带传动效率实验报告
机械设计实验报告带传动

实验一 带传动性能分析实验一、实验目的1、了解带传动试验台的结构和工作原理。
2、掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。
3、观察带传动的弹性滑动及打滑现象。
4、了解改变预紧力对带传动能力的影响。
二、实验内容与要求1、测试带传动转速n 1、n 2和扭矩T 1、T 2。
2、计算输入功率P 1、输出功率P 2、滑动率ε、效率η。
3、绘制滑动率曲线ε—P 2和效率曲线η—P 2。
三、带传动实验台的结构及工作原理传动实验台是由机械部分、负载和测量系统三部分组成。
如图1-1所示。
1直流电机 2主动带轮 3、7力传感器 4轨道 5砝码 6灯泡8从动轮 9 直流发电机 10皮带 图1-1 带传动实验台结构图1、机械部分带传动实验台是一个装有平带的传动装置。
主电机1是直流电动机,装在滑座上,可沿滑座滑动,电机轴上装有主动轮2,通过平带10带动从动轮8,从动轮装在直流发电机9的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为发电机的负载。
砝码通过尼龙绳、定滑轮拉紧滑座,从而使带张紧,并保证一定的预拉力。
随着负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。
当带的有效拉力达到最大有效圆周力时,带开始打滑,当负载继续增加时则完全打滑。
2、测量系统测量系统由转速测定装置和扭矩测量装置两部分组成。
(1)转速测定装置用硅整流装置供给电动机电枢以不同的端电压实现无级调速,转动操纵面板上“调速”旋钮,即可实现无级调速,电动机无级调速范围为0~1500r/min ;两电机转速由光电测速装置测出,将转速传感器(红外光电传感器)分别安装在带轮背后的“U ”形糟中,由此可获得转速信号,经电路处理即可得到主、从动轮上的转速n 1、n 2。
(2)扭矩测量装置电动机输出转矩1T (主动轮转矩)、和发电机输入转矩2T (从动轮转矩)采用平衡电机外壳(定子)的方法来测定。
电动机和发电机的外壳支承在支座的滚动轴承中,并可绕转子的轴线摆动。
机械设计带传动实验报告

机械设计带传动实验报告摘要在机械设计中,传动是一个重要的方面。
通过实验,我们通过设计和制作一个带传动系统来探究其工作原理和性能特性。
本实验报告详细介绍了实验的目的、设计过程、材料选择、制造过程、测试方法、结果分析以及结论。
通过这个实验,我们进一步了解了带传动在机械设计中的应用和重要性。
引言带传动是一种常见的机械传动方式,广泛应用于各种机械设备和工业生产中。
其主要作用是通过带轮和传动带(如皮带、齿轮等)将动力传递给不同的设备。
带传动具有简单、可靠、经济和节能等优点。
本实验通过设计和实现一个带传动系统,旨在深入了解带传动的原理和性能特性,并对其进行评估。
设计过程设计一个带传动系统需要考虑多个因素,包括传动比、带轮和传动带的选择、功率传递和传动效率等。
实验中,我们根据给定的参数和要求进行了如下设计过程:参数确定1.输入功率:50W2.转速比:1:53.传动效率:大于90%带轮和传动带的选择根据参数确定,我们选择了适合的带轮和传动带。
需要考虑的因素包括传动比和带轮直径等。
同时,传动带的材料也需要根据实际需求进行选择,如橡胶等。
功率传递通过计算输入功率和转速比,我们可以确定输出功率和转速。
根据传动效率的要求,我们可以计算出输入功率和输出功率之间的损耗。
传动效率评估通过实验测试,我们可以测量传动带和带轮之间的摩擦损失和传动效率。
根据测量结果,我们可以评估带传动系统的性能。
材料选择和制造过程在设计过程中,我们选择了以下材料用于制造带传动系统:1.带轮:铝合金2.传动带:橡胶制造过程主要包括以下步骤:1.制造带轮:根据设计要求,我们使用数控机床对铝合金进行精确加工,制造出适合的带轮。
2.制造传动带:选择合适的橡胶材料,通过成型和加工制造出传动带。
测试方法为了评估带传动系统的性能,我们进行了如下测试方法:传动比测试通过测量输入和输出轴的转速,我们可以计算出传动比。
我们使用转速计对输入和输出轴进行测量,并记录数据。
带传动的滑动和效率测定实验报告

