1.2.2复合函数的求导法则
复合函数导数公式及运算法则

复合函数导数公式及运算法则1.基本公式:设有两个函数$f(x)$和$g(x)$,它们的复合函数为$h(x)=f(g(x))$。
那么$h(x)$的导数可以表示为:$$\frac{{dh}}{{dx}} = \frac{{df}}{{dg}} \cdot\frac{{dg}}{{dx}}$$或者可以写成简洁的形式:$$h'(x) = f'(g(x)) \cdot g'(x)$$这个公式是复合函数导数的基本公式,也是后续运算法则的基础。
2.反函数法则:设有函数$y=f(x)$,如果$f(x)$的反函数存在且可导,那么反函数$f^{-1}(x)$的导数可以表示为:$$(f^{-1})'(x) = \frac{1}{{f'(f^{-1}(x))}}$$3.乘积法则:设有两个函数$f(x)$和$g(x)$,它们的乘积为$h(x) = f(x) \cdot g(x)$。
那么$h(x)$的导数可以表示为:$$h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$这个公式可以直接应用于两个或多个函数的乘积的导数运算。
4.商法则:设有两个函数$f(x)$和$g(x)$,它们的商为$h(x) =\frac{{f(x)}}{{g(x)}}$。
那么$h(x)$的导数可以表示为:$$h'(x) = \frac{{f'(x) \cdot g(x) - f(x) \cdotg'(x)}}{{(g(x))^2}}$$这个公式可以用于计算两个函数的商的导数。
5.复合函数的高阶导数:复合函数的高阶导数是指对复合函数进行多次求导的结果。
根据基本公式,我们可以计算复合函数的高阶导数。
例如,对于三次导数,我们可以应用基本公式三次,得到如下的表达式:$$h''(x) = [f'(g(x)) \cdot g'(x)]' = f''(g(x)) \cdot(g'(x))^2 + f'(g(x)) \cdot g''(x)$$类似地,我们可以计算更高阶的导数。
复合函数的求导法则,反函数的求导法则

数学分析(上)
2 g ( x ) ln x ,求 f ( x ) x 例10 设 ,
f [ g( x )] f [ g( x )]
解 f ( x ) 2 x
g[ f ( x )] g[ f ( x )]
f [ g( x )] 2 ln x
2 ln x f [ g ( x )] f [ g ( x )] g ( x ) x
2
1 1 1 y 2 2x 2 x 1 3( x 2)
x 1 2 x 1 3( x 2)
数学分析(上)
例8 y x ,求 y .
x
解
y x
x
e
x ln x
e
x ln x x ln x x ln x 1 x ln x 1 e
数学分析(上)
注意到:当x 0 时, 由 u ( x ) 的连续性
lim lim 0 可得 u 0, 从而 x 0 u 0
所以,令x 0 , 便有
dy du dy f ( u) ( x ) dx du dx
f [ ( x )] f [ ( x )] ( x )
第二节 §2 复合函数的求导法则 反函数的求导法则 一、复合函数的求导法则 定理1 (链式法则)如果 u ( x ) 在点 x 处可导,而函数 y f ( u) 在对应的点 u 处可 导,则复合函数 y f ( ( x )) 在点 x 处可导, 且
dy f ( u) ( x ) 或 dx
2
1 x 例5 y , 求 y . 1 x
例6 证明双曲函数的求导公式:
复合函数求导公式运算法则

复合函数求导公式运算法则1. 基本公式:如果函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也可导,且导数为dy/dx=f'(u)·g'(x)。
2. 对数函数:对于自然对数函数y=ln(u),其中u是一个关于自变量x的函数,其导数为dy/dx=1/u·du/dx。
3. 幂函数:对于幂函数y=u^n,其中u是关于自变量x的函数,n是常数,则其导数为dy/dx=n·u^(n-1)·du/dx。
4. 指数函数:对于指数函数y=a^u,其中a是常数,u是关于自变量x的函数,其导数为dy/dx=a^u·ln(a)·du/dx。
5. 三角函数:对于三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。
常见的三角函数包括正弦函数、余弦函数和正切函数等。
6. 反三角函数:对于反三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。
常见的反三角函数包括反正弦函数、反余弦函数和反正切函数等。
7. 双曲函数:对于双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。
常见的双曲函数包括双曲正弦函数、双曲余弦函数和双曲正切函数等。
8. 反双曲函数:对于反双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。
常见的反双曲函数包括反双曲正弦函数、反双曲余弦函数和反双曲正切函数等。
下面通过实际例子来说明复合函数求导公式的运算法则。
例子1:求函数y=(2x+1)^3的导数。
解:将y看作是外层函数f(u)=u^3,其中u=2x+1、根据链式法则,导数dy/dx=f'(u)·u'(x)。
1.2 反函数、复合函数、参数方程的导数

