选修4-4课件:第二讲 四 渐开线与摆线

编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
一、听要点。

一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物
理课“力的三要素”这一节时,老师会先列出力的三要素——大小、方向、作用点。这就是一堂课的要点。把这三点认真听好了,这节课就基本掌握了。
二、听思路。

思路就是我们思考问题的步骤。例如老师在讲解一道数学题时,首先思考应该从什么地方下手,然后在思考用什么方法,通过什么样、听问题。
对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答, 大家要及时地把它们记下来,下课再向老师请教。
[思路点拨] 利用向量知识和三角函数的有关知识求解.
[解] 当圆滚过 α 角时,圆心为点 B,圆与 x 轴的切点为 A,定点 M 的位置如图所示,∠ABM=α.
由于圆在滚动时不滑动,因此线段 OA 的长和圆弧 AM 的
长相等,它们的长都等于 2α,从而 B 点坐标为(2α,2), 向量―O→B =(2α,2),向量―M→B =(2sin α,2cos α), ―BM→=(-2sin α,-2cos α),因此―OM→=―O→B +―BM→ =(2α-2sin α,2-2cos α)
=(2(α-sin α),2(1-cos α)). 又动点 M 的坐标为(x,y),向量―OM→=(x,y)
所以xy==221α--csoins
α, α.
这就是所求摆线的参数方程.
(1)圆的摆线的实质是一个圆沿着一条定直线无滑动地 滚动时圆周上一个定点的轨迹.

2021学年高中数学第二讲参数方程四渐开线与摆线学案新人教A版选修4_4

2021学年高中数学第二讲参数方程四渐开线与摆线学案新人教A版选修4_4

四 渐开线与摆线学习目标 1.了解圆的渐开线的参数方程.2.了解摆线的生成过程及它的参数方程.3.学习并体会用向量知识推导运动轨迹曲线的方法和步骤.知识点一 渐开线思考 把绕在圆盘上的细绳展开,细绳外端点的轨迹是一条曲线,看看曲线的形状.假设要建立曲线的参数方程,请试着确定一下参数.答案 根据动点满足的几何条件,我们以基圆圆心O 为原点,直线OA 为x 轴,建立平面直角坐标系,如下图.设基圆的半径为r ,绳子外端M 的坐标为(x ,y ).显然,点M 由角φ惟一确定.梳理 圆的渐开线及其参数方程 (1)定义把线绕在圆周上,假设线的粗细可以忽略,拉着线头的外端点,保持线与圆相切,外端点的轨迹就叫做圆的渐开线,相应的定圆叫做渐开线的基圆. (2)参数方程设基圆的半径为r ,圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ)(φ是参数).知识点二 摆线思考 当一个圆沿着一条定直线无滑动地滚动时,圆周上一个定点的轨迹是什么? 答案 摆线.梳理 摆线及其参数方程 (1)定义当一个圆沿着一条定直线无滑动地滚动时,圆周上的一个定点的轨迹叫做平摆线,简称摆线,又叫做旋轮线. (2)参数方程设圆的半径为r ,圆滚动的角为φ,那么摆线的参数方程是⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ是参数).类型一 圆的渐开线例1 求半径为4的圆的渐开线的参数方程.解 以圆心为原点O ,绳端点的初始位置为M 0,向量OM 0―→的方向为x 轴正方向,建立坐标系,设渐开线上的任意点M (x ,y ),绳拉直时和圆的切点为A ,故OA ⊥AM ,按渐开线定义,弧0AM 的长和线段AM 的长相等,记OA →和x 轴正向所夹的角为θ(以弧度为单位),那么|AM |=0AM =4θ.作AB 垂直于x 轴,过M 点作AB 的垂线,由三角函数和向量知识,得OA →=(4cos θ,4sin θ). 由几何知识知,∠MAB =θ,AM →=(4θsin θ,-4θcos θ), 得OM →=OA →+AM →=(4cos θ+4θsin θ,4sin θ-4θcos θ) =(4(cos θ+θsin θ),4(sin θ-θcos θ)). 又OM →=(x ,y ), 因此所求的参数方程为⎩⎪⎨⎪⎧x =4(cos θ+θsin θ),y =4(sin θ-θcos θ).