自回归分布滞后模型ADL的运用试验指导-时间序列分析

合集下载

第九章分布滞后和自回归模型

第九章分布滞后和自回归模型




此外,在考虑一个解释变量对被解释变量的影 响和滞后作用(如收入对消费)以外,还可以 同时考虑其他解释变量对被解释变量的影响, 甚至同时考虑多个解释变量作用的滞后效应等。 分布滞后模型形式上是含有解释变量滞后项的 多元回归模型。 但分布滞后模型主要用来研究经济变量作用的 时间滞后效应、长期影响,以及经济变量之间 的动态影响关系,可用于评价经济政策的中长 期效果,属于动态计量分析的范畴。


设一个有限分布滞后模型为: Yt 0 X t 1 X t 1 K X t K t
也可以写成:
Yt i X t i t
i 0 K


阿尔蒙认为可以用如下i 的多项式模拟 i 的变化: i a0 a1i a2i 2 ami m



其次是滞后效应的模式,对应于m,也 必须预先知道,这就很难以避免判断的 主观偏差。 最后上述变量变换会缩短样本长度,因 此并不能完全解决分布滞后模型参数估 计的自由度问题。 当样本容量并不是很大,滞后期长度较 长时,仍然无法得到有效的估计结果。
2. 考伊克方法


考伊克方法在一定程度上可以弥补阿尔蒙多项 式法的不足,解决其部分问题。 考伊克方法形式上是针对无限分布滞后模型: Yt 0 X t 1 X t 1 2 X t 2 t
(二)先验约束估计


分布滞后模型参数估计的另一类方法, 是利用某种先验信息和经验设定分布滞 后模型的滞后模式,从而简化分布滞后 模型的函数形式,方便参数估计。这类 方法称为“参数约束法”。 最重要的参数约束法是阿尔蒙多项式法 和考伊克方法。
1. 阿尔蒙多项式法

自回归分布滞后模型(ADL)的运用实验指导

自回归分布滞后模型(ADL)的运用实验指导

实验六 自回归分布滞后模型(ADL )的运用实验指导一、实验目的理解ADL 模型的原理与应用条件,学会运用ADL 模型来估计变量之间长期稳定关系。

理解从经济理论上来说,两个经济变量之间的确有长期关系采用使用该模型进行估计。

理解ADL 模型的优点:不管回归项是不是1阶单整或平稳都可以进行检验和估计。

而进行标准的协整分析前,必须把变量分类成(0)I 和(1)I 。

二、基本概念Jorgenson(1966)提出的(,p q )阶自回归分布滞后模型ADL(autoregressive distributed lag):011111i t t p t p t t q t q i t i i y y y ταφφεθεθεβ-----='=++++--+∑x ,其中t i -x 是滞后i 期的外生变量向量(维数与变量个数相同),且每个外生变量的最大滞后阶数为i τ,i β是参数向量。

当不存在外生变量时,模型就退化为一般ARMA (,p q )模型。

如果模型中不含有移动平均项,可以采用OLS 方法估计参数,若模型中含有移动平均项,线性OLS 估计将是非一致性估计,应采用非线性最小二乘估计。

三、实验内容及要求(1)实验内容运用ADL 模型研究1992年1月到1998年12月我国城镇居民月对数人均生活费支出yt 和对数可支配收入xt 之间的长期稳定关系。

(2)实验要求在认真理解模型应用条件的基础上,通过实验掌握ADL 模型的实际应用方法,并熟悉Eniews 的具体操作过程。

四、实验指导(1)数据录入打开Eviews 软件,选择“File”菜单中的“New --Workfile”选项,在“Workfile structure type ”栏选择“Dated-regular frequency ”,在“Data specification ”栏中“Frequency ”中选择“Monthly ”即月份数据,起始时间输入1992m1即1992年1月份,止于1998m12,点击ok ,见图6-1,这样就建立了一个工作文件。

