大数定律和中心极限定理资料.
中心极限定理和大数定律

中心极限定理和大数定律中心极限定理和大数定律是统计学中非常重要的两个概念。
它们在统计学中被广泛应用,对于理解随机事件的规律性和分析数据具有重要意义。
本文将对中心极限定理和大数定律进行详细的阐述。
一、中心极限定理1. 定义中心极限定理是指当样本量足够大时,样本均值的分布近似于正态分布。
也就是说,如果我们从总体中抽取足够多的样本,并计算每个样本的平均值,那么这些平均值将近似于正态分布。
2. 原理中心极限定理的原理可以用数学公式表示为:当n趋向于无穷大时,样本均值(Xbar)服从正态分布N(μ,σ^2/n)。
其中,μ代表总体均值,σ代表总体标准差。
3. 应用中心极限定理在实际应用中非常广泛。
例如,在质量控制过程中,我们可以通过抽取一小部分产品进行检测,并根据检测结果推断整个批次产品的质量状况。
而根据中心极限定理,我们可以通过抽取足够多的样本并计算样本均值,来推断总体均值和标准差,从而判断整个批次产品的质量是否符合要求。
二、大数定律1. 定义大数定律是指当样本量足够大时,样本平均值趋近于总体平均值。
也就是说,如果我们从总体中抽取足够多的样本,并计算每个样本的平均值,那么这些平均值将趋近于总体的平均值。
2. 原理大数定律的原理可以用数学公式表示为:当n趋向于无穷大时,样本均值(Xbar)趋近于总体均值(μ)。
3. 应用大数定律在实际应用中也非常广泛。
例如,在股票市场中,我们可以通过抽取一小部分股票进行分析,并根据分析结果预测整个市场的走势。
而根据大数定律,我们可以通过抽取足够多的股票并计算它们的收益率,来推断整个市场的平均收益率和风险水平。
三、中心极限定理和大数定律之间的关系1. 相似性中心极限定理和大数定律都是关于样本均值的定理,它们都是基于样本量足够大的前提条件下成立的。
2. 区别中心极限定理和大数定律的主要区别在于它们所描述的内容不同。
中心极限定理描述了样本均值的分布情况,而大数定律描述了样本均值与总体均值之间的关系。
大数定律和中心极限定理

大数定律和中心极限定理1 大数定律这里强调的是总体与样本大数定律就是说:当随机事件发生的次数足够多时,发生的频率趋近于预期的概率大数定律说的是当随机事件重复多次时频率的稳定性,随着试验次数的增加,事件发生的频率趋近于预期的“概率”2 赌徒缪误:1,2,4,8-----在赌钱时——输了就翻倍,一直到赢为止有人说:如果已经连续4次出现正面,接下来的第5次还是正面的话,就接连有5次“正面”,根据概率论,连抛5次正面的几率是1/25=1/32。
所以,第5次正面的机会只有1/32,而不是1/2。
以上混淆了“在硬币第1次抛出之前,预测接连抛5次均为正的概率”和“抛了4次正之后,第5次为正的概率”,既(11111)---- 1/32,(1111)1 ---- 1/2。
3 中心极限定理3.1 大数定律和中心极限定理的关系:上面通过赌徒谬误介绍了概率论中的大数定律。
大数定律说的是当随机事件重复多次时频率的稳定性,随着试验次数的增加,事件发生的频率趋近于预期的“概率”。
但大数定律并未涉及概率之分布问题。
此外大数定律说明了在一定条件下,当系统的个体足够多时,系统的算数平均值会集中在期望位置。
从这个角度,中心极限定理包含了大数定律。
因为中心极限定理在于揭示系统在期望附近的统计性质,即“以何种方式”集中在期望。
总的来说就是——大数定律反映的是频率->概率(或者认为广义的期望);而中心极限定理反映的是——在整体结果下,结果内部发生各种情况下的一个概率分布情况。
3.2 那什么是中心极限定理?中心极限定理指的是分别适用于不同条件的一组定理,但基本可以用一句通俗的话来概括它们:大量相互独立的随机变量,其求和后的平均值以正态分布(即钟形曲线)为极限。
Eg:以二项分布为例进行解释(抛硬币)对于抛n次硬币,出现正面k次的一个分布情况,如下:但是对于二项分布不一定是对对称的,除了受抛的次数n影响,还受对应的概率p的影响3.3 晋级再后来,中心极限定理的条件逐渐从二项分布推广到独立同分布随机序列,以及不同分布的随机序列。
(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理一、内容提要(一)切贝谢夫不等式 1. 切贝谢夫不等式的内容设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。