1 ln 2 (sin ) x 1
2
1.2 导数的计算
例 4.计算下列各题: 1 2 dy (1) y [ f (sin )] ,其中 f ( x ) 可导,求 。 x dx
(1 x )e x (2) y ln ,求 y(0) 。 arccos x
结论:若函数 y f ( x ) 在 x 可导,且 f ( x ) 0 ,则
复合而成。
1 2 1 dy dy du 1 2 2 . 2 2 2 x 1 2 ( x 1) x 1 dx du dx 1 u ( x 1) 1 ( ) x 1 9
1.2 导数的计算
(3) y ln x ,
dy 1 ; 解:当 x 0 时, y ln x , dx x
17
1.2 导数的计算
x 2 ( x 1) (2) y 5 ; 3 4 (2 x ) ( x 3)
1 解: ln y [2ln x ln( x 1) 3ln(2 x) 4ln( x 3)] 5
1 1 2 2 3 ( 1) 4 y [ ] y 5 x x 1 2 x x 3
当 x 0 时, y ln( x ) 可看成由
y ln u , u x 复合而成,
dy 1 1 1 ( 1) ( 1) ; dx u x x
1 ∴ (ln x ) 。 x
10
1.2 导数的计算
逐步求导法 —“由外往里,逐层求导 ”
例 2.求下列函数的导数
例如: y f (u) , u g(v ) , v k ( x ) 复合成函数
dy du dv y f { g[k ( x )]} ,且 , , 都存在,则 du dv dx
数学:1.2.2复合函数的求导法则教案

§1.2.2复合函数的求导法则教学目标 理解并掌握复合函数的求导法则.教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积.教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确.一.创设情景(一)基本初等函数的导数公式表(2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)二.新课讲授 复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作()()y f g x =。
复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.若()()y f g x =,则()()()()()y f g x f g x g x ''''==⋅⎡⎤⎣⎦三.典例分析例1求y =sin (tan x 2)的导数.【点评】求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果. 例2求y =ax x ax 22--的导数. 【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理.例3求y =sin 4x +cos 4x 的导数.【解法一】y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2cos 2x =1-21sin 22 x =1-41(1-cos 4 x )=43+41cos 4 x .y ′=-sin 4 x . 【解法二】y ′=(sin 4 x )′+(cos 4 x )′=4 sin 3 x (sin x )′+4 cos 3x (cos x )′=4 sin3 x cos x +4 cos 3 x (-sin x )=4 sin x cos x (sin 2 x -cos 2x )=-2 sin 2 x cos 2 x =-sin 4 x【点评】 解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步.例4曲线y =x (x +1)(2-x )有两条平行于直线y =x 的切线,求此二切线之间的距离.【解】y =-x 3 +x 2 +2 x y ′=-3 x 2+2 x +2令y ′=1即3 x 2-2 x -1=0,解得 x =-31或x =1. 于是切点为P (1,2),Q (-31,-2714), 过点P 的切线方程为,y -2=x -1即 x -y +1=0.显然两切线间的距离等于点Q 到此切线的距离,故所求距离为2|1271431|++-=22716.四.课堂练习1.求下列函数的导数 (1) y =sin x 3+sin 33x ;(2)122sin -=x x y ;(3))2(log 2-x a2.求)132ln(2++x x 的导数五.回顾总结六.布置作业。
1.2.2导数的计算(复合函数的导数)

法则3:两个函数的积的导数 等于第一个函数的导数乘第二个 法则 两个函数的积的导数,等于第一个函数的导数乘第二个 两个函数的积的导数 函数,减去第一个函数乘第二个函数的导数 再除以第二个函 函数 减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即 数的平方 即:
f (x)′ f ′(x)g(x) − f (x)g′(x) (g(x) ≠ 0) g(x) = 2 [ g(x)]
'
y = y ⋅u
= e
( ) ⋅ (− 0.05x + 1)
u '
'
= −0.05eu = −0.05e −0.05 x +1.
(3)函数y = sin (πx + φ )可以看作函数y = sin u和
u = πx + φ的复合函数.
由复合函数求导法则有
' ' ' y x = yu ⋅ u x
例 3 日常生活中的饮用水 通常是 经过 净化的 .随着水 纯净度的提高 , 所需净化费 用不断增加.已知将1吨水净 用(单位 : 元 )为 化到纯净度为x%时所需费
5284 (80 < x < 100).求净化到下纯度 c( x ) = 100 − x 时, 所需净化费用的瞬时变化率 : (1) 90% ; (2)98% .
3
4). y = x 1 + x
2
( +2x2) 1+ x2 1 ' 4).y = 1+ x2
又y x = y u y u v x
' ' '
∴ yx =
'
1
ex + 2 ex = x 3((e x + 2 )2
复 合 函 数 的 求 导 法 则

