相关分析与回归分析的异同

合集下载

对统计中相关分析与回归分析的论述

对统计中相关分析与回归分析的论述

对统计中相关分析与回归分析的论述作者:王娟来源:《现代经济信息》2014年第08期摘要:客观事物之间存在一定的依存关系,对这种关系的分析具有重要意义。

本文阐述了相关分析与回归分析的概念,提出了分析中应注意的问题。

关键词:依存关系;相关分析;回归分析;中图分类号:C82 文献标识码:A 文章编号:1001-828X(2014)08-0115-01一切客观事物都是互相联系的。

而且每一事物的运动都和它的周围其它事物相联系互相影响。

客观现象间的互相联系,可以通过一定的数量关系反映出来。

例如气温与降雨量之间,消费品需求量与居民收入水平之间,劳动生产率与产品成本之间,投入与产出之间等等,都存在着一定的依存关系。

一、相关分析与回归分析的概念。

(一)客观现象之间存在的互相依存关系叫相关关系,对现象之间相关关系密切程度的研究,叫相关分析。

相关分析具有如下两个特点。

1.现象之间确实存在着数量上的依存关系。

如果一个现象发生数量上的变化,则另一个现象也会相应地发生数量上的变化。

例如商品流通费增加,一般商品销售额也会增加,反过来,如果商品销售额增加,一般商品流通费也要增加。

身材较高的人,一般体重也较重。

反过来,体重较重的人,一般身材也较高。

再如,年龄与血压、播种量与粮食收获量之间等等都有数量上的依存关系。

2.现象之间数量上的关系不是确定的。

相关关系的全称为统计相关关系,它属于变量之间的一种不完全确定的关系。

这意味着一个变量虽然受另一个(或一组)变量影响,却并不由这一个(或一组)变量完全确定。

例如,身高1.7米的人其体重有许多个值;体重为60公斤的人,其身高也有许多个值。

身高与体重之间没有完全严格确定的数量关系存在。

再如产品单位成本和劳动生产率的变动之间存在着一定的依存关系,但是除了劳动生产率的变动以外,还会受到材料消耗、设备折旧、能源耗用以及管理费用等诸因素变动的影响。

由此可见,相关关系是现象间确实存在的,但相关关系数值是不完全确定的相互依存关系。

相关和回归的数学模型区别和联系

相关和回归的数学模型区别和联系

相关和回归的数学模型区别和联系在统计学和数据分析领域,相关和回归是两种常用的数学模型,用以揭示变量之间的关系。

本文将详细阐述相关和回归的数学模型的区别与联系,帮助读者更好地理解这两种模型的应用场景和特点。

一、相关和回归的数学模型概述1.相关分析相关分析是指衡量两个变量之间线性关系紧密程度的统计分析方法。

常用的相关系数有皮尔逊相关系数和斯皮尔曼等级相关系数。

相关分析主要用于描述两个变量之间的相关性,但不能确定变量间的因果关系。

2.回归分析回归分析是指研究一个或多个自变量(解释变量)与一个因变量(响应变量)之间线性或非线性关系的方法。

根据自变量的个数,回归分析可分为一元回归和多元回归。

回归分析可以用于预测因变量的值,并分析自变量对因变量的影响程度。

二、相关和回归的数学模型区别1.目的性区别相关分析的目的是衡量两个变量之间的线性关系程度,但不能判断因果关系;回归分析的目的则是建立变量间的预测模型,分析自变量对因变量的影响程度,并预测因变量的值。

2.数学表达区别相关分析通常使用相关系数(如皮尔逊相关系数)来表示两个变量之间的线性关系程度;回归分析则使用回归方程(如线性回归方程)来描述自变量与因变量之间的关系。

3.结果解释区别相关分析的结果是一个介于-1和1之间的数值,表示两个变量之间的线性相关程度;回归分析的结果是一组回归系数,表示自变量对因变量的影响程度。

三、相关和回归的数学模型联系1.研究对象相同相关分析和回归分析都是研究两个或多个变量之间关系的统计分析方法,可以揭示变量间的相互作用。

2.数据类型相似相关分析和回归分析通常应用于数值型数据,且都需要满足一定的数据分布特征,如正态分布、线性关系等。

3.相互补充在实际应用中,相关分析和回归分析可以相互补充。

通过相关分析,我们可以初步判断变量间是否存在线性关系,进而决定是否采用回归分析建立预测模型。

四、总结相关和回归的数学模型在研究变量关系方面有着广泛的应用。

相关分析及回归分析的异同

相关分析及回归分析的异同

问:请详细说明相关分析与回归分析的相同与不同的地方相关分析与回归分析都是研究变量彼此关系的分析方式,相关分析是回归分析的基础,而回归分析则是熟悉变量之间相关程度的具体形式。