反思与感悟 圆的渐开线的参数方程中,字母r 表示基圆的半径,字母φ是指绳子外端运动时绳子上的定点M 相对于圆心的张角.跟踪训练1 圆的渐开线方程为⎩⎪⎨⎪⎧x =cos φsin30°+φsin φsin30°,y =sin φcos60°-φcos φcos60°(φ为参数),那么该基圆半径为________,当圆心角φ=π时,曲线上点A 的直角坐标为________. 答案 12 ⎝ ⎛⎭⎪⎫-12,π2解析 ⎩⎪⎨⎪⎧x =cos φsin 30°+φsin φsin 30°,y =sin φcos 60°-φcos φcos 60°,即⎩⎪⎨⎪⎧x =12(cos φ+φsin φ),y =12(sin φ-φcos φ)(φ为参数).∴基圆半径r =12.当φ=π时,x =-12,y =π2,∴A 的直角坐标为⎝ ⎛⎭⎪⎫-12,π2. 类型二 平摆线例2 一个圆的参数方程为⎩⎪⎨⎪⎧x =3cos φ,y =3sin φ(φ为参数),那么圆的摆线方程中与参数φ=π2对应的点A 与点B ⎝ ⎛⎭⎪⎫3π2,2之间的距离为________.答案10解析 由圆的参数方程⎩⎪⎨⎪⎧x =3cos φ,y =3sin φ知,圆的方程为x 2+y 2=9,∴圆的圆心为(0,0),半径r =3,∴圆上定点M 的摆线的参数方程为⎩⎪⎨⎪⎧x =3(φ-sin φ),y =3(1-cos φ)(φ为参数).当φ=π2时,x =3×⎝ ⎛⎭⎪⎫π2-1=3π2-3,y =3×(1-0)=3,∴A ⎝⎛⎭⎪⎫3π2-3,3,∴|AB |=(-3)2+12=10.反思与感悟 (1)摆线的参数方程摆线的参数方程为⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数),其中r :生成圆的半径,φ:圆在直线上滚动时,点M 绕圆心作圆周运动转过的角度∠ABM .(2)将参数φ的值代入渐开线或摆线的参数方程可以确定对应点的坐标,进而可求渐开线或摆线上两点间的距离.跟踪训练2 一个圆的摆线的参数方程是⎩⎪⎨⎪⎧x =3φ-3sin φ,y =3-3cos φ(φ为参数),那么该摆线一个拱的高度是________;一个拱的跨度为________. 答案 6 6π解析 当φ=π时,y =3-3cos π=6为拱高;当φ=2π时,x =3×2π-3sin 2π=6π为跨度.1.圆⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)的平摆线上一点的纵坐标为0,那么其横坐标可能是( )A .πB .3πC .6πD .10π答案 C2.当φ=2π时,圆的渐开线⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)上的点是( )A .(6,0)B .(6,6π)C .(6,-12π)D .(-π,12π)答案 C3.如下图,四边形ABCD 是边长为1的正方形,曲线AEFGH …叫做“正方形的渐开线〞,其中AE ,EF ,FG ,GH …的圆心依次按B ,C ,D ,A 循环,它们依次相连接,那么曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π答案 C解析 根据渐开线的定义可知,AE 是半径为1的14圆周长,长度为π2,继续旋转可得EF 是半径为2的14圆周长,长度为π;FG 是半径为3的14圆周长,长度为3π2;GH 是半径为4的14AEFGH 的长是5π. 4.一个圆的摆线方程是⎩⎪⎨⎪⎧x =4φ-4sin φ,y =4-4cos φ(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.解 首先根据摆线的参数方程可知,圆的半径为4, 所以面积为16π,该圆对应的渐开线的参数方程是⎩⎪⎨⎪⎧x =4cos φ+4φsin φ,y =4sin φ-4φcos φ(φ为参数).1.圆的渐开线的参数方程中,字母r 表示基圆的半径,字母φ是指绳子外端运动时绳子上的定点M 相对于圆心的张角.2.由圆的摆线的参数方程的形式可知,只要确定了摆线生成圆的半径,就能确定摆线的参数方程.3.由于渐开线、摆线的方程复杂,所以不宜用普通方程来表示.