第六章分布滞后模型与自回归模型分析

第六章分布滞后模型与自回归模型分析

第六章分布滞后模型与自回归模型分析分布滞后模型(Distributed Lag Models)和自回归模型(Autoregressive Models)是常用于时间序列分析的两种方法。

本章将分别介绍这两种模型以及其在经济学和社会科学领域中的应用。

分布滞后模型是一种广义的线性回归模型,用于分析变量之间的滞后效应。

它的基本形式可以表示为:Yt = α + β1Xt + β2Xt-1 + ... + βpXt-p + et其中,Yt是被解释变量,Xt是解释变量,β1到βp是与解释变量相关的系数,et是误差项。

模型中的滞后项Xt-1到Xt-p表示X在当前时间以及过去的一段时间内对Y的影响。

分布滞后模型可以用来研究两个或多个变量之间的滞后效应,并帮助研究者了解这些变量之间的动态关系。

分布滞后模型在经济学和社会科学领域中有广泛的应用。

例如,在宏观经济学中,可以用分布滞后模型来研究货币政策对经济增长的长期影响。

在健康经济学中,可以用分布滞后模型来研究疫苗接种对流行病传播的影响。

在社会学研究中,可以用分布滞后模型来研究教育程度对就业机会的影响。

自回归模型是一种基于时间序列的统计模型,用于预测一个变量在时间上的变化。

它的基本形式可以表示为:Yt = α + φ1Yt-1 + φ2Yt-2 + ... + φpYt-p + et其中,Yt是被预测的变量,φ1到φp是自回归系数,et是误差项。

自回归模型假设当前时间的值与过去时间的值有关,并且根据过去时间的值来预测未来时间的值。

自回归模型可以帮助研究者预测变量的趋势和周期性,并提供关于未来值的信息。

自回归模型在经济学和社会科学领域中也有广泛的应用。

例如,在金融学中,可以用自回归模型来预测股票价格的变化。

在气象学中,可以用自回归模型来预测天气变化。

在市场研究中,可以用自回归模型来预测产品销售量。

总之,分布滞后模型和自回归模型是两种常用的时间序列分析方法。

它们可以帮助研究者了解变量之间的滞后效应和趋势,并用于预测未来值。

计量经济学课件:第七章-分布滞后模型与自回归模型上课讲义

计量经济学课件:第七章-分布滞后模型与自回归模型上课讲义

计量经济学课件:第七章-分布滞后模型与自回归模型上课讲义第七章分布滞后模型与自回归模型第一节分布滞后模型与自回归模型的基本概念一、问题的提出1、滞后效应的出现。

(1)在经济学分析中,研究消费函数,人们的消费行为不仅要受到当期收入的影响(绝对收入假设),还要受到前期收入的影响,甚至要受到前期消费的影响(相对收入假设)。

(2)研究投资问题,由于投资周期的原因,本年度投资的形成,与上年度,甚至再上年度的投资形成有关。

(3)运用经济政策调控宏观经济运行,经济政策的实施所产生的政策效果是一个逐步波及的扩散过程。

用计量经济学模型研究这类问题,怎样度量变量的滞后影响?怎样估计有滞后变量的模型?对于上述消费的情况,设C 表示消费,Y 表示收入,则123141t t t t t C Y Y C u ββββ--=++++对于上述投资的情况,设I 表示投资,Y 表示收入,则12314253t t t t t tI Y I I I u ααααα---=+++++ 2、静态计量经济学模型向动态计量经济学模型的扩展。