下面分为三个部份详细描述两种分析方式的异同:第一部份:相关分析一、相关的含义与种类(一)相关的含义相关是指自然与社会现象等客观现象数量关系的一种表现。

相关关系是指现象之间确实存在的必然的联系,但数量关系表现为不严格彼此依存关系。

即对一个变量或几个变量定必然值时,另一变量值表现为在必然范围内随机波动,具有非肯定性。

如:产品销售收入与广告费用之间的关系。

(二)相关的种类1. 按照自变量的多少划分,可分为单相关和复相关2. 按照有关关系的方向划分,可分为正相关和负相关3. 按照变量间彼此关系的表现形式划分,线性相关和非线性相关4.按照有关关系的程度划分,可分为不相关、完全相关和不完全相关二、相关分析的意义与内容(一)相关分析的意义相关分析是研究变量之间关系的紧密程度,并用相关系数或指数来表示。

其目的是揭露现象之间是不是存在相关关系,肯定相关关系的表现形式和肯定现象变量间相关关系的密切程度和方向。

(二)相关分析的内容1. 明确客观事物之间是不是存在相关关系2. 肯定相关关系的性质、方向与密切程度三、直线相关的测定(一)相关表与相关图1. 相关表在定性判断的基础上,把具有相关关系的两个量的具体数值依照必然顺序平行排列在一张表上,以观察它们之间的彼此关系,这种表就称为相关表。

2. 相关图把相关表上一一对应的具体数值在直角坐标系顶用点标出来而形成的散点图则称为相关图。

利用相关图和相关表,可以更直观、更形象地表现变量之间的彼此关系。

(二)相关系数1. 相关系数的含义与计算相关系数是直线相关条件下说明两个变量之间相关关系密切程度的统计分析指标。

相关系数的理论公式为:y x xy r δδδ2= (1)xy 2δ 协方差 x δ x 的标准差 y δ y 的标准差(2)xy 2δ 协方差对相关系数r 的影响,决定:⎩⎨⎧<>数值的大小正、负)或r r r (00简化式()()2222∑∑∑∑∑∑∑-⋅--=y y n x x n y x xy n r变形:分子分母同时除以2n 得 r =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⨯-∑∑∑∑∑∑∑2222n y n y n x n x n y n x n xy =()[]()[]2222y y x xy x xy -*-⨯-=y x y x xy δδ-⨯-nx x x ∑-=2)(δ=()[]n x x x x ∑+⋅-222=()222x n x x n x +⋅⋅-∑∑ =()22x x -2. 相关系数的性质(1)r取值范围:r≤1 -1≤r≤1(2)r=1 r=±1 表明x与y之间存在着肯定的函数关系。