带传动的滑动和效率测定实验报告带传动的滑动率和效率测定的实验方案设计带传动的滑动率和效率测定的实验方案设计一、实验目的1.深入了解带传动的原理以及传动摩擦和滑动时候的相关问题。
2.深入了解、掌握机械带传动效率及滑动率测量方法及原理,了解测量过程所使用的仪器、仪表以及传感器的工作原理。
3.观察带传动的弹性滑动和打滑现象,加深对带传动工作原理和设计准则的理解。
4.通过对滑动曲线(? —F曲线)和效率曲线(?—F曲线)的测定和分析,深刻认识带传动特性、承载能力、效率及其影响因素。
二、实验的理论依据由于带是弹性体,受力不同的时候伸长量不等,使带传动发生弹性滑动现象。
在带绕带轮滑动传动时候,带的压力由F1 下降到F2所以带的弹性变形也要相应减小,亦即带在逐渐缩短,带的速度要落后于带轮,因此两者之间必然发生相对滑动。
同样的现象也发生在从动轮上,但是情况恰好相反。
带从松边转到紧边时,带所受到的拉力逐渐增加,带的弹性变形量也随之增大,带微微向前伸长,带的运动超前于带轮。
带与带轮间同样也发生相对滑动。
其中:带收到的张紧力F0,紧边拉力F1,松边拉力F2。
则:有效拉力F=F1- F2等于带沿带轮的接触弧上摩擦力的总和Ff带传动中滑动的程度用滑动率表示,其表达式为v1?v2D2n2(1?)?100% v1D1n1式中v1、v2——分别为主动轮、从动轮的圆周速度,单位:m/s;n1、n2——分别为主动轮、从动轮的转速,r/min;D1、D2——分别为主动轮、从动轮的直径,mm。
如图2-1所示,带传动的滑动(曲线1)随着带的有效拉力F的增大而增大,表示这种关系的曲线称为滑动曲线。
当有效拉力F小于临界点F?点时,滑动率与有效拉力F成线性关系,带处于弹性滑动工作状态;当有效拉力F超过临界点F?点以后,滑动率急剧上升,带处于弹性滑动与打滑同时存在的工作状态。
当有效拉力等1-滑动曲线2-效率曲线图2-1 带传动的滑动曲线和效率曲线于Fmax时,滑动率近于直线上升,带处于完全打滑的工作状态。
带传动的弹性滑动与效率实验

实验一带传动的弹性滑动与效率实验1 实验目的(1)了解带传动的预紧、加载方式;(2)了解带传动的打滑和弹性滑动的区别;(3)了解带传动滑动系数与传动拉力、传动效率之间的关系;(4)了解转速、转差速以及扭矩的测量原理与方法。
2 实验内容(1)在不同负载的情况下,测量主动轮转速、主动轮转矩、被动轮转速、被动轮转矩;(2)观察带传动的弹性滑动和打滑现象;(3)测定滑动系数与传动拉力和传动效率之间的关系,绘制ε-F滑动曲线和η-F效率曲线图,并计算出单根三角胶带在初拉力一定时能够传递的功率。
3 实验设备和仪器1、带传动实验机采用DCS-Ⅱ型智能带传动实验台,该实验台系统的组成如图4所示。
图1 DCS-Ⅱ型智能带传动实验台系统的组成主要技术参数:直流电机功率50W、主动电机调速范围0~1800转/分、额定转矩2450g·cm、电源220V/50Hz。
实验机的结构特点:(1)机械部分本实验台机械部分,主要由两台直流电机组成,如图5所示。
其中一台作为原动机,另一台则为负载的发电机。
图2 带传动实验台原动机是由可控硅整流装置供给电动机电枢以不同的端电压,实现无级调速。
发电机由每按一下“加载”就并上一个负载电阻,使发电机负载逐步增加,电枢电流增大,随之电磁转矩也增大,既发电机的负载增大,实现了负载的改变。
两台电机均为悬挂支承,当传递载荷时,作用于电机定子上的力矩T1、T2迫使拉钩作用于拉力传感器,传感器输出的电信号正比于T1、T2的原始信号。
原动机的机座设计成浮动结构,与牵引钢丝绳、定滑轮、砝码一起组成带传动预拉力形成机构,改变砝码大小,即可准确地预定带传动的预拉力F0。
两台电机的转速传感器分别安装在带轮背后的环槽中,由此可获得转速信号。
(2)电测系统电测系统装在实验台电测箱内,附设单片机,承担数据采集、数据处理、信息记忆、自动显示等功能。
实时显示带传动过程中主动轮转速、转矩和从动轮转速、转矩值。
通过微机接口外接PC机,显示并打印输出带传动的滑动曲线ε-T2及效率曲线η-T2及相关数据。
机械设计实验报告带传动