什么为“动态计量经济学模型”?二、产生滞后效应的原因1、心理预期因素的作用。

2、技术因素的作用。

3、制度因素的作用。

上述原因的结果表现为经济现象中的“惯性作用”。

二、滞后变量模型的类型1、分布滞后模型。

如果模型中没有滞后的被解释变量,即01122t t t t s t s t Y X X X X u αββββ---=++++++则模型为分布滞后模型。

由于s 可以是有限数,也可以是无限数,则分布滞后模型可分为有限分布滞后模型和无限分布滞后模型。

在分布滞后模型中,有关系数的解释如下:⑴乘数(又称倍数)的解释。

该概念首先由英国的卡恩提出(R.F.Kahn ,1931)。

所谓乘数是指,在一个模型体系里,外生变量变化一个单位,对内生变量产生的影响程度。

据此进行的经济分析称为乘数分析或乘数效应分析。

如投资乘数,是指在边际消费倾向一定的情况下,投资变动对收入带来的影响,亦即增加一笔投资,可以引起收入倍数的增加。

第七章分布滞后模型与自回归模型

第七章分布滞后模型与自回归模型

例如,包含一个预期解释变量的“期望模型”可以表现为如下形式:
Yt
=
α+
βX
* t
+ ut
u 其中,Yt为被解释变量,Xt*为解释变量预期值, t 为随机扰动项。
二、自适应预期模型
难点 预期是对未来的判断,在大多数情况下,预期值是不可观测的。因
此,实际应用中需要对预期的形成机理作出某种假定。自适应预期 假定就是其中之一,具有一定代表性。
第七章 分布滞后模型与自回归模型
Econometrics
胡亚南
Econometrics
本章主要讨论: 滞后效应与滞后变量模型 分布滞后模型的估计 自回归模型的构建 自回归模型的估计
2
第一节 滞后效应与滞后变量模型
经济活动中的滞后现象 滞后效应产生的原因 滞后变量模型
经济活动中的滞后现象
2.滞后一期的被解释变量与 X 的线性相关程度将低于Xt 的各滞后 值之间的相关程度,从而在很大程度上缓解了多重共线性。
43
库伊克变换的缺陷
1.它假定无限滞后分布呈几何递减滞后结构。 这种假定对某些经济变量可能不适用,如固定资 产投资对总产出影响
的滞后结构就不是这种类型。
2.库伊克模型的随机扰动项形如 ut* = ut - λut-1
说明新模型的随机扰动项存在一阶自相关,且与解释变量相关。
库伊克变换的缺陷
3.将随机变量作为解释变量引入了模型,不一定符合基本假定。 4.库伊克变换是纯粹的数学运算结果,缺乏经济理论依据。 这些缺陷,特别是第二个缺陷,将给模型的参数估计带来一定困难。
45
自适应预期模型
二、自适应预期模型
某些经济变量的变化会或多或少地受到另一些经济变量预期值的影响。 为了处理这种经济现象,可以将解释变量预期值引入模型建立“期望 模型”。

计量经济学第九章分布滞后和自回归模型

计量经济学第九章分布滞后和自回归模型
转变为纯粹的自回归模型或完全的分布滞后模型,因此 不做专门讨论。
自回归模型的理论导出
适应性预期(Adaptive expectation)模型
在某些实际问题中,因变量 Yt 并不取决于解释变量的当
前实际值
X
t
,而取决于X
t
的“预期水平”或“长期均衡水X
* t
平” 。
例如,家庭本期消费水平,取决于本期收入的预期值;
❖ 为了解决滞后长度不确定的困难,可以依次估计滞 后效应变量的一期滞后、二期滞后…当发现滞后变 量(加入的最多期滞后)的回归系数在统计上开始 变得不显著,或至少有一个变量的系数改变符号 (由正变负或由负变正)时,就不再增加滞后期, 把此前一个模型作为分布滞后模型的形式,相应参 数估计作为模型的参数估计。
市场上某种商品供求量,决定于本期该商品价格的均衡值。
因此,适应性预期模型最初表现形式是
Yt
0
1
X
* t
t
由于预期变量是不可实际观测的,往往作如下 适应性预期假定:
X
* t
X* t 1
(Xt
X
* t 1
)
其中:r为预期系数(coefficient of expectation), 0r 1。
该式的经济含义为:“经济行为者将根据过去的 经验修改他们的预期”,即本期预期值的形成是一 个逐步调整过程,本期预期值的增量是本期实际值 与前一期预期值之差的一部分,其比例为r 。
这个假定还可写成:
X
* t
X t
(1
)
X
* t 1