相关与回归的区别与联系

相关与回归的区别与联系

相关与回归的区别与联系相关与回归是统计学中常见的两个概念,它们在数据分析和建模中起着重要的作用。

虽然相关与回归都涉及到变量之间的关系,但它们在实际应用中有着不同的含义和用途。

本文将从相关与回归的定义、计算方法、应用领域等方面进行详细的比较,以便更好地理解它们之间的区别与联系。

相关是指两个或多个变量之间的关联程度,用相关系数来衡量。

相关系数的取值范围在-1到1之间,0表示无相关,1表示完全正相关,-1表示完全负相关。

相关系数的计算可以采用皮尔逊相关系数、斯皮尔曼相关系数等方法。

相关分析主要用于描述和衡量变量之间的线性关系,帮助我们了解变量之间的相互影响程度。

回归分析则是一种建立变量之间关系的数学模型的方法。

回归分析可以分为线性回归、多元回归、逻辑回归等不同类型,用于预测和解释变量之间的关系。

回归分析通过拟合数据点来找到最佳拟合线或曲线,从而建立变量之间的函数关系。

回归分析广泛应用于经济学、社会学、生物学等领域,帮助研究人员进行数据建模和预测。

相关与回归之间的联系在于它们都是用来研究变量之间的关系的方法。

相关分析可以帮助我们初步了解变量之间的相关程度,为后续的回归分析提供参考。

而回归分析则可以更深入地探究变量之间的函数关系,帮助我们建立预测模型和解释变量之间的因果关系。

因此,相关与回归在数据分析中常常是相辅相成的。

然而,相关与回归之间也存在一些区别。

首先,相关分析更注重描述变量之间的关系,而回归分析更注重建立变量之间的函数关系。

其次,相关系数的取值范围在-1到1之间,而回归系数则可以是任意实数。

最后,相关分析不涉及因果关系,而回归分析可以用来解释变量之间的因果关系。

综上所述,相关与回归在统计学中有着不同的含义和用途,但又有着密切的联系。

通过对相关与回归的区别与联系进行深入理解,我们可以更好地运用它们来分析数据、建立模型,为科学研究和决策提供有力支持。

希望本文能够帮助读者更好地理解相关与回归的概念和应用,提升数据分析能力和研究水平。

相关分析和回归分析

相关分析和回归分析

相关分析和回归分析相关分析和回归分析是统计学中最基础的两种分析方法,它们都用于研究数据变量之间的关系。

因为它们都是研究两个变量之间关系的,所以它们常常会被混淆起来,但它们其实在原理上是不同的,有不同的应用场景。

一、相关分析相关分析是一种简单的统计分析,用来检验不同变量之间是否存在相互关系。

它可以通过计算出变量之间的相关系数,来判断变量之间是线性关系还是非线性关系。

另外,它还可以度量两个变量的线性关系的相关程度,用来度量不同变量之间的关系强度。

相关分析的应用非常广泛,它可以帮助研究者了解数据之间的关系,也可以用来预测数据的变化趋势。

比如,可以用相关分析来研究一个地区的薪水水平和就业水平之间的关系,用来预测未来就业水平和薪资水平会有怎样的变化趋势。

二、回归分析回归分析是一种统计分析,用以研究两个变量之间的数量关系,并建立起变量之间的数量模型。

它用于预测和分析数据,从而探索数据之间的关系。

比如,从客户收入、购买频率等多个因素来建立一个回归模型,从而预测客户的未来购买意愿。

回归分析也是一种非常有用的统计方法,它可以用来研究数据之间的关系,并预测数据未来的变化趋势。

另外,它还可以用来预测特定变量的值,比如预测未来股市的涨跌情况。

总结以上就是相关分析和回归分析的基本内容介绍。

相关分析用于研究数据变量之间的关系,可以帮助研究者了解数据之间的关系,并预测数据的变化趋势;而回归分析是一种统计分析,用以研究两个变量之间的数量关系,可以用来预测特定变量的值,也可以研究数据之间的关系,并预测数据未来的变化趋势。

