统计学第七章相关与回归分析

合集下载

统计学第七章 相关与回归分析

统计学第七章 相关与回归分析

(四)按变量之间的相关程度分为完全相关、不完全相 关和不相关。
二、相关关系的测定
(一)定性分析,相关表,相关图 判断现象间有无相关关系是一个定性认 识问题,单纯依靠数学方法是无法解决的。 因此,进行相关分析必须以定性分析为前 提,这就要求研究人员首先必须根据有关 经济理论,专业知识,实际经验和分析研 究能力等。对被研究现象在性质上作出定 性判断。 相关表是将相关变量的观察资料,按照 其对应关系和一定顺序排列而成的表格。
Se
y
2
a y b xy n2
(7- 12)
这个公式可以直接利用前面计算回归系 数和相关系数的现成资料。以表7-1的资 料计算如下:
Se y 2 a y b xy n2 56615-30.3 731-28.36 1213 10 2 65.02 8 2.85 (万件)
2

y- y R= 1- 2 y y



ˆ 式中,y 为y的多元线性趋势值或回归估计值。
若变量间呈曲线(非直线)相关,则应
计算相关指数来测定变量间相关的密切程度。
ˆ y y y y
2 2
Ryx
( 7-7)
R
ˆ y y
由表7-4资料计算相关系数如下:
r
n xy x y n x x
2 2
n y y
2 2
2
10 1213-15.1 731
2
10 26.25-15.1 10 56615-731 1091.9 1091.9 38.49 31789 6.2 178.3 1091.9 0.988 1105.5

医学统计学(李琳琳)7相关分析与回归分析-2023年学习资料

医学统计学(李琳琳)7相关分析与回归分析-2023年学习资料

【解析】-研究目的:凝血酶浓度和凝血时间两定量-之间是否存在线性关系,其联系程度如何?
一绘制散点图-从整体趋势而言,-1-15-随着凝血酶浓度的-413-增加,凝血时间呈-12-11-降低的趋 ,且二-10-0.7-0.8-0.9-1.1-1.2-1.3-者之间存在线性相-图7-5凝血酶浓度X与凝血 间Y散点图-关关系。
p的假设检验-H0:p=0-H1:P≠0-a=0.05-1查表法-由前面计算得:样本相关系数r=-0.90 ;-对给定a=0.05,自由度n-2=13,有附表11P391-查临界值r0.0513=0.560;-因为 0.907>0.560,则K0.05,拒绝H,即认-为变量X与Y间的线性相关关系有统计学意义。
2t检验-Ho:p=0-H1:p0-a=0.05--0.907-t,=-=-7.765-1-r2-1-0. 0702-n-2-15-2-y=15-2=13-查t界值表,1,>ts.13=2.160P<0.05,按a 0.05水准,拒-绝HO,接受H1,可认为凝血时间的长短与凝血酶浓度呈负粗-关。
相关系数的大小示意图-3.6-活-3.4-r=1-y-3230-0<r<1-L-8-r=0-2.6-2.4 2.2-40-42444648505254565860-体重kg,X
二、相关系数的意义与计算-若双变量X与Y均是来自正态总体的随机变量,散-点图呈线性趋势,且各观察值相互独立 则两变量-之间的相关关系可采用Pearson积矩相关系数表示。-∑X-XY-Y-∑x-X2∑Y-2xm
P391-附表11相关系数r临界值表-样本大小-0.05-0.01-1.000-6-0.88G-7-0T8 -0.929-0,738-0.881-0.700-0.833-10-0.648-0.794-0.618-0 755-12-0.587-0.727-13-0.560-0.703-0.538-0.679-15-0.52 -0.G54

统计学原理 相关与回归分析

统计学原理 相关与回归分析

粮食产量y 随机的
降雨量
土质
种子 耕作技术
X3
X4 X5
可 控 的
(二)相关的种类
完全相关 函数关系是相关关系的一种特例。 不完全相关 相关分析的基本内容
度相 关 密 切 程
y 完全由x的数值唯一确定,函数关系。
不相关
相 关 的 性 质
x、y值变化各自独立,变量间没有相关
关系
正相关 x 负相关
y
x
x2 26896 28900 31329 24336 25600 27556
y2
62540 73695 420857
70225 83521 463382
55696 65025 382469
合计
2114
从表上可以看出,随着个人收入的增加,消 费支出有明显的增长趋势,二者存在一定的依存 关系。正相关关系。 2、相关图(散点图) 直角坐标系第一象限
1、相关表
单变量分组相关表
分组相关表
双变量分组相关表
先做定性分析——相关资料排序——列在一张表上
个人收入x 164 170 177 182 192 207 225 243 265 289
消费支出y 156 160 166 170 178 188 202 218 236 255 1929
xy 25584 27200 29382
yc = 25.32 + 0.7927 300 = 263.13万元
(三)估计标准误差Syx P197
Syx = Syx =
=
(y - yc) 2 n-2 y2 - a y -b xy n-2
382469 -25.32 1929 -0.7927 420857
10 - 2