(){}()(){}().1,22εεεεX D X E X P X D X E X P -≤-≤≥-2. 切贝谢夫不等式的意义(1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){}ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。
(2)不足之处为要计算(){}ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。
另外,利用本不等式估值时精确性也不够。
(3)当X 的方差D (X )越小时,(){}ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。
(二)依概率收敛如果对于任何ε>0,事件{}ε a X n -的概率当n →∞时,趋于1,即{}1lim =-∞→ε a X P n n ,则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。
(三)大数定律 1. 大数定律的内容(1)大数定律的一般提法若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有11lim 1=⎭⎬⎫⎩⎨⎧-∑=∞→ε n i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。
(2)切贝谢夫大数定律设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即()().,,,2,1, n i C X D i =≤则对于任意的ε>0,恒有()111lim 11=⎭⎬⎫⎩⎨⎧-∑∑==∞→ε n i ni i i n X E n X n P 。
大数定律与中心极限定理总结

大数定律与中心极限定理总结大数定律和中心极限定理是概率论中两个重要的定理,它们可以帮助我们理解随机事件的规律性。
本文将对这两个定理进行总结,并提供相关参考内容。
一、大数定律:大数定律是概率论中的一个基本定理,它描述了随着随机事件的重复进行,样本均值逐渐趋近于其期望值的现象。
大数定律包括弱大数定律和强大数定律。
1. 弱大数定律:弱大数定律又称为辛钦定律,它是在较宽松的条件下得到的。
根据弱大数定律,当独立同分布的随机变量的期望存在时,它们的算术平均值会以很高的概率接近于它们的期望值。
参考内容:- H.W. Robbins, D. Siegmund. A Weak Law of Large Numbers for Partial Sums of Random Variables with Infinite Variance. The Annals of Probability, 21(1), 197-205.- Erdos, P. (1949). On a Family of Polynomial Identities Involving Sums of Random Variables. Bulletin of the American Mathematical Society, 55(6), 538-543.2. 强大数定律:强大数定律是在严格条件下得到的。
它指出,对于独立同分布的随机变量序列,样本均值会以概率1收敛到其期望值。
参考内容:- Gromov, M. (2014). Large Scale Geometry. European Mathematical Society, 9.- Petrov, V. V. (2012). Sums of Independent Random Variables. Springer Science & Business Media.二、中心极限定理:中心极限定理是概率论中的一个重要定理,它描述了大量独立随机变量之和的分布近似服从正态分布的现象。
大数定律与中心极限定理总结

大数定律与中心极限定理总结大数定律与中心极限定理是概率论与数理统计中的两个重要定理,用于描述随机变量序列的性质。
下面我将分别对这两个定理进行总结,并给出相关的参考内容。
一、大数定律大数定律是概率论中的一个基本定理,描述了随机变量序列的极限性质。
大数定律可以分为弱大数定律和强大数定律两种。
1. 弱大数定律弱大数定律是指对于一个随机变量序列,如果序列的均值存在,并且均值收敛于某个常数,那么这个序列就满足弱大数定律。
弱大数定律的代表是辛钦大数定律。