X
* t
X t
(1
)
X
* t 1
代入

自回归与分布滞后模型

自回归与分布滞后模型

Yt C 0.4xt 0.3xt 1 0.2xt 2 ut
其中Y是消费量,X是收入
(17.1.1)
更一般的,我们可以写成:
Yt 0 xt 1xt 1 2 xt 2
β
k xt k ut
(17.1.2)
0 表示随着X一个单位的变化, Y均值的同期变化,
• 其中 Y = 对货币(实际现金余额)的需求 * X • =均衡、最优、预期的长期或正常利率 u t =误差项 •
• 方程(17.5.1) 设想,货币需求是预期(预测意义的)利 率的函数.
• 由于预期变量 X 不可直接观测,我们对预期的形成做如 下的设想: (17.5.2) • 其中 为 0 1 ,称期望系数(coefficient of expectation)。假设(17.5.2) 称适应性预期(adaptive expectation)或累进式期望(progressive expectation) 或错误中学习假设(error learning hypothesis). • (17.5.2) 表明:人们每期都按变量的现期值 X t与前期期 望值 X t 1* 之间的差距的一个分数 去修改期望值。 .
• 表达式证明
t 1 )/(1- ) 1 长期反应 ( 0 t期反应 0 / (1 ) 2
1 ln 2 2 t ln ln ln
平均滞后 • 假设所有的β
k
都是正的,则平均滞后有相关滞后的加权平均。扼要地 说,它是滞后加权平均时间。(类似于投资学中的久期) 考伊克模型:平均滞后=
*
• 将 (17.5.3) 代入 (17.5.1), 我们得到:
Yt 0 1 X t 1 X t 1 ut

计量经济学第七章 分布滞后模型和自回归模型

计量经济学第七章 分布滞后模型和自回归模型
a1( X t1 2 X t2 3X t3 )
a2 ( X t1 4 X t2 9 X t3 ) t
令: Z1t X t X t1 X t2 X t3
Z2t X t1 2 X t2 3X t3 Z3t X t1 4 X t2 9 X t3
X t2

1 8
X t3 )

t
Z1t t
不变滞后结构
Yt X t X t1 X t2 X t3 t
( X t X t1 X t2 X t3 ) t
Z2t t
先增后减滞后结构
之前讨论的模型通常假定形式为:
Yt X t t
在现实经济中,解释变量X对被解释变量Y可 能会有滞后影响,即Xt的变化会对Yt、Yt+1、 Yt+2等产生影响,即:
Yt f ( X t , X t1, X t2 ,)
如货币供应量对物价的影响?
第七章 分布滞后模型与自回归模型
X* t 1

X
* t

(Xt

X
* t
)

(1
)
X
* t
X t
• 则有:
Yt



0
X
* t 1

t
Yt 1



0
X
* t

t 1
(1

)Yt 1


(1

)