7统计学相关分析与回归分析

7统计学相关分析与回归分析

n n yi nb0 b1 xi i 1 i 1 n n n x y b x b x2 i i 0 i 1 i i 1 i 1 i 1
n n n n xi yi xi yi i 1 i 1 i 1 b 1 n n 2 2 n xi ( xi ) i 1 i 1 30 b0 y b1 x

回归分析:应用相关关系进行预测。
相关关系的识别

散点图 相关系数
10
相关系数

相关系数是对变量之间关系密切程度的度量。 对两个变量之间线性相关程度的度量称为简 单相关系数。 若相关系数是根据总体的全部数据计算的, 称为总体相关系数,记为ρ


若是根据样本数据计算的,则称为样本相关
系数,记为 r
8
相关分析的主要内容

确定现象之间有无相关关系,以及相关关系 的表现形态; 确定相关关系的密切程度(相关系数); 确定相关关系的数字模型,并进行参数估计 和假设检验;


回归预测,并分析估计标准误差。
9
相关与回归

相关与回归紧密联系。 相关分析:
发现变量之间是否存在相关性,
以及相关的强度和相关的方向。
1
n
1
n
10
10
ˆ b0 b1 x 117 9.74 x y
39
7 相关分析与回归分析

相关分析


回归分析
一元线性回归分析
1
相关分析的概念

社会经济现象中,一些现象与另一些现象之间往 往存在着依存关系,当我们用变量来反映这些现 象的的特征时,便表现为变量之间的依存关系。

统计学 第 七 章 相关与回归分析

统计学 第 七 章 相关与回归分析
3. 利用所求的关系式,根据一个或几个变量 的取值来预测或控制另一个特定变量的取 值,并给出这种预测或控制的精确程度
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。