复合函数的表示方法
记号表示
复合函数通常用记号F(u)来表示,其 中F表示外部函数,u表示内部函数的 输出。
具体表示
如果y=f(x)且u=g(y),则复合函数可 以表示为z=f(g(y))或z=F(u),其中 z=F(u)表示z是u的函数。
03
链式法则
链式法则的原理
链式法则是复合函数求导的重要法则之一,其原理是将复合 函数分解为多个基本函数,然后对每个基本函数分别求导, 再根据复合函数的复合关系,将各个基本函数的导数相乘, 得到复合函数的导数。
商的求导法则的原理
商的求导法则指出,对于两个函数的商,其 导数等于被除函数的导数除以除函数的导数 。即 (u/v)' = (u'v - uv') / v^2。
这个法则的原理基于函数的商的性质,即当 两个函数同时变化时,其商的变化率满足特
定的关系。
商的求导法则的应用示例
假设有两个函数 f(x) = x^2 和 g(x) = sin(x),我们需要 求它们的商函数 f(g(x)) = x^2 / sin(x) 的导数。
进一步学习高阶导数、隐 函数求导等更深入的数学 知识,为后续学习打下基 础。
THANKS
感谢观看
乘积法则
在求导过程中,将复合函数的中间变 量与常数相乘,并使用乘积法则进行 求导。
反函数求导法则
对于反函数,使用反函数求导法则进 行求导。
学习建议与展望
熟练掌握复合函数的求导 法则,能够快速准确地求 出复合函数的导数。
了解复合函数在实际问题 中的应用,如经济学、物 理学等领域。
ABCD
在学习过程中,多做练习 题,加深对复合函数求导 法则的理解和掌握。
表示
复合函数求导公式有哪些