相关分析和回归分析可以说是统计学中最基础的两种分析方法,它们都具有重要的应用价值,广泛用于各种数据分析工作。

回归分析与相关分析的概念与应用

回归分析与相关分析的概念与应用

回归分析与相关分析的概念与应用回归分析和相关分析是统计学中常用的两种数据分析方法,它们可以帮助我们理解和解释变量之间的关系。

本文将介绍回归分析和相关分析的概念以及它们在实际应用中的用途。

一、回归分析的概念与应用回归分析是一种用于研究变量之间关系的方法。

它通过建立一个数学模型来描述自变量与因变量之间的关系,并使用统计方法对模型进行评估。

在回归分析中,我们需要选择一个合适的回归模型,并利用样本数据来估计模型参数。

回归分析可以应用于各种场景,例如市场营销、经济预测和医学研究等。

以市场营销为例,我们可以使用回归分析来研究广告投入与销售额之间的关系,从而制定更有效的营销策略。

此外,回归分析还可以用于预测未来的趋势和模式,帮助决策者做出准确的预测。

二、相关分析的概念与应用相关分析是用来衡量两个变量之间关系强度的统计方法。

它可以告诉我们这两个变量是否呈现线性相关,并给出相关系数来表示相关程度。

相关系数的取值范围是-1到1,当相关系数接近于-1时,表示负相关;当相关系数接近于1时,表示正相关;当相关系数接近于0时,表示无相关关系。

相关分析被广泛应用于各个领域,例如社会科学研究、金融分析和环境监测等。

在社会科学研究中,我们可以利用相关分析来研究教育水平与收入之间的关系,以及人口密度与犯罪率之间的关系。

通过分析相关性,我们可以发现变量之间的内在联系,进而做出有针对性的政策或决策。

三、回归分析与相关分析的联系与区别回归分析和相关分析都是用来研究变量之间关系的统计方法,但它们有一些区别。

首先,回归分析关注的是因变量与自变量之间的关系,并通过建立模型来预测因变量的取值。

而相关分析则更加关注变量之间的相关程度,并不涉及因果关系的解释。

其次,回归分析假设因变量与自变量之间存在一种函数关系,而相关分析只是衡量两个变量之间的相关性,并不要求存在具体的函数形式。

因此,回归分析可以进行更加深入的解释和预测,而相关分析则更加简单直观。

统计学中直线相关与回归的区别与联系

统计学中直线相关与回归的区别与联系

统计学中直线相关与回归的区别与联系在统计学中,直线相关和回归是两个相关的概念,但又有一些区别和联系。

区别:
1. 定义:直线相关是指两个变量之间的线性关系,即随着一个变量的增加,另一个变量也以一定的比例增加或减少。

回归分析是一种统计方法,用于建立一个或多个自变量与因变量之间的关系模型。

2. 目的:直线相关主要关注变量之间的关系和相关程度,通过相关系数来衡量。

而回归分析旨在通过建立数学模型来预测或解释因变量的变化,以及评估自变量对因变量的影响。

3. 变量角色:在直线相关中,两个变量没有明确的自变量和因变量的区分,它们之间的关系是对称的。

而在回归分析中,通常有一个或多个自变量作为预测因变量的因素。

联系:
1. 线性关系:直线相关和回归分析都假设变量之间存在线性关系,即可以用直线或线性模型来描述它们之间的关系。

2. 相关系数:直线相关中使用相关系数来度量变量之间的相关程度。

回归分析中也使用相关系数,但更多地关注回归模型的参数估计和显著性检验。

3. 数据分析:直线相关和回归分析都是常用的数据分析方法,在实际应用中经常同时使用。

直线相关可以帮助我们了解变量之间的关系和趋势,而回归分析可以进一步建立模型和进行预测。

总之,直线相关和回归分析是统计学中两个相关但又有区别的概念。

直线相关关注变量之间的线性关系和相关程度,而回归分析则更关注建立模型和预测变量之间的关系。

在实际应用中,它们常常相互补充使用,以帮助我们理解和解释数据。

回归分析与相关分析联系区别

回归分析与相关分析联系区别

回归分析与相关分析联系、区别??简单线性回归分析是对两个具有线性关系的变量,研究其相关性,配合线性回归方程,并根据自变量的变动来推算和预测因变量平均发展趋势的方法。

回归分析(Regression analysis)通过一个变量或一些变量的变化解释另一变量的变化。

主要内容和步骤:首先依据经济学理论并且通过对问题的分析判断,将变量分为自变量和因变量,一般情况下,自变量表示原因,因变量表示结果;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;接着要估计模型的参数,得出样本回归方程;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验,计量经济学检验、预测检验;当所有检验通过后,就可以应用回归模型了。

回归的种类回归按照自变量的个数划分为一元回归和多元回归。

只有一个自变量的回归叫一元回归,有两个或两个以上自变量的回归叫多元回归。

按照回归曲线的形态划分,有线性(直线)回归和非线性(曲线)回归。

相关分析与回归分析的关系(一)相关分析与回归分析的联系相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。

相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。

只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。

如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。

与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。

(二)相关分析与回归分析的区别1.相关分析中涉及的变量不存在自变量和因变量的划分问题,变量之间的关系是对等的;而在回归分析中,则必须根据研究对象的性质和研究分析的目的,对变量进行自变量和因变量的划分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问:请详细说明相关分析与回归分析的相同与不同之处相关分析与回归分析都是研究变量相互关系的分析方法,相关分析是回归分析的基础,而回归分析则是认识变量之间相关程度的具体形式。