《统计学》-第七章-相关与回归分析

《统计学》-第七章-相关与回归分析

第七章 相关与回归分析(一)填空题1、相关关系按其相关的程度不同,可分为 、 和 。

2、相关系数的正负表示相关关系的方向,r 为正值,两变量是 ;r 为负数,两变量是 。

3、r=0,说明两个变量之间 ;r=+1,说明两个变量之间 ;r=-1说明两个变量之间 。

4、一元线性回归方程bx a y+=ˆ 中的参数a 代表 ,数学上称为 ;b 代表 ,数学上称为 。

5、 分析要根据研究的目的确定哪一个为自变量,哪一个为因变量,在这一点与 分析时不同。

6、相关关系按方向不同,可分为 和 。

7、完全线性相关的相关系数r 值等于 。

8、计算回归方程要注意资料中因变量是 的,自变量是 的。

9、回归方程只能用于由 推算 。

(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、相关分析研究的是( )A. 变量之间关系的密切程度B. 变量之间的因果关系C. 变量之间严格的相互依存关系D. 变量之间的线性关系2、相关关系是( )A 、现象间客观存在的依存关系B 、现象间的一种非确定性的数量关系C 、现象间的一种确定性的数量关系D 、现象间存在的函数关系3、下列情形中称为正相关的是( )A. 随着一个变量的增加,另一个变量也增加B. 随着一个变量的减少,另一个变量增加C. 随着一个变量的增加,另一个变量减少D. 两个变量无关4、当自变量x 的值增加,因变量y 的值也随之增加,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关5、相关系数r 的取值范围是( )A. B.C. 6、当自变量x 的值增加,因变量y 的值也随之减少,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关7、相关系数等于零表明两变量( )A. 是严格的函数关系B. 不存在相关关系C. 不存在线性相关关系D. 存在曲线相关关系8、相关系数r 的取值范围是( )A 、从0到1B 、从-1到0C 、从-1到1D 、无范围限制11<<-r 10≤≤r 11≤≤-r9、相关分析对资料的要求是( )A. 两变量均为随机的B. 两变量均不是随机的C. 自变量是随机的,因变量不是随机的D. 自变量不是随机的,因变量是随机的10、相关分析与回归分析相比,对变量的性质要求是不同的,回归分析中要求( )A 、自变量是给定的,因变量是随机的B 、两个变量都是随机的C 、两个变量都是非随机的D 、因变量是给定的,自变量是随机的11、回归方程 中的回归系数b说明自变量变动一个单位时,因变量( )A. 变动b个单位 B. 平均变动b 个单位C.变动a+b 个单位 D. 变动a 个单位12、一般来说,当居民收入减少时,居民储蓄存款也会相应减少,二者之间的关系是( )A 、负相关B 、正相关C 、零相关D 曲线相关13、回归系数与相关系数的符号是一致的,其符号均可判断现象( )A. 线性相关还是非线性相关B. 正相关还是负相关C. 完全相关还是不完全相关D. 简单相关还是复相关14、配合回归方程比较合理的方法是( )A 、移动平均法B 、半数平均法C 、散点法D 、最小平方法15、在相关分析中不能把两个变量区分为确定性的自变量和随机性的因变量,在回归分析中( )A. 也不能区分自变量和因变量B. 必须区分自变量和因变量C. 能区分,但不重要D. 可以区分,也可以不区分16、价格愈低,商品需求量愈大,这两者之间的关系是( )A 、复相关B 、不相关C 、正相关D 、负相关17、按最小平方法估计回归方程 中参数的实质是使( )A. B. C. D. 18、判断现象之间相关关系密切程度的方法是( )A 、作定性分析B 、制作相关图C 、计算相关系数D 、计算回归系数19、在线性相关条件下,自变量的标准差为2,因变量的标准差为5,而相关系数为0.8,其回归系数为( )A. 8B. 12.5C. 0.32D. 2.020、已知某产品产量与生产成本有直线关系,在这条直线上,当产量为1000件时,其生产成本为50000元,其中不随产量变化的成本为12000元,则成本总额对产量的回归方程是( )A 、Y=12000+38XB 、Y=50000+12000XC 、Y=38000+12XD 、Y=12000+50000Xbx a y +=ˆbx a y +=ˆ∑=-最小值2)ˆ(y y21、已知,则相关系数为()A.不能计算 22、相关图又称( )A 、散布表B 、折线图C 、散点图D 、曲线图23、工人的出勤率与产品合格率之间的相关系数如果等于0.85,可以断定两者是( )A 、显著相关B 、高度相关C 、正相关D 、负相关24、相关分析与回归分析的一个重要区别是( )A 、前者研究变量之间的关系程度,后者研究变量间的变动关系,并用方程式表示B 、前者研究变量之间的变动关系,后者研究变量间的密切程度C 、两者都研究变量间的变动关系D 、两者都不研究变量间的变动关系25、当所有观测值都落在回归直线上,则这两个变量之间的相关系数为( )A 、1B 、-1C 、+1或-1D 、大于-1,小于+126、一元线性回归方程y=a+bx 中,b 表示( )A 、自变量x 每增加一个单位,因变量y 增加的数量B 、自变量x 每增加一个单位,因变量y 平均增加或减少的数量C 、自变量x 每减少一个单位,因变量y 减少的数量D 、自变量x 每减少一个单位,因变量y 增加的数量(三)多项选择题(在每小题备选答案中,至少有两个答案是正确的)1、直线回归方程 中,两个变量x 和y ( )A. 