实验一带传动性能分析实验一、实验目的1、了解带传动试验台的结构和工作原理。
2、掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。
3、观察带传动的弹性滑动及打滑现象。
4、了解改变预紧力对带传动能力的影响。
二、实验内容与要求1、测试带传动转速n1、n2和扭矩T1、T2。
2、计算输入功率P1、输出功率P2、滑动率ε、效率η。
3、绘制滑动率曲线ε—P2和效率曲线η—P2。
三、带传动实验台的结构及工作原理传动实验台是由机械部分、负载和测量系统三部分组成。
如图1-1所示。
1直流电机2主动带轮3、7力传感器4轨道5砝码6灯泡8从动轮9直流发电机10皮带图1-1带传动实验台结构图1、机械部分带传动实验台是一个装有平带的传动装置。
主电机1是直流电动机,装在滑座上,可沿滑座滑动,电机轴上装有主动轮2,通过平带10带动从动轮8,从动轮装在直流发电机9的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为发电机的负载。
砝码通过尼龙绳、定滑轮拉紧滑座,从而使带张紧,并保证一定的预拉力。
随着负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。
当带的有效拉力达到最大有效圆周力时,带开始打滑,当负载继续增加时则完全打滑。
2、测量系统测量系统由转速测定装置和扭矩测量装置两部分组成。
(1)转速测定装置用硅整流装置供给电动机电枢以不同的端电压实现无级调速,转动操纵面板上“调速”旋钮,即可实现无级调速,电动机无级调速范围为0~1500r/min;两电机转速由光电测速装置测出,将转速传感器(红外光电传感器)分别安装在带轮背后的“U”形糟中,由此可获得转速信号,经电路处理即可得到主、从动轮上的转速n1、n2。
(2)扭矩测量装置电动机输出转矩T(主动轮转矩)、和发电机输入转矩2T(从动轮转矩)采用平衡电机外1壳(定子)的方法来测定。
电动机和发电机的外壳支承在支座的滚动轴承中,并可绕转子的轴线摆动。
当电动机通过带传动带动发电机转动后,由于受转子转矩的反作用,电动机定子将向转子旋转的相反方向倾倒,发电机的定子将向转子旋转的相同方向倾倒,翻转力的大小可通过力传感器测得,经过计算电路计算可得到作用于电机和发电机定子的转矩,其大小与主、从动轮上的转矩T、2T相等。
带传动的滑动率和效率测定

实验八 带传动的滑动率和效率测定一、概述带传动是靠带与带轮间的摩擦力来传递运动和动力的。
在传递转矩时传动带的紧边和松边受到的拉力不同。
由于带是弹性体,受力不同时,带的变形量也不相同。
紧边拉力大,相应的伸长变形量也大。
在主动轮上,当带从紧边转到松边时,拉力逐渐降低,带的弹性变形逐渐变小而回缩,带的运动滞后于带轮。
也就是说,带与带轮之间产生了相对滑动。
而在从动轮上,带从松边转到紧边时,带所受的拉力逐渐增加,带的弹性变形量也随之增大,带微微向前伸长,带的运动超前于带轮。
带与带轮间同样也发生相对滑动。
这种由于带的弹性变形而引起的带与带轮之间的滑动,称为弹性滑动。
这种弹性滑动在带传动中是不可避免的,其结果是使从动带轮的圆周速度低于主动轮的圆周速度,使传动比不准确,并引起带传动效率的降低以及带本身的磨损。
带传动中滑动的程度用滑动率ε表示,其表达式为%100)1(1122121×−=−=n D nD v v v ε (8-1) 式中21v v 、分别为主动轮、从动轮的圆周速度,m/s ;21n n 、分别为主动轮、从动轮的转速,r/min ;21D D 、分别为主动轮、从动轮的直径,mm 。
如图8-1所示,带传动的滑动随有效拉力(有效圆周力)F 的增减而增减,表示这种关系的F −ε曲线称为滑动曲线(曲线1)。
当有效拉力F 小于临界点F ′时,滑动率ε与有效拉力F 成线性关系,带处于弹性滑动工作状态。
当有效拉力F 超过F ′点以后,滑动率急剧上升,此时带处于弹性滑动与打滑同时存在的工作状态。
当有效拉力等于max F 时,滑动率近于直线上升,带处于完全打滑的工作状态。
图中曲线2为带传动的效率曲线,即表示带传动效率η与有效拉力F 之间关系的F −η曲线。
当有效拉力增加时,传动效率逐渐提高,当有效拉力超过点F ′时以后,传动效率急剧下降。
带传动最合理的状态,应使有效拉力F 等于或稍低于临界点F ′,这时带传动的效率最高,滑动率%2~%1=ε,并且还有余力负担短时间(如起动)的过载。
带传动实验