下面分为三个部分详细描述两种分析方法的异同:第一部分:相关分析一、相关的含义与种类(一)相关的含义相关是指自然与社会现象等客观现象数量关系的一种表现。

相关关系是指现象之间确实存在的一定的联系,但数量关系表现为不严格相互依存关系。

即对一个变量或几个变量定一定值时,另一变量值表现为在一定范围内随机波动,具有非确定性。

如:产品销售收入与广告费用之间的关系。

(二)相关的种类1. 根据自变量的多少划分,可分为单相关和复相关2. 根据相关关系的方向划分,可分为正相关和负相关3. 根据变量间相互关系的表现形式划分,线性相关和非线性相关4.根据相关关系的程度划分,可分为不相关、完全相关和不完全相关二、相关分析的意义与内容(一)相关分析的意义相关分析是研究变量之间关系的紧密程度,并用相关系数或指数来表示。

其目的是揭示现象之间是否存在相关关系,确定相关关系的表现形式以及确定现象变量间相关关系的密切程度和方向。

(二)相关分析的内容1. 明确客观事物之间是否存在相关关系2. 确定相关关系的性质、方向与密切程度三、直线相关的测定(一)相关表与相关图1. 相关表在定性判断的基础上,把具有相关关系的两个量的具体数值按照一定顺序平行排列在一张表上,以观察它们之间的相互关系,这种表就称为相关表。

2. 相关图把相关表上一一对应的具体数值在直角坐标系中用点标出来而形成的散点图则称为相关图。

利用相关图和相关表,可以更直观、更形象地表现变量之间的相互关系。

(二)相关系数1. 相关系数的含义与计算相关系数是直线相关条件下说明两个变量之间相关关系密切程度的统计分析指标。

相关系数的理论公式为:y x xy r δδδ2= (1)xy 2δ 协方差 x δ x 的标准差 y δ y 的标准差(2)xy 2δ 协方差对相关系数r 的影响,决定:⎩⎨⎧<>数值的大小正、负)或r r r (00简化式()()2222∑∑∑∑∑∑∑-⋅--=y y n x x n y x xy n r变形:分子分母同时除以2n 得 r =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⨯-∑∑∑∑∑∑∑2222n y n y n x n x n y n x n xy =()[]()[]2222y y x xy x xy -*-⨯-=y x y x xy δδ-⨯-nx x x ∑-=2)(δ=()[]n x x x x ∑+⋅-222=()222x n x x n x +⋅⋅-∑∑ =()22x x - 2. 相关系数的性质(1)r取值范围:r≤1 -1≤r≤1(2)r=1 r=±1 表明x与y之间存在着确定的函数关系。

(3)r>0 表明两变量成正相关。

r<0 成负相关r=0 不相关(4)r→1 存在着一定的线性相关;r绝对值越大,相关程度越高。

r<0.3 微弱相关,0.3≤r<0.5 低度相关,0.5≤r<0.8 显著相关,0.8≤r<1 高度相关。

3. 相关系数运用的几点说明(1)计算相关系数时,两个变量哪个作为自变量,哪个作为因变量,对于相关系数的值大小没有影响。

(2)相关系数指标只能用于直线相关程度的判断,当其数值很小甚至为0时只能说明变量之间直线相关程度很弱或者不存在直线相关关系,但不能就此判断变量之间不存在相关关系。

(3)对于相关系数的绝对值大与0.8时,变量之间存在高度线性相关关系,通常还需要进行相关系数的显著检验。

第二部分:回归分析一、回归分析的意义(一)回归分析的含义对具有相关关系的两个或两个以上变量之间的数量变化的一般关系进行测定,确立一个相应的数学方程式,描述变量变动的相互关系,以便从一个已知量来推测另一个未知量,为估计预测值提供一个重要的方法。

根据回归分析建立的数学方程称为回归方程(一元,多元,……)(二)回归分析的种类1. 按照自变量的个数:一元回归与多元回归2. 按照回归的表现形式:线性回归与非线性回归研究一个因变量与一个自变量之间的线性关系,称为一元线性回归或简单线性回归;研究一个因变量与多个自变量之间的线性关系,称为多元线性回归。

(三)一元线性回归的特点1. 回归分析是研究两变量之间的因果关系,所以必须通过定性分析来确定哪个是自变量,哪个是因变量;相关分析则是两变量之间的关系,没有自变量和因变量之分。