前一个是自变量 ,后一个是因变量B. 两个变量都是随机变量C. 两个都是给定的量D. 前一个是给定的量 ,后一个是随机变量E. 前一个随机变量 ,后一个是给定的量2、相关分析( )A 、分析对象是相关关系B 、分析方法是配合回归方程C 、分析方法主要是绘制相关图和计算相关系数D 、分析目的是确定自变量和因变量E 、分析目的是判断现象之间相关的密切程度,并配合相应的回归方程以便进行推算和预测3、相关分析的特点有 ( )A. 两个变量是对等的关系B. 它只反映自变量和因变量的关系C. 可以计算出两个相关系数D. 相关系数的符号都是正的E. 相关的两个变量必须都是随机的4、下列现象中存在相关关系的有( )A 、职工家庭收入不断增长,消费支出也相应增长B 、产量大幅度增加,单位成本相应下降C 、税率一定,纳税额随销售收入增加而增加D 、商品价格一定,销售额随销量增加而增加E 、农作物收获率随着耕作深度的加深而提高bx a y +=ˆ5、相关关系与函数关系的区别在于( )A. 相关关系是变量间存在相互存在依存关系,而且函数关系是因果关系B. 相关关系的变量间是确定不变的,而函数关系值是变化的C. 相关关系是模糊的,函数关系是确定的D. 两种关系没有区别6、商品流通费用率与商品销售额之间的关系是( )A 、相关关系B 、函数关系C 、正相关D 、负相关E 、单相关7、为了揭示变量x 与y 之间的相互关系,可运用( )A. 相关表B. 回归方程C.相关系数D. 散点图8、相关系数( )A 、是测定两个变量间有无相关关系的指标B 、是在线性相关条件下测定两个变量间相关关系密切程度的指标C 、也能表明变量之间相关的方向D 、其数值大小决定有无必要配合回归方程E 、与回归系数密切相关9、可以借助回归系数来确定( )A. 两变量之间的数量因果关系B. 两变量之间的相关方向C. 两变量之间的相关的密切程度D.10、直线回归方程( )A、建立前提条件是现象之间具有较密切的直线相关关系B 、关键在于确定方程中的参数a 和bC 、表明两个相关变量间的数量变动关系D 、可用来根据自变量值推算因变量值,并可进行回归预测E 、回归系数b=0时,相关系数r=011、可用来判断现象相关方向的指标有( )A. 相关系数B. 回归系数C. 回归参数aD. 协方差E. 估计标准误差 12、某种产品的单位成本y (元)与工人劳动生产率x (件/人)之间的回归直线方程Y=50-0.5X ,则( )A 、0.5为回归系数B 、50为回归直线的起点值C 、表明工人劳动生产率每增加1件/人,单位成本平均提高0.5元D 、表明工人劳动生产率每增加1件/人,单位成本平均下降0.5元E 、表明工人劳动生产率每减少1件/人,单位成本平均提高50元13、对于回归系数,下列说法中正确的有( )A. b 是回归直线的斜率B. b 的绝对值介于0-1之间C. bD. bE. b 满足方程组y S ⎪⎩⎪⎨⎧+=+=∑∑∑∑∑2xb x a xy x b na y14、相关关系的特点是()A、现象之间确实存在数量上的依存关系B、现象之间不确定存在数量上的依存关系C、现象之间的数量依存关系值是不确定的D、现象之间的数量依存关系值是确定的E、现象之间不存在数量上的依存关系15、回归方程可用于( )A. 根据自变量预测因变量B. 给定因变量推算自变量C. 给定自变量推算因变量D. 推算时间数列中缺失的数据E. 用于控制因变量16、建立一元线性回归方程是为了()A、说明变量之间的数量变动关系B、通过给定自变量数值来估计因变量的可能值C、确定两个变量间的相关程度D、用两个变量相互推算E、用给定的因变量数值推算自变量的可能值17、在直线回归方程中,两个变量x和y()A、一个是自变量,一个是因变量B、一个是给定的变量,一个是随机变量C、两个都是随机变量D、两个都是给定的变量E、两个是相关的变量18、在直线回归方程中()A、在两个变量中须确定自变量和因变量B、回归系数只能取正值C、回归系数和相关系数的符号是一致的D、要求两个变量都是随机的E、要求因变量是随机的,而自变量是给定的19、现象间的相关关系按相关形式分为()A、正相关B、负相关C、直线相关D、曲线相关E、不相关20、配合一元线性回归方程须具备下列前提条件()A、现象间确实存在数量上的相互依存关系B、现象间的关系是直线关系,这种直线关系可用散点图来表示C、具备一组自变量与因变量的对应资料,且能明确哪个是自变量,哪个是因变量D、两个变量之间不是对等关系E、自变量是随机的,因变量是给定的值21、由直线回归方程y=a+bx所推算出来的y值()A、是一组估计值B、是一组平均值C、是一个等差级数D、可能等于实际值E、与实际值的离差平方和等于0(四)是非题1、判断现象之间是否存在相关关系必须计算相关系数。