带传动实验实验一带传动实验一、实验目的1、观察带传动中的弹性滑动和打滑现象以及它们与带传递的载荷之间的关系。
2、测定弹性滑动率与所传递的载荷和带传效率之间的关系,绘制带传动的弹性滑动曲线和效率曲线。
3、了解带传动实验台的设计原理与扭矩、转速的测量方法。
二、实验台的构造和工作原理由于弹性滑动率ε之值与打滑现象的出现,以及带传动的效率η都与带传递的载荷的大小有密切关系,本实验台用灯泡作负荷。
本实验台由主机和测量系统两大部分组成。
1、主机主机是一个装有平带的传动装置。
主电机是直流电动机装在滑座上,可沿滑座滑动,电机轴上装有主动轮,通过平带带动从动轮,从动轮装在直流发电机的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为带传动的加载装置,砝码通过钢丝绳,定滑轮拉紧滑座,从而使带张紧,并保证一定的初拉力。
开启灯泡,以改变发电机的负载电阻,随着开启灯泡的增多,发电机的负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。
当带断传递的载荷刚好达到所能传递的最大有效圆周力时,带开始打滑,当负载继续增加时则安全打滑。
2、测量系统测量系统由电转速测定装置和电机的测扭矩装置两部分组成。
A、光电测转速装置主动轮的扭矩下T1和从动轮的扭矩T2均通过在主动轮和从动轮的轴上分别安装一同步转盘,在转盘的同一半径上钻有一个小孔,在小孔一侧固定有光电传感器,并使传感器的测头已对小孔。
带轮转动时,就可在数码管上直接读出带轮的转迹。
B、扭矩测量装置主动轮的矩T1和从动轮的扭矩T2下均通过电动机外壳来测定。
电动机和发电机的外壳支承在支座的滚动轴承中,并可绕与转子相重合的轴线摆动,当电动机启动和发电机负载后,由于定子磁场和转子磁场的相互作用,电动机的外壳将向转子旋转的同向倾倒,发电机的外壳将向转子旋转的反向倾倒,它们的倾倒力矩可分别通过固定在定子外壳上的测力计所测得的力矩来平衡。
即:主动轮上的扭矩T1 = Q1K1L1(N·mm)从动轮上的扭矩T2 = Q2K2L2(N·mm)式中Q1、Q2——测力计上百分表的读数K1、K2——测力计算定值L1、L2——测力计的力臂L1 =L2 =120mm从动轮的功率N2T1N2带传动的效率η= =主动轮的功率N1T2N1同学们只要测得不同负载下主动轮的转速N1和从动轮的转速N2以及主动轮的扭矩下T1和从动轮的扭矩下T2,就可算出在不同的有效拉力下的弹性滑动率ε以及效率η之值。
带传动的滑动与效率实验

带传动的滑动与效率实验实验类型: 验证 实验学时: 2开出要求: 必做一、 实验目的1. 了解带传动中的弹性滑动现象、打滑现象及其与带传动工作能力的关系。
通过实验,测出带传动的弹性滑动系数、传动效率与带传动预紧拉力之间的关系曲线。
2. 了解实验台的结构原理,掌握扭矩、转速、转速差、效率的测试方法。
3. 确定三角皮带传动的滑动曲线及传动效率曲线。
二、 实验原理及说明1. 带传动的弹性滑动和传动效率带传动是靠摩擦力作用而工作的,其主要失效形式是带的磨损、疲劳损坏和打滑。
带的磨损是由于带与带轮之间的相对滑动引起,是不可避免的;带的疲劳破坏是由于带传动中交变应力引起,与带传动的载荷大小、运行时间、工作状况、带轮直径等有关,它也是不可避免的;带的打滑是由于载荷超过带的传动能力而产生,是可以避免的。
由于带在传动运动过程中,紧边和松边的拉力不同,使得带在紧边的弹性变形大于松边的弹性变形,在带绕过带轮时,由于摩擦力的存在,在主动轮上出现轮的线速度大于带的线速度,在从动轮上出现轮的线速度小于带的线速度的现象,这种现象就是带的弹性滑动。
弹性滑动是带传动主、从动轮产生速度差的主要原因,是带传动效率降低以及带磨损的主要原因,也是带传动的主要特点。
弹性滑动通常以滑动系数来衡量,其定义为112211121D n D n D n v v v -=-=ε (2.1)21D D =%1001⨯∆=n nε这里v 1、v 2分别为主、从动轮的转动线速度;1n 、2n 分别为主、从动轮的转速;D 1、D 2分别为主、从动轮的直径。
一般带传动的滑动系数为(1~2)%。
带传动的效率是指从动轮输出功率P 2与主动轮输入功率P 1的比值,即112212n M n M P P ==η (2.2)式中,M 1、M 2分别为主、从动轮的转矩。
111W L M ⨯= 222W L M⨯=,WL n P ⨯⨯⨯=π260,式中L 为测力臂长度,W 为拉力计所示拉力。