教案:1.1.3-1交集与并集
课件2:1.1.3 第1课时 交集与并集

跟踪训练2
若集合A={0,1,2,3},集合B={1,2,4},则A∪B=( )
A.{0,1,2,3,4}
B.{1,2,3,4}
C.{1,2}
D.{0}
【答案】A 【解析】A∪B={0,1,2,3}∪{1,2,4}={0,1,2,3,4}.
命题方向3 交集、并集的实际应用
例3 某地对农户抽样调查,结果如下:电冰箱拥有率为 49%,电视机拥有率为85%,洗衣机拥有率为44%,至少拥有 上述三种电器中两种的占63%,三种电器齐全的占25%,求一 种电器也没有的相对贫困户所占的比例.
1.1.3 集合的基本运算 第1课时 交集与并集
知能自主梳理
1.交集的概念 (1)一般地,对于两个给定的集合 A、B,由__属__于__集__合__A__ _又__属__于__集__合__B___的所有元素构成的集合,叫做 A 与 B 的交集, 记作___A_∩__B____(读作“____A_交__B___”).用符号语言表示为 A∩B =__{_x_|x_∈__A_,__且__x_∈__B_}_____. (2)对任意集合 A、B 的交集有如下性质(用“=”、“⊆” 或“ ”填空):
() A.{1,4} C.{0}
B.{-1,-4} D.∅
【答案】D 【解析】据交集的定义可得M∩N={-1,-4}∩{1,4}=∅,选D.
命题方向2 并集的概念
例2 集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )
A.0
B.1
C.2
D.4
[分析] 集合A、B中都只有一个未知元素,且这两个未知元素都用同一个字母a
表示,故这两个未知元素之间本身就有关系.又A∪B比A、B中的已知元素多出了4和
教学设计5:1.1.3第1课时 并集与交集