统计学 第七章 相关与回归分析

统计学 第七章 相关与回归分析

数 值 说 明
完全负相关
无线性相关
完全正相关
-1.0
-0.5
0
+0.5
正相关程度增加
+1.0
r
负相关程度增加
通常:当相关系数的绝对值: 通常:当相关系数的绝对值: 小于0.3 小于0.3时,表示不相关或微弱相关 0.3时 介于0.3 0.5, 介于0.3至0.5,表示低度相关 0.3至 介于0.5 0.8,表示显著(中度) 介于0.5至0.8,表示显著(中度)相 0.5至 关 大于0.8Lxx Lyy
r=
n ∑ xy − ∑ x ⋅ ∑ y n ∑ x 2 − (∑ x ) 2 ⋅ n ∑ y 2 − (∑ y ) 2
r=
∑ ( x − x )( y − y) ∑ ( x − x )2 ∑ ( y − y)
2
( x − x )( y − y) = ∑ xy − 1 ∑ x ∑ y ∑ n
第二节
定性分析
相关分析的方法
是依据研究者的理论知识和实践经 验,对客观现象之间是否存在相关 关系,以及何种关系作出判断。 关系,以及何种关系作出判断。 在定性分析的基础上,通过编制相 在定性分析的基础上, 关表、绘制相关图、计算相关系数 等方法, 等方法,来判断现象之间相关的方 向、形态及密切程度。 形态及密切程度。
xy
( y − y) 2 ∑
σ xσ y
3.相关系数的其他公式 相关系数的其他公式
• (1)积差法公式: )积差法公式: • • (2)积差法简化式: )积差法简化式: r= • • (3)简捷公式: )简捷公式: •
∑ ( x − x)( y − y) r=
nσ xσ y
∑ ( x − x )( y − y ) ∑ (x − x) ⋅ ∑ ( y − y)