具体来说,如果一个随机变量序列X1, X2, ..., Xn,其中Xi是相互独立、同样分布的随机变量序列,它们的均值为μ,方差为σ^2。
那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - μ| ≤ ε ) = 1这意味着当样本数量趋向于无穷大时,样本均值的概率逼近于1,即样本均值趋近于总体均值μ。
2. 强大数定律强大数定律是指对于一个随机变量序列,如果序列的均值存在,并且均值以概率1收敛于某个常数,那么这个序列就满足强大数定律。
强大数定律的代表是伯努利大数定律和切比雪夫大数定律。
伯努利大数定律是对于一个独立随机变量序列X1, X2, ..., Xn,其中每个随机变量取值为0或1,概率为p或1-p,那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - p| ≤ ε ) = 1切比雪夫大数定律是对于一个独立随机变量序列X1, X2, ..., Xn,其具有相同的均值μ和方差σ^2,那么对于任意给定的正数ε,有:lim(n→∞)P( |X1+X2+...+Xn)/n - μ| ≤ ε ) = 1以上的大数定律说明了随机变量序列的均值具有稳定的性质,当样本数量足够大时,样本均值可以准确地反映总体均值。
二、中心极限定理中心极限定理是概率论与数理统计中的一个基本定理,描述了独立随机变量和的分布的极限性质。
大数定律与中心极限定理

大数定律与中心极限定理大数定律和中心极限定理是统计学中两个重要的概念,它们被广泛应用于概率论、数理统计以及各种实际问题的分析与推导中。
本文将详细介绍大数定律与中心极限定理的概念、原理及应用,以期帮助读者更好地理解和应用这两个定律。
一、大数定律大数定律是指在随机试验中,当试验次数趋于无穷时,样本均值趋近于总体均值的概率趋于1的现象。
简言之,大数定律说明了在重复独立试验的过程中,随着试验次数增加,样本均值与总体均值之间的差距将会逐渐减小。
大数定律有多种形式,其中最为著名的是弱大数定律和强大数定律。
弱大数定律也称为大数定律的辛钦特例,它是在满足一定条件下,样本均值趋近于总体均值的概率收敛于1。
而强大数定律则对样本均值的收敛速度和稳定性做出了更严格的要求。
在实际应用中,大数定律可以用来解释和预测各种现象。
例如,当进行大规模的舆情调查时,可以通过随机抽样的方式来获取一部分样本,然后利用大数定律来推断出总体的舆情倾向。
此外,在生产过程中对产品质量的控制和检验中,也可以使用大数定律来判断产品的批量质量是否合格。
二、中心极限定理中心极限定理是概率论中的一个重要定理,它说明了在某些条件下,当样本容量足够大时,样本均值的分布将近似服从于正态分布。
也就是说,无论总体分布是否服从正态分布,在大样本条件下,样本均值的分布都将趋于正态分布。
中心极限定理的重要性在于它提供了许多统计推断和参数估计的基础。
例如,在对总体均值进行估计时,可以利用样本均值的分布接近于正态分布来构建置信区间,从而对总体均值进行区间估计。
此外,中心极限定理还为假设检验提供了支持。
假设检验是统计推断的一种常用方法,通过对样本数据进行假设检验,可以判断总体参数是否与假设相符。
而中心极限定理则为假设检验提供了理论基础,使得假设检验的结果更加可靠和准确。
综上所述,大数定律和中心极限定理是统计学中两个重要的理论基础。
大数定律说明了随机试验中样本均值与总体均值的关系,而中心极限定理则揭示了样本均值的分布特征。
167;34大数定律和中心极限定理

1 n
nk1 Xk E(Xk)
(3)
1n nk1Xk
P
也就是当观察次数无限增多时,观察
结果的算术平均值几乎变成一个常数,不是随机的了。
定理2(贝努利大数定理)设n是n次独立试验 中事件A发生的次数,则对任意的正数有
lim P | np| 1 , 其P 中 A p
n n
引人随机变量
k=1,2,…则对任意实数 x有
n
Xk
n
lim Pk1`
x
x
1
t2
e 2dt
n
n
2
n
Xk n
(1)令Ynk1 n 的分布Fn函 x, 数那么
n l i F m ( nx ) n l i P m (Y nx) x 2 1e t2 2d t (x)
E n Xk n E(Xk)n, k1 k1
课内练习2. 某单位设置一电话总机,共有200架分机.设每个 电话分机是否使用外线通话是相互独立的. 设每时刻每个分 机有 5% 的概率要使用外线通话. 问总机需要多少外线才能 以不低于90%的概率保证每个分机要使用外线时可供使用?