0
(1

)
X
* t

(1

) t 1
Yt (1 )Yt1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图6-1建立工作文件窗口
点击File/Import,找到相应的Excel数据集,打开数据集,出现图6-2的窗口,在“Data order”选项中选择“By observation”即按照观察值顺序录入,第一个数据是从a2开始的,所以在“Upper-left data cell”中输入a2,本例有2列数据,在“Names for series or number if named in file”中输入序列的名字2,点击ok,则录入了数据,图6-3显示的xt和yt便是录入的对数可支配收入和对数人均生活费支出。
图6-4
图6-5
图6-6显示,仍有yt(-3)的p值较大,继续剔除yt(-3),得回归结果6-7。在逐步剔除不显著的解释变量过程中,模型的拟合效果变化并不大,且AIC和SC值在逐步减少,说明历史较久远的收入和支出对当期支出影响的确不大。
图6-6
图6-7
考虑到滞后1期和滞后2期的生活费支出对当期生活费支出影响的实际情况,从6-7中继续剔除p值较小的yt(-2),得回归结果图6-8。
图6-2
图6-3
宏观经济理论告诉我们,支出来源于收入,尤其是可支配收入,因此,从长期来看,人均生活费支出和可支配收入之间必定存在长期稳定关系。因此可以考虑用分布滞后模型来描述二者之间的长期关系。Fra bibliotek(2)建立一般模型
消费具有惯性,即当期消费会受历史消费支出的影响,同时也会受当期收入和当前经济实力的影响,而当前经济实力主要取决于历史收入情况,也就是说当期支出受历史收入和支出,以及当期收入影响,我们可以把当期支出关于当期收入,历史收入和支出进行回归,另外,考虑到是月份数据,还应该考虑滞后12期的可支配收入和支出。在主窗口命令栏里输入ls yt c yt(-1) yt(-2)yt(-3)yt(-12)xt xt(-1) xt(-2)xt(-3)xt(-12),回车,即得回归结果图6-4。从回归结果看出,模型拟合很好,但有些变量t检验未能通过,按照p值从大到小的顺序逐步剔除不显著的变量,直到每个解释变量都高度显著为止。首先剔除xt(-3),得回归模型见图6-5,其他解释变量的p值都有所减小,继续剔除p值最大的xt(-2),得回归结果图6-6。
图6-8
从6-8的的参数估计结果看出,包括常数项在内的各解释变量在显著性水平0.05下都显著,模型的R2也很大,模型整体的显著性F检验显示模型高度显著。
(3)模型诊断
对最后拟合模型后的残差序列进行检验,在方程估计窗口,点击view/Residual Test/Correlogram-Q-Test,出现图6-9的对话框,在滞后阶数中输入10( ),得出模型残差的相关图6-10,显然残差为白噪声序列,说明模型拟合很好见图6-11。也说明该模型可以作为反映城镇居民月人均生活费支出和可支配收入关系的自回归分布滞后模型(ADL)。
二、基本概念
Jorgenson(1966)提出的( )阶自回归分布滞后模型ADL(autoregressive distributed lag): ,其中 是滞后 期的外生变量向量(维数与变量个数相同),且每个外生变量的最大滞后阶数为 , 是参数向量。当不存在外生变量时,模型就退化为一般ARMA( )模型。
如果模型中不含有移动平均项,可以采用OLS方法估计参数,若模型中含有移动平均项,线性OLS估计将是非一致性估计,应采用非线性最小二乘估计。
三、实验内容及要求
(1)实验内容
运用ADL模型研究1992年1月到1998年12月我国城镇居民月对数人均生活费支出yt和对数可支配收入xt之间的长期稳定关系。
(2)实验要求
图6-9
图6-10
图6-11
在认真理解模型应用条件的基础上,通过实验掌握ADL模型的实际应用方法,并熟悉Eniews的具体操作过程。
四、实验指导
(1)数据录入
打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated-regular frequency”,在“Dataspecification”栏中“Frequency”中选择“Monthly”即月份数据,起始时间输入1992m1即1992年1月份,止于1998m12,点击ok,见图6-1,这样就建立了一个工作文件。
案例六 自回归分布滞后模型(ADL)的运用实验指导
一、实验目的
理解ADL模型的原理与应用条件,学会运用ADL模型来估计变量之间长期稳定关系。理解从经济理论上来说,两个经济变量之间的确有长期关系采用使用该模型进行估计。理解ADL模型的优点:不管回归项是不是1阶单整或平稳都可以进行检验和估计。而进行标准的协整分析前,必须把变量分类成 和 。
相关文档
最新文档