《统计学原理与应用》课件第07章 相关与回归分析

《统计学原理与应用》课件第07章 相关与回归分析

74.4 172.0 248.0 418.0 575.0 805.2 972.0 1,280.0
104,214
4,544.6
统计学基础
第七章 相关与回归分析
根据计算结果可知:Βιβλιοθήκη x 36.4y 880
n8
x2 207.54
y2 104,214
xy 4,544.6
Fundamentals of Statistics
n x2 ( x)2 n y2 ( y)2
公式7—3
公式7—3是实际工作中使用较多的计算公式
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(四)相关系数的运用
(1)相关系数有正负号,分别表示正相关和负相关。
(2)相关系数的取值范围在绝对值的0 之1 间。其值大小 反映两变量之间相关的密切程度。
统计学基础
第七章 相关与回归分析
二、相关关系的种类
3.相关关系按照相关的方向分为正相关和负相 关 正相关:是指一个变量的数量变动和另一个变 量的数量变动方向一致.
负相关:当一个变量的数量变动与另一个变量 的数量变动方向相反时,称为负相关.
Fundamentals of Statistics
统计学基础
统计学基础
第七章 相关与回归分析
二、相关关系的测定 (一)相关系数的含义:
相关系数是在直线相关的条件下,用来说明两个 变量之间相关关系密切程度的统计分析指标。
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(二)相关系数的作用
1.说明直线相关条件下,两变量的相关关系的密切程 度的高低. (见教材第159页说明)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
决定因素? 6、如果某些地区的计划生育政策及社会、经济、文化
等因素发生重大变化,预期对这些地区的妇女生育 水平会产生怎样的影响?
实例2: 全球吃死的人比饿死的人多?
据世界卫生组织统计,全球肥胖症患者达3 亿人,其中儿童占2200万人,11亿人体重过重。 肥胖症和体重超常早已不是发达国家的“专利”, 已遍及五大洲。目前,全球因”吃”致病乃至死 亡的人数已高于因饥饿死亡的人数。
7.1 相关与回归的基本概念
一、相关关系的概念 二、相关系数 三、相关
一、相关关系的概念
1.变量间的相互关系
◆确定性的函数关系 Y=f (X)
◆不确定性的统计关系—相关关系
Y= f(X)+ε
(ε为随机变量)
◆没有关系
35 30
25
变量间关系的图形描述: 20 15
Y
10
坐标图(散点图)
5
0
0
10
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
相关系数的检验
为什么要检验? 样本相关系数是随抽样而变动的随机变量,
相关系数的统计显著性还有待检验。 检验的依据:
样本相关系数具有一定的概率分布,必须明确其抽 样分布性质。如果x与y都服从正态分布,在总体相
关系数 0 的假设下,与样本相关系数 r 有关的 t
C 20 15 10 5 0 0
5
10
15
相关关系的描述
相关表:是一种统计表,将一个变量的 若干变量值按从小到大的顺序排列,另 一变量的值与之对应排列。
相关图:又称散点图,将两个变量相对 应的变量值用坐标点的形式描绘出来, 用于表面相关点分布状况的图形。
二、相关系数
●总体相关系数
对于所研究的总体,表示两个相互联系变量相关程度 的总体相关系数为:
(引自《光明日报》刘军/文)
问题: 肥胖症和体重超常与死亡人数真有显著 的数量关系吗?
这些类型的问题可以运用相关分析与回归分析的 方法去解决。
相关关系与回归分析
很多现象除了自身的变动以外,与其它现象 之间可能有一定的依存关系,这种依存关系 表现为不确定的统计关系,或称为相关关系 。相关关系主要是判断两个或两个以上变量 之间是否存在相关关系,并分析变量间相关 关系的形态和程度。
d i 表示样本单位属于x的等级与 y的等级的级差。
Spearman等级相关系数 为:
rs
1
6 n(n2
di2 1)
Spearman等级相关系数的特性
样本等级相关系数的取值范围:1 rs 1
rs 1 时,说明样本等级完全正相关; rs 1 时, 样本等级完全负相关;
回归分析是对存在的相关关系的现象间数理 化规律的测定。
第7章 相关与回归分析
7.1 相关分析 7.2 一元线性回归分析 7.3 线性回归的显著性检验与回归预测 7.4 多元线性回归分析
学习目标
1、变量间的相关关系与相关系数的计算 2、总体回归函数与样本回归函数 3、线性回归的基本假定 4、一元线性回归参数的估计与检验 5、多元线性回归参数的估计与检验 6、回归预测的方法
统计量服从自由度为n-2的 t 分布:
trn2 1r2~t(n2)
相关系数的检验方法
给定显著性水平 ,
查自由度为 n-2 的临界值 t 2
若 t t 2 ,表明相关系数 r 在统计上是显著
的,应否定 0 而接受 0 的假设;
反之,若 t t 2 ,应接受 0 的假设。
三、 Spearman等级相关系数
当变量不满足正态分布要求或不是数量型变量时, 简单
线性相关系数不宜使用,可以用Spearman等级相关系数
作相关性分析。
对于样本容量为n的变量x 和y ,如果取值都可以分为n
个等级,而且样本的n个单位分别不重复地属于x和y的
不同等级,没有两个单位取相同等级的情况,并且用
Cov(x, y)
Var(x)Var(y)
总体相关系数反映总体两个变量X和Y的线性相关程度。 特点:对于特定的总体来说,X和Y的数值是既定的
总体相关系数是客观存在的特定数值。
rXY
● 样本相关系数
通过x和y 的样本观测值去估计变量x和y的样本相关
系数通常用 r x y 表示
__
__
rXY
rxy
10
0
2
4
6
8
10
● 从变量相关关系变化的方向看 25
20
正相关——变量同方向变化
A 15 10
5
同增同减 (A)
0
0
2
4ห้องสมุดไป่ตู้
6
8
10
12
负相关——变量反方向变化 一增一减 (B)
● 从变量相关的程度看
25
20
B 15 10 5
0
0
2
4
6
8
10
12
完全相关 (B) 不完全相关 (A) 不相关 (C)
35 30 25
(xi x)(yi y)
__
__
(xi x)2 (yi y)2
特点:样本相关系数是根据从总体中抽取的随机样本 的观测值计算出来的,是对总体相关系数的估 计,它是个随机变量。
相关系数的特点:
相关系数的取值在-1与1之间。 当r=0时,表明x与y没有线性相关关系。 当 0 r 1 时,表明x与y存在一定的线性相
关关系: 若 r 0 表明x与y 为正相关; 若 r 0 表明x与y为负相关。
当 r 1 时,表明x与y 完全线性相关: 若r=1,称x与y 完全正相关; 若r=-1,称x与y 完全负相关。
使用相关系数的注意事项:
▲ x和y 都是相互对称的随机变量,所以
xy yx
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
20
30
X
2、相关关系的类型
● 从涉及的变量数量看 单相关:2个变变量 复相关(多元相关):3个或3个以上变量
● 从变量相关关系的表现形式看 线性相关——散布图接近一条直线(左图) 非线性相关——散布图接近一条曲线(右图)
25
20
15
10
5
0
0
2
4
6
8
10
12
11.2
11
10.8
10.6
10.4
10.2
相关与回归分析2
实例1: 中国妇女生育水平的决定因素是什么?
妇女生育水平除了受计划生育政策影响以外,还可能 与社会、经济、文化等多种因素有关。 1、影响中国妇女生育率变动的因素有哪些? 2、各种因素对生育率的作用方向和作用程度如何? 3、哪些因素是影响妇女生育率主要的决定性因素? 4、如何评价计划生育政策在生育水平变动中的作用? 5、计划生育政策与经济因素比较,什么是影响生育率的
相关文档
最新文档