一、选择题1.圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =cos θ+θsin θ,y =sin θ-θcos θ(θ为参数),那么此渐开线对应的基圆的周长是( ) A .π B .2π C .3π D .4π答案 B2.摆线⎩⎪⎨⎪⎧x =2(t -sin t ),y =2(1-cos t )(t 为参数,0≤t <2π)与直线y =2的交点的直角坐标是( )A .(π-2,2),(3π+2,2)B .(π-3,2),(3π+3,2)C .(π,2),(-π,2)D .(2π-2,2),(2π+2,2)答案 A3.给出以下说法:①圆的渐开线的参数方程不能转化为普通方程;②圆的渐开线也可以转化为普通方程,但是转化后的普通方程比拟麻烦,且不容易看出坐标之间的关系,所以常使用参数方程研究圆的渐开线问题;③在求圆的摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,可能会得到不同的参数方程;④圆的渐开线和x 轴一定有交点而且是惟一的交点. 其中正确的说法有( ) A .①③ B .②④ C .②③ D .①③④答案 C 4.圆的渐开线⎩⎨⎧x =2(cos t +t sin t ),y =2(sin t -t cos t )(t 为参数)上与t =π4对应的点的直角坐标为( )A.⎝⎛⎭⎪⎫1+π4,1-π4B.⎝⎛⎭⎪⎫1-π4,1+π4C.⎝ ⎛⎭⎪⎫-1-π4,1-π4D.⎝⎛⎭⎪⎫1+π4,-1-π4答案 A5.圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ) (φ为参数),点A ⎝ ⎛⎭⎪⎫32,0是此渐开线上的一点,那么渐开线对应的基圆的周长是( ) A.32π B .3π C .4π D .6π答案 B解析 由点A ⎝ ⎛⎭⎪⎫32,0在渐开线上, 得⎩⎪⎨⎪⎧32=r (cos φ+φsin φ),0=r (sin φ-φcos φ),易知φ=0,那么r =32,故基圆的周长为3π.6.圆的渐开线方程为⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数),当φ=π时,渐开线上的对应点的坐标为( ) A .(-2,2π) B .(-2,π) C .(4,2π) D .(-4,2π)答案 A解析 将φ=π代入⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ),可得⎩⎪⎨⎪⎧x =2×(-1+π×0),y =2×[0-π×(-1)],即⎩⎪⎨⎪⎧x =-2,y =2π.二、填空题7.基圆直径为10,那么其渐开线的参数方程为__________________.答案 ⎩⎪⎨⎪⎧x =5(cos φ+φsin φ),y =5(sin φ-φcos φ)(φ为参数)8.有一标准的齿轮,其齿廓线的基圆直径为22mm ,那么齿廓所在的摆线的参数方程为__________________. 答案 ⎩⎪⎨⎪⎧x =11(φ-sin φ),y =11(1-cos φ)(φ为参数)解析 因为基圆直径为22 mm , 所以基圆半径为11 mm ,所以摆线的参数方程为⎩⎪⎨⎪⎧x =11(φ-sin φ),y =11(1-cos φ)(φ为参数).9.圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =6(cos t +t sin t ),y =6(sin t -t cos t )(t 为参数),那么该渐开线的基圆的半径为________,参数t =2π3对应的点的直角坐标是_______________________________________. 答案 6 (-3+23π,33+2π)解析 由参数方程,得基圆的半径rt =2π3代入参数方程,得⎩⎨⎧x =-3+23π,y =33+2π,即参数t =2π3对应的点的直角坐标是(-3+23π,33+2π). 10.圆的方程为x 2+y 2=4,点P 为其渐开线上一点,对应的参数φ=π2,那么点P 的坐标为________. 答案 (π,2)解析 由题意知,圆的半径r =2,其渐开线的参数方程为⎩⎪⎨⎪⎧x =2(cos φ+φsin φ),y =2(sin φ-φcos φ)(φ为参数).