复合函数求导公式有哪些
有很多的同学是非常的想知道,复合函数求导公式是什幺,小编整理了
相关信息,希望会对大家有所帮助!
1 复合函数如何求导规则:1、设u=g(x),对f(u)求导得:f’(x)=f’(u)*g’(x);
2、设u=g(x),a=p(u),对f(a)求导得:f’(x)=f’(a)*p’(u)*g’(x);
拓展:
1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那幺对于Mx∩Du内的任意一个x 经过u;有唯一确定的y 值与之对应,则变量x 与y 之间通过变量u 形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。
2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数
y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x 的取值范围,取他们的交集。
3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则
y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k 属于R+).
4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。
即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
1 复合函数求导法则Y=f(u),U=g(x),则y′=f(u)′*g(x)′
例1.y=Ln(x),Y=Ln(u),U=x,
y′=f(u)′*g(x)′=[1/Ln(x)]*(x)′=[1/Ln(x)]*(3x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和 u 2x 3 的复合函数. 由复合函数求导法则有:
y
' x
yu' u'x
1
(u2 )'
2x 3
'
1
1
u2
2
1
u2
2
1 2x 3
(5)函数 y ln(2 x 1) 可以看作函数 y ln u
和 u 2x 1 的复合函数. 由复合函数求导法则有:
y'x
yu' u'x
(ln u)'2x 1'
y'x yu' u'x (eu )' 0.05x 1'
eu (0.05) 0.05e0.05x1.
例2 求下列函数的导数
1 y 2x 32 ; 2 y e0.05x1 ;
3 y sin x 其中 ,均为常数 .
(3)函数 y sin x 可以看作函数 y sin u
Q c x 5284 , c ' x ( 5284 )'
100 x
100 x
5284’(100-x) -5284 (100-x)’
=
(100-x)2
0 =
-5284× (-1) (100-x)2
5284 (100 x)2
c' x
(1)Q
c ' 90
5284
100 902
=52.84,
nymx2 amx bb ky2' 22xmaa
P(m,n)
(2m - 2)(2m a) 1
4m2- 2(a+2)m= 1 - 2a
m2 - 2m 2 m2 am b 42mm22--2((aa++22))mm==b2 -b -2 4
复习回顾
1. 基本初等函数的导数公式:
1. c ' 0
2. x ' x 1
3. (sin x)' cos x
4. (cos x)' sin x
5. (a x )' a x ln a ;
7.
(loga
x)'
1; x ln a
6. (e x )' e x ;
8. (ln x)' 1 . x
2Q
c'
98
5284
100 982
1321,
所以,纯净度为900/0时,费用的瞬时变化率是52.84元/吨. 所以,纯净度为980/0时,费用的瞬时变化率是1321元/吨. 纯净度为980/0时,费用的瞬时变化率约是
纯净度为900/0时的25倍.
复合函数的求导法则
1.复合函数的定义: 一般的, 对于两个函数y=f(u)和u=g(x),
1 u
2
2. 2x 1
4 y 2x 3 ; 5 y ln(2x 1);
(6) y ( x 2)3(3 x 1)2 (6)函数 y ( x 2)3(3x 1)2 ,由复合函数求导法则有:
y ' [( x 2)3(3 x 1)2 ]' [( x 2)3 ]' (3 x 1)2 ( x 2)3 [(3x 1)2 ]' 3( x 2)2 (3x 1)2 ( x 2)3 2(3 x 1) 3 3( x 2)2 (3x 1)2 6( x 2)3(3x 1)
3 y sin x 其中 ,均为常数 .
解1函数y 2x 32 可以看作函数y u2
和u 2x 3的复合函数. 由复合函数求导法则有:
y
' x
yu'
u'x
(u2 )'(2x 3)'
=2u ×2
=4u 8x 12.
(2)函数y=e-0.05x+1可以看作函数y=eu
和u=-0.05x+1的复合函数. 由复合函数求导法则有:
100 x
100 x
5284’(100-x) -5284 (100-x)’
=
(100-x)2
0 =
-5284× (-1) (100-x)2
5284 (100 x)2
c' x
(1)Q
c ' 90
5284
100 902
=52.84,
2Q
c'
98
5284
100 982
1321,
所以,纯净度为900/0时,费用的瞬时变化率是52.84元/吨. 解: 净化费用的瞬时变化率就是净化费用函数的导数.
2. 导数的运算法则:
1. f x g x ' f ' x g' x; 2. f x g x ' f ' x g x f x g' x;
推论: [c f ( x)]' c f ' x
3. [ f ( x)]' g( x)
f
'
x
g
x g x
f 2
x
g
'
例1 日常生活中的饮用水通常是
经过净化的.随着水纯净度的提高 , 所需净化费用不断增加.已知将1吨水 净化到纯净度为x%时所需费用
单位 :元为c x 5284 80 x 100 .
100 x 求净化到下列纯度时,所需净化费用
的瞬时变化率 :
1 90% ; 2 98%.
解: 净化费用的瞬时变化率就是净化费用函数的导数.
Q c x 5284 , c ' x ( 5284 )'
例5.设抛物线C1 : y x2 - 2x 2与抛物线 C2 : y - x2 ax b在它们的交点处的切线互相垂直. (1)求a, b之间的关系.
(2)若a 0, b 0,求ab的最大值.
解(1): 设C1与C2交点P(m,n),
nymx22--22mx 2
ky1' 22mx - 2
如果通过变量u, y可以表示成x的函数, 那么称这个函数为函数y=f(u)和u=g(x)的复合函数. 记作y=f(g(x)).
2.复合函数的求导法则:
复合函数y=f(g(x))的导数与y=f(u)和u=g(x)
的导数间的关系为
y
' x
yu'
u'x
y
' x
表示y对x的导数
例2 求下列函数的导数
1 y 2x 32 ; 2 y e0.05x1 ;
和 u x 的复合函数. 由复合函数求导法则有:
y
' x
yu' u'x
(sin u)' x '
cos u cos x .
4 y 2x 3 ; 5 y ln(2x 1);
(6) y ( x 2)3(3 x 1)2
1
1
(4)函数 y (2x 1)2 可以看作函数 y u2
例4.求过点P(-2,0)且与曲线y=x2+x+1相切的直线方程.
b=a2+a+1 …………(1)
y' 2x 1
kPA 2a 1 b
kPA a 2
b
P(-2,0)
2a 1
a2
b=2a2+5a+2 …………(2)
A(a,b)
2a2+5a+2 =a2+a+1 a2+4a+1=0
解出a即可。