设需要k条外线, X为某时刻通话的分, 机数 则 X ~ B (2,0 0 .0 0 )5 n , p 1,n 0 p 9 .5 q P(0Xk)kn npp q 0 nnpp q
|X n a | a X n a
Xn
a a a
或Xn落在(a - ε,a + ε )的概率无限接近于1。
二、两个大数定理
定理1 ( 切比雪夫大数定律 ) 设X1,X2,…,Xn…是一
个随机变量序列, 且E(Xk)= ,D(Xk)=2 (k=1,2,…)
则对任意正数 , 有
大数定律及中心极限定理

定理1 (切比雪夫定理旳特殊情况)设随机变量序
列 X1,X2,…,Xn, ...相互独立,且具有相同旳数学期望
和方差: E(Xk)=,D(Xk)=2 (k=1,2,...) , 则对任意
旳
> 0,有
lim P n
1 n
n
Xi
i 1
1
即
X
1 n
第五章 大数定律及中心极限定理
§5.1 大数定律 §5.2 中心极限定理
§5.1 大数定律
定义1 设Y1, Y2 …,Yn ,...为一随机变量序列,a是常数, 若对任意正数,有
lim
则称随机变量序列Y1, Y2 ,…,Yn , ... 依概率收敛于a ,
记为: Yn P a
性质:设 Xn P a, Yn P b , g(x, y)在点(a, b)连续,
100
于是, 一盒螺丝钉旳重量为 X Xi i 1
且 E( X i ) 100, D( X i ) 10, n 100
由中心极限定理
100
P{ X 10200} P{ i 1
Xi
10200}
P
100
Xi
i 1
n
n
10200 n n
P
X
1000 100
10200 1000
Φ
k 120 48
Φ
120 48
0.999
k 141.48,
至少供电142千瓦,才干确保以不不大于99.9%旳概率正常工作.
例3 在人寿保险企业里,有3000个同一年龄旳人参加保险.设在
一年内这些人旳死亡率为0.1%, 参加保险旳人在一年旳头一天 交付保险费10元,死亡时,家眷可从保险企业领取2023元. 求 (1)保险企业一年中获利不不大于10000元旳概率;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设所有的取整误差是相互独立的,且都在 [-0. 5,0.5]上服从均匀分布. 若将1500个数相加,求误差总和的绝对值超过15的概率.
解 : 设i表示第i次取整误差,
则每个i~U[0.5,0.5],于是 : E(i
(i 1, 2...,1500),
)
0,
D(i )
(0.5 0.5)2 12
1 12
又设 表示100袋味精的重量,则 i , E 10000,
D
400,由中心极限定理,
i 1
~N (10000,400)
(近似)
所求概率为:P{ 10050} 1 P{ 10050}
1
F
(10050)
1
10050 10000 20
1
(2.5)
0.00621
例1:计算机在进行加法时,每个加数取整数。
n
x
1
x t2
e 2 dt
( x)
2
n
n
n
令 i , 有 E Ei n, D Di n 2
i 1
i 1
i 1
当n充分大时, n i ~ N (n, n 2 ) (近似)
i 1
n ~N (0,1) (近似)
n
注意:不必知道 i的确切分布,只要求独立、同分布。
条件还隐含了每个 i
补例:用一机床制造大小相同的零件,由于随机误差,
每个零件的重量在(0.95,1.05)(kg)上均匀分布.设每个零件重量 相互独立,制造1200个零件,问总重量大于1202kg的概率是多少?