当φ=π2时,x =π,y =2,故点P 的坐标为(π,2).三、解答题11.给出直径为6的圆,分别写出对应的渐开线的参数方程和摆线的参数方程. 解 以圆的圆心为原点,一条半径所在的直线为x 轴,建立直角坐标系. 又圆的直径为6,所以半径为3,所以圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =3cos φ+3φsin φ,y =3sin φ-3φcos φ(φ为参数).以圆周上的某一定点为原点,以定直线为x 轴,建立直角坐标系,所以摆线的参数方程为⎩⎪⎨⎪⎧x =3φ-3sin φ,y =3-3cos φ(φ为参数).12.圆的参数方程是⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数),求此圆的摆线中,参数φ=π2对应的点A 与点B ⎝⎛⎭⎪⎫3π2,2之间的距离.解 由圆的参数方程,得圆的半径r =3,那么其摆线的参数方程为⎩⎪⎨⎪⎧x =3(φ-sin φ),y =3(1-cos φ)(φ为参数).把φ=π2代入摆线的参数方程,得⎩⎪⎨⎪⎧x =3⎝ ⎛⎭⎪⎫π2-1,y =3,故点A 与点B 之间的距离 |AB |=⎝ ⎛⎭⎪⎫3π2+3-3π22+(2-3)2=10.13.一个圆的平摆线方程是x =2φ-2sin φ,y =2-2cos φ(φ为参数),求该圆的周长,并写出平摆线上最高点的坐标. 解 由平摆线方程知,圆的半径为2,φ=π时,y 有最大值4,平摆线具有周期性,周期为4π.∴平摆线上最高点的坐标为(2π+4k π,4)(k ∈Z ). 四、探究与拓展14.如图,△ABC 是正三角形,曲线ABCDEF …叫做“正三角形的渐开线〞,其中弧CD ,弧DE ,弧EF …的圆心依次按A ,B ,C 循环,它们依次相连接,如果AB =1,那么曲线CDEF 的长是( )A .8πB .6πC .4πD .2π答案 C解析 ∵∠CAD ,∠DBE ,∠ECF 是等边三角形的外角, ∴∠CAD =∠DBE =∠ECF =120°. 又AC =1,∴BD =2,CE =3, ∴弧CD 的长=13×2π×1,弧DE 的长=13×2π×2,弧EF 的长=13×2π×3,∴曲线CDEF 的长=13×2π×1+13×2π×2+13×2π×3=4π.15.渐开线方程为⎩⎪⎨⎪⎧x =6(cos φ+φsin φ),y =6(sin φ-φcos φ)(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍得到曲线C ,求曲线C 的方程,及焦点坐标. 解 由渐开线方程可知,基圆的半径为6,那么圆的方程为x 2+y 2=36. 把横坐标伸长为原来的2倍,得到椭圆方程x 24+y 2=36,即x 2144+y 236=1, 对应的焦点坐标为(63,0)和(-63,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教A版数学 ·选修4-4
返回导航
上页
下页
3.圆的渐开线和摆线的参数方程
x=rcos φ+φsin φ, (φ 为参数) y=rsin φ-φcos φ (1)圆的渐开线方程:__________________________________ .
x=rφ-sin φ, (φ 为参数) y=r1-cos φ (2)摆线的参数方程:_____________________________ .
如图, 一个宽为 a 的矩形木条沿着半径为 r 的定圆无滑动地滚动, 试求木
条外缘上某点 P 的轨迹方程.
人教A版数学 ·选修4-4
[解析] 以定圆圆心 O 为原点,O、F、P 共线时所在直线 为 x 轴, 建立如图所示的直角坐标系, 设 P 点的坐标为(x, y),取∠AOB=φ 为参数, ∵|BF|=l =rφ,
π π = , 2 2 π =1, 2
x=cos 3π 当 φ= 时, 2 y=sin
3π 3π + · sin 2 2 3π 3π - · cos 2 2
3π 3π =- , 2 2 3π =-1, 2
人教A版数学 ·选修4-4
返回导航
上页
下页
3π ∴B- 2 ,-1.