2. 回归方程在进行预测估计时,只能给出自变量的数值求因变量的可能值。

即只能由x 推出y 的估计值c y ,而不能据c y 逆推x 。

3. 线性回归方程中自变量的系数称为回归系数,回归系数为正,说明变量正相关,为负说明负相关4. 回归分析对于因果关系不甚明确,或可以互为自变量的两个变量,可以求出y 依据x 的回归方程,还可求出x 依据y 的回归方程;而相关分析中两个变量的相关程度指标,相关系数是唯一的。

二、一元线性回归方程(一)回归方程一元线性回归方程是用来近似描述两个具有密切相关关系的变量之间变动关系的数学方程式。

该方程在平面坐标系中表现为一条直线,回归分析中称为回归直线,即; bx a y c +=c y 表示y 的估计值,借以区别y 的实际观察值;a 表示直线的起点值,即纵轴截距;b 表示斜率,即回归系数。

(二) b (回归系数)与r (相关系数) b x yx xy 2δ⋅-= r = y x y x xy δδ-⨯-运用数学等量关系式,故有 y x r b δδ⋅= x y b r δδ⋅=1. 因为y x δδ、均是正值,所以r b 与的符号是一致的,所以我们可以通过回归系数b 来确定r 的符号,从而来判断相关的方向。

2.r b 与的大小成正比例,所以还可以利用b 来说明相关程度。

三、估计标准误与区间估计(一)估计标准误估计标准误就是实际值与估计值之间的偏差平均程度,用来说明回归方程代表性或推算结果的准确程度的分析指标计算公式如下:22)(22---=--=∑∑∑∑n xyb y a y n y y Sc yy S 是估计标准误,计算结果若y S 值越小,说明各个散点离回归直线越近,实际值与估计值的偏差越小,回归直线的代表性越高,估计越准确可靠;计算结果若y S 值越大,说明各个散点离回归直线越远,实际值与估计值的偏差越大,回归直线的代表性越低,估计准确性越差。

(二)区间估计根据变量之间的线性关系,建立直线回归方程的目的,在于给定自变量的值来估计因变量的可能值,该估计值是理论值,与实际值之间存在差异,差异的一般水平用估计标准误来表示,因此可以对因变量的取值范围作区间估计,而不是只给一个估计值。

实际值通常以估计值为中心,上下在一定的区间范围内波动,在平面坐标图上各个散点总是围绕回归趋势直线上下在一定区间分布,如果成正态分布或近似正态分布,可以用正态分布的性质对实际值的分布范围(区间)进行可靠性估计。

四、应用回归分析中应注意的问题(一)从严格意义上讲,根据已知的资料建立回归方程,应该对回归方程的参数的有效性进行显著性统计检验,以判断回归估计的有效性。

(二)利用回归直线进行估计预测时,如果所给定的自变量的值在样本观察值的区间范围内,其估计通常比较准确;如果所给定的自变量的值在样本观察值的区间范围之外,一般要求所给定的自变量值不宜偏离样本观察数据的平均值太远,否则预测就会不准确。

第三部分:相关分析与回归分析的联系与区别相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。

相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。

只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。

如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。

与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。

二者的区别主要体现在以下三个方面:1.相关分析主要通过相关系数来判断两个变量之间是否存在着相互关系及其关系的密切程度,其前提条件是两个变量都是随机变量,且变量之间不必区别自变量和因变量。

而回归分析研究一个随机变量(Y)与另一个非随机变量(X)之间的相互关系,且变量之间必须区别自变量和因变量。

2.相关系数只能观察变量间相关关系的密切程度和方向,不能估计推算具体数值。

而回归分析可以根据回归方程,用自变量数值推算因变量的估计值。

3.互为因果关系的两个变量,可以拟合两个回归方程,且互相独立、不能互相替换。

而相关系数却只有一个,即自变量与因变量互换相关系数不变。

很重要的一点,变量之间是否存在“真实相关”,是由变量之间的内在联系所决定的。

相关分析和回归分析只是定量分析的手段,通过相关分析和回归分析,虽然可以从数量上反映变量之间的联系形式及其密切程度,但是无法准确判断变量之间内在联系的存在与否,也无法判断变量之间的因果关系。

因此,在具体应用过程中,一定要始终注意把定性分析和定量分析结合起来,在准确的定性分析的基础上展开定量分析。

相关文档
最新文档