解 : 设Xi表示第i个零件重量,(i 1, 2...,1200),
则每个Xi~U (0.95,1.05),于是 :
对总和
n
i
的影响不大。
i 1
定理的实际意义:…
补例(P.113A.3)设一袋味精的重量是随机变量,平
均值100克,标准差2克。求100袋味精的重量超过
10.05公斤的概率。
分布
解 设 i 表示第 i 袋味精的重量,
未知
且可以E认i 为1001 ,,2 ,D,i1040是独(i 立 1同,2分,布,1的10000,)
证 (对连续型) 设 ~ f ( x), 则
P{| E | } 12 f ( x)dx |x E |
( | x E | 1)
|x E |
( x E )2
f ( x)dx
2
1
( x E )2 f ( x)dx
2
1 D 2
补例(P.113A.2) 有10000盏电灯,夜晚每盏灯开灯的 概率均为0.7。各电灯开、关相互独立。估计:同时开 着的灯的数量在6800至7200之间的概率。 解 设 表示同时开着的灯的数量, 则
0.95 1.05
E(Xi)
1200
2
1,
(1.05 0.95)2 1
D(Xi )
12
1200
记X Xi ,由独立同分布中心极限定理,近似的有 :
i 1
X ~ N (12001,1200
c(i 1,2, ;c为常数),
前n个随机变量的算术平均
lim
n
P
1 n
n
i
i 1
1 n
n i 1
i
1
证
D
1 n
n i 1
i
1 n2
n i 1
D i
1 nc c
n2
n
由切比雪夫不等式
1
P
1 n
n
i
i1
1 n
n i1
1
1
i
1
D
1 n
n i1
i
2
c 1
n 2
0.95
补例:设~e(),用切比雪夫不等式估计
P
1
(
C)
A. 1 B. 2 C. 4 D. 1 4
例:EX 2,EY 2,DX 1,DY 4, XY 0.5,
由切比雪夫不等式,P{ X Y 6} (1/12)
定理4.1(切比雪夫大数定律)设 1 ,2 , 相互独立,
E则对i 任何i , Di 0, 有i2
由定理4.1
lim
n
P
1 n
n
i
i 1
1 n
n i 1
i
1
§4.2 中心极限定理
定理4.3(林德伯格-列维Lindberg-Levy定理)
设随机变量 1 ,2 , 相互独立且同分布,
Ei , Di 2 (0 2 , i 1,2, ), 则对任何实数 x,有
n
i n
lim P i1 n
1
推论(伯努利大数定律)设 nA为n重伯努利试验中A
发生的次数,p P( A), 则对任给常数 0, 有
lim
n
P
nA n
p
1
即 事件A的频率依概率收敛于A的概率。这是用频率
近似代替概率的理论依据。
证设
1, 第i次试验中A发生
i 0,第i次试验中A发生 ,
则
i Ei p, Di p(1 p) 1,
~ B(10000, 0.7) (P{6800 7200}
E np 10000 0.7
7199
7000,
Ck 10000
0.7k
0.310000k
)
k 6801
D 10000 0.7 0.3 2100
P{6800 7200} P{| 7000 | 200}
1
2100 2002
1500
记 i ,由独立同分布中心极限定理,近似的有 :
i 1
~ N (1500 0,1500 1 ) N (0, 1500),
12
12
于是: P( 15) 1 P( 15)
1 P( 0 15 )
1500 /12 1500 /12
2 2(1.34) 0.18024.
1
n
n i 1
i
nA n
,
1 n
n i 1
i
np n
p,
由定理4.1得证。
定理4.2(辛钦Khinchine大数定律)设 1 ,2 ,
相互独立且同分布,Ei (i 1,2, ), 则对任何 0,有
lim
n
P
1 n
n i 1
i
1
即 独立同分布随机变量的算术平均依概率收敛于
理论均值。
}
1
则称随机变量序列 {n } 依概率收敛于a 。
当n充分大时,几乎所有的n 都落在a的 邻域内。
(n a•
)
切比雪夫(Chebyshev) 不等式 设 的期望E和方
差D存在,则对任给常数 0 ,有
P{| E | } D
2
或
P{|
E|Leabharlann }1D 2
(
•)
E
只要期望和方差存在,可用上式估计上述事件的概率。
第四章 大数定律与中心极限定理
大数定律从理论上解决:
用频率近似代替概率问题: P( A) nA n
用样本均值近似代替理论均值问题: E x
中心极限定理阐述:独立随机变量之和以正态分 布为极限分布, 即 用正态分布作近似计算。
定义4.1 若存在常数a,使对任给常数 0 ,有
lim
n
P{|
n
a
|