AB
返回导航
上页
下页
→ → → → → → ∴ OP = OF + FP = OB + BF + FP = (rcos φ , rsin φ) +
π rφcosφ- , 2 π rφsinφ- 2 +
(acos φ,asin φ) =((r+a)cos φ+rφsin φ,(r+a)sin φ-rφcos φ) =(x,y).
人教A版数学 ·选修4-4
[解析] 由题意, 知
返回导航
上页
下页
x=cos φ+φsin φ, r=1, 则圆的渐开线参数方程为 y=sin φ-φcos φ
(φ 为参数).
x=cos π 当 φ= 时, 2 y=sin
π ∴A2,1.
π π + · sin 2 2 π π - · cos 2 2
π 解析:与渐开线的参数方程进行对照可知,r=3,即基圆半径是 3,然后把 φ= 代 2 3π x= , 2 入,可得 y=3.
答案:3
3π ,3 2
人教A版数学 ·选修4-4
返回导航
上页
下页
探究一
圆的渐开线的参数方程
[例 1] 已知圆的直径为 2,其渐开线的标准参数方程对应的曲线上两点 A,B 对 π 3π 应的参数分别是 和 ,求 A,B 两点间的距离. 2 2
返回导航
上页
下页
→ → → 因此OM=OB+BM =(2α-2sin α,2-2cos α) =(2(α-sin α),2(1-cos α)). → 动点 M 的坐标为(x,y),向量OM=(x,y)
x=2α-sin 所以 y=21-cos
α, α.
这就是所求摆线的参数方程.
人教A版数学 ·选修4-4
人教A版数学 ·选修4-4
返回导航
上页
下页
3.如图所示,ABCD是边长为1的正方形,曲线AEFGH„叫作 “正方形的渐开线”,其中AE,EF,FG,GH,„的圆心依次 按B,C,D,A循环,它们依次相连接,则曲线AEFGH的长是 多少?
1 π 解析:根据渐开线的定义可知, AE 是半径为 1 的 圆周长,长度为 ,继续旋转可 4 2 1 1 3π FG 是半径为 3 的 圆周长, GH 得 EF 是半径为 2 的 圆周长, 长度为 π; 长度为 ; 4 4 2 1 是半径为 4 的 圆周长,长度为 2π.所以,曲线 AEFGH 的长是 5π. 4
∴|AB|=
π 3π + 2+1+12=2 2 2
π2+1.
人教A版数学 ·选修4-4
返回导航
上页
下页
圆的渐开线的参数方程中,字母 r 表示基圆的半径,字母 φ 是指绳子外端 运动时绳子上的定点 M 相对于圆心的张角;另外,渐开线的参数方程不 宜化为普通方程.
人教A版数学 ·选修4-4
人教A版数学 ·选修4-4
返回导航
上页
下页
x=cos φ+φsin φ, 2.已知圆的渐开线的参数方程 y=sin φ-φcos φ
(φ 为参数),则此渐开线对
应基圆的面积是( A. 1 C. 2
) B.π D.2π
解析:由参数方程知基圆的半径为 1,∴其面积为 π.故选 B.
答案:B
人教A版数学 ·选修4-4
返回导航
上页
下页
解析:本题主要考查渐开线和摆线的有关概念和参数方程的问题,对于一个圆, 只要半径确定,渐开线和摆线的形状就是确定的,但是随着选择坐标系的不同, 其在坐标系中的位置也会不同,相应的参数方程也会有所区别,至于渐开线和坐 标轴的交点要看坐标系的选取.故选 C.
答案:C
解析:由摆线的图形知,圆的半径最大时,定点(2,0)就是(2πr,0)(如图所示)
1 ∴2πr=2,∴r= . π 1 x=πφ-sin φ, 代入,得圆的摆线的参数方程 y= 11-cos φ π
(φ 为参数).
人教A版数学 ·选修4-4
返回导航
上页
下页
探究三 [例 3]
渐开线与摆线参数方程的应用
人教A版数学 ·选修4-4
返回导航
上页
下页
对圆的渐开线与摆线的概念理解不清致误 [典例] 已知一个圆的摆线过一定点(1,0),请写出该摆线的参数方程.
[解析] 令r(1-cos φ)=0,可得cos φ=1.
所以φ=2kπ(k∈Z),代入得 x=r(2kπ-sin 2kπ)=1, 1 所以r= .又由题意可知,r是圆的半径,故r>0. 2kπ 所以应有k>0且k∈Z,即k∈N*.
返回导航
上页
下页
x=4cos φ+φsin φ, 1.已知渐开线 y=4sin φ-φcos φ
x=41-sin θ, π 上的点 A 对应 φ= , 与 2 y = 4 1 - cos θ
直线 x=2 相交于点 B,求 A,B 两点间的距离.
x=4cos φ+φsin φ, x=2π, π 解析:将 φ= 代入 得 ∴A(2π,4). 2 y=4sin φ-φcos φ, y=4, x=41-sin θ, 在 y=41-cos θ
返回导航
上页
下页
1.圆的摆线的实质是一个圆沿着一条定直线无滑动地滚动时圆周上一个定 点的轨迹. 2.根据圆的摆线的定义和建立参数方程的过程,可知其中的字母 r 是指定 圆的半径,参数 φ 是指圆上定点相对于某一定点运动所张开的角度大小.
人教A版数学 ·选修4-4
返回导航
上页
下页
2.已知一个圆的摆线过一定点(2,0),请写出该圆的半径最大时该摆线的参数方程.
返回导航
上页
下页
探究二 圆的摆线的参数方程 [例 2] 求半径为 2 的圆的摆线的参数方程.(如图所示,开始时定点 M 在原点 O 处,取圆滚动时转过的角度 α,(以弧度为单位)为参数)
人教A版数学 ·选修4-4
返回导航
上页
下页
[解析]
当圆滚过 α 角时,圆心为点 B,圆与 x 轴的切点为 A,定点 M 的
下页
[随堂训练]
1.关于渐开线和摆线的叙述,正确的是( A.只有圆才有渐开线 B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同 的图形 C.正方形也可以有渐开线 D.对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状 就不同 )
人教A版数学 ·选修4-4
返回导航
人教A版数学 ·选修4-4
[双基自测]
返回参数方程不能转化为普通方程;②圆的渐开线 的参数方程可以转化为普通方程, 但是转化后的普通方程比较麻烦, 且不容易看出 坐标之间的关系, 所以常使用参数方程研究圆的渐开线问题; ③在求圆的摆线和渐 开线方程时, 如果建立的坐标系原点和坐标轴选取不同, 可能会得到不同的参数方 程;④圆的渐开线和 x 轴一定有交点而且是唯一的交点. 其中正确的说法有( A.①③ C.②③ ) B.②④ D.①③④
位置如图所示,∠ABM=α. 由于圆在滚动时不滑动,因此线段 OA 的长和圆弧 AM 的长相等,它们的长 都等于 2α,从而 B 点坐标为(2α,2), → 向量OB=(2α,2), → 向量MB=(2sin α,2cos α), → BM=(-2sin α,-2cos α),
人教A版数学 ·选修4-4
人教A版数学 ·选修4-4
返回导航
上页
下页
所以所求摆线的参数方程是 1 x=2kπφ-sin φ, y= 1 1-cos φ 2kπ
(φ为参数,k∈N*).
人教A版数学 ·选修4-4
返回导航
上页
下页
[错因与防范]
(1)若在求出cos φ=1后,直接得出φ=0,会导致答案不全面.
人教A版数学 ·选修4-4
x=3cos φ+3φsin φ, 3.给出某渐开线的参数方程 y=3sin φ-3φcos φ
返回导航
上页
下页
(φ 为参数),根据参数方程可
π 以看出该渐开线的基圆半径是________,当参数 φ 取 时,对应的曲线上的点的坐 2 标是________.
上页
下页
解析:不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线 的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么 地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的 形式及图形在坐标系中的位置可能不同.
相关文档
最新文档