第1课时 并集与交集一、教学内容分析本小节的重点是交集与并集的概念,只要结合图形,抓住概念中的关键词“且”、“或”,理解它们并不困难.可以借助代数运算帮助理解“且”、“或”的含义:求方程组的解集是求各个方程的解集的交集,求方程的解集,则是求方程 和 的解集的并集.本小节的难点是弄清交集与并集的概念及符号之间的联系和区别.突破难点的关键是掌握有关集合的术语和符号、简单的性质和推论,并会正确地表示一些简单的集合.利用数形结合的思想,将满足条件的集合用维恩图或数轴一一表示出来,从而求集合的交集、并集、补集,这是既简单又直观且是最基本、最常见的方法,要注意灵活运用.二、教学目标设计理解交集与并集的概念; 掌握有关集合运算的术语和符号,能用图示法表示集合之间的关系,会求给定集合的交集与并集;知道交集、并集的基本运算性质.发展运用数学语言进行表达、交流的能力.通过对交集、并集概念的学习,提高观察、比较、分析、概括等能力.三、教学重点及难点交集与并集概念、数形结合思想方法在概念理解与解题中运用;交集与并集概念、符号之间的区别与联系.四、教学流程设计课堂小结并布置作业 交集 (并集)性质 运用与深化(例题解析、巩固练习)概念符号图示 实例引入五、教学过程设计一、复习回顾思考并回答下列问题1、子集与真子集的区别.2、含有n 个元素的集合子集与真子集的个数.3、空集的特殊意义.二、讲授新课关于交集1、概念引入(1)考察下面集合的元素,并用列举法表示A =}10{的正约数为x xB =}15{的正约数为x xC =}1510{的正公约数与为x x 解答:A ={1,2,5,10},B ={1,3,5,15},C ={1,5}[说明]启发学生观察并发现如下结论:C 中元素是A 与B 中公共元素.(2)用图示法表示上述集合之间的关系2,10 1,5 3,15 2、概念形成交集定义一般地,由集合A 和集合B 的所有公共元素所组成的集合,叫做A 与B 的交集.记作A ∩B (读作“A 交B ”),即:A ∩B ={x |x ∈A 且x ∈B }(让学生用描述法表示).交集的图示法B B A A B A ⊂≠⊂≠⋂⋂, B A B A ⊂=⋂ φ=⋂B A请学生通过讨论并举例说明.3、概念深化BA C交集的性质(补充)由交集的定义易知,对任何集合A ,B ,有:A ∩A =A ,A ∩U =A ,A ∩φ=φ;②A ∩B ⊆A ,A ∩B ⊆B ;③A ∩B =B ∩A ;④A ∩B ∩C =(A ∩B )∩C = A ∩(B ∩C );⑤A ∩B =A ⇔A ⊆B .4、例题解析例1:已知}21{≤<-=x x A ,B =}02{<≤-x x ,求B A ⋂.解:}01|{<<-=x x B A[说明]①启发学生数形结合,利用数轴解题.②求交集的实质是找出两个集合的公共部分. 例2:设A ={x |x 是等腰三角形},B ={x |x 是直角三角形},求A ∩B .解:A ∩B ={x |x 是等腰三角形}∩{x |x 是直角三角形}={x |x 是等腰直角三角形}[说明]:此题运用文氏图,其公共部分即为A ∩B例3:设A 、B 两个集合分别为{}102),(=+=y x y x A ,}53),{(=-=y x y x B ,求A ∩ B ,并且说明它的意义. 解:⎭⎬⎫⎩⎨⎧=-=+=⋂53102{),(y x y x y x B A ={(3,4)} [说明] B A ⋂表示方程组的解的集合,也可以理解为两条一次函数的图像的交点的坐标集 合.例4设A ={1,2,3},B ={2,5,7},C ={4,2,8},求(A ∩B )∩C , A ∩(B ∩C ),A ∩B ∩C .解:(A ∩B )∩C =({1,2,3}∩{2,5,7})∩{4,2,8}={2}∩{4,2,8}={2}; A ∩(B ∩C )={1,2,3}∩({2,5,7}∩{4,2,8})={1,2,3}∩{2}={2};A ∩B ∩C =(A ∩B )∩C = A ∩(B ∩C )={2}.三、巩固练习关于并集1、概念引入引例:考察下面集合的元素,并用列举法表示A =02{=-x x },B ={}03=+x x , C =}0)3)(2({=+-x x x答:A ={}2, B ={-3} ,C ={2,-3}[说明]启发学生观察并发现如下结论:C 中元素由A 或B 的元素构成.2、概念形成并集的定义一般地,由所有属于A 或属于B 的元素组成的集合,叫做A 与B 的并集,记作A ∪B (读作“A 并B ”),即A ∪B ={x |x ∈A 或x ∈B }.并集的图示法,A B A ⊃≠⋃,B B A ⊃≠⋃ ,B B A =⋃ ,A B A ⊃≠⋃,B B A ⊃≠⋃请学生通过讨论并举例说明.3、概念深化并集的性质①A ∪A =A ,A ∪U =U ,A ∪φ=A ;②A ⊆(A ∪B ),B ⊆(A ∪B );③A ∪B =B ∪A ;④A ∩B ⊆A ∪B ,当且仅当A =B 时,A ∩B =A ∪B ;⑤A ∪B =A ⇔B ⊆A .[说明] 交集与并集的区别(由学生回答)交集是属于A 且属于B 的全体元素的集合.并集是属于A 或属于B 的全体元素的集合.x ∈A 或x ∈B 的“或”代表了三层含义:即下图所示.4、例题解析例5:设A ={4,5,6,8},B ={3,5,7,8},求A ∪B .解:∴A ={4,5,6,8},B ={3,5,7,8},则A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.[说明]①运用文恩解答该题.②用例举法求两个集合的并集,只需把两个集合中的所有元素不重复的一一找出写在大括号中即可.例6:设A={a,b,c,d},B={b,d,e,f},求A∩B ,A∪B.解:A∩B={b,d},则A∪B={a,b,c,d,e,f }.例7:设A={x|x是锐角三角形},B={x|x是钝角三角},求A∪B.解:A∪B={x|x是锐角三角形}∪{x|x是钝角三角形}={x|x是斜三角形}.例8:设A={x|-2<x<2},B={x|1>1或x<-1},求A∪B.解:A∪B=R[说明]本题是集合语言及运算与简单不等式相结合的问题,解题中应充分利用数形结合思想,体现抽象与直观的完美结合.例9、已知A={x|x=2k, k∈Z或x∈B}, B={x|x=2k-1, k∈Z},求A∪B.解:见教材[说明]解题的关键是读懂描述法表示集合的含义.三、巩固练习:补充练习设A={ x |-1< x <2}, B={ x |1< x <3},求A∪B.解析:利用数轴,将A、B分别表示出来,则阴影部分即为所求.解:将A={ x |-1< x <2}及B={ x |1< x <3}在数轴上表示出来,如图阴影部分即为所求.A∪B={ x |-1< x <2}∪{ x |1< x <3}={ x |-1< x <3}四、课堂小结1.交集、并集的概念;交集并集的求法;交集并集的基本性质,以及有关符号的正确使用.2.求两个集合的交集、并集时,往往先将集合化简,求两个数集的交集、并集,可通过数轴直观显示或利用韦恩图表示,有助于解题.3、区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字出发去揭示、挖掘题设条件,进而用集合语言表示,从而解决问题.五、课后作业1、思考题:设集合M={x|x>2},P={x|x<3},则“x∈M或x∈P”是“x∈M∩P”的什么条件?(“x∈M或x∈P”是“x∈M∩P”的必要不充分条件)2、思考题:设集合A={-4,2m-1,m2},B={9,m-5,1-m},又A∩B={9},求实数m的值.解:∵A∩B={9},A={-4,2m-1,m2},B={9,m-5,1-m},∴2m-1=9或m2=9,解得m=5或m=3或m=-3.若m=5,则A={-4,9,25},B={9,0,-4}与A∩B={9}矛盾;若m=3,则B中元素m-5=1-m=-2,与B中元素互异矛盾;若m=-3,则A={-4,-7,9},B={9,-8,4}满足A∩B={9}.∴m=-3.。
1-1-3-1 集合的基本运算(第1课时)交集与并集

【讲评】
(1)这是两个方程的解集(或点集),“交集”即
求它们对应的方程组的解. (2)此题结果不可 写成{2,-2},因为{(2,-2)}表示以数组 .. (2,-2)为元素的集合;而{2,-2}表示以2和-2两个数为元素 的集合(它有两个元素). (3)本题中A∪B=?
第20页
第一章
1.1 1.1.3 第1课时
【解析】
∵A={1,2,3},B={3,4,5},
∴B∩U={3,4,5}.∴A∪(B∩U)={1,2,3,4,5}.
【答案】 A
第22页
第一章
1.1 1.1.3 第1课时
高考调研
新课标A版 ·数学 ·必修1
探究2 两集合A,B的并集A∪B是把集合A,B中的元素并 在一起组成的,但两集合的公共元素只能出现一次,因此,在 由并集A∪B确定两集合A,B时,要注意对公共元素的处理. 思考题2 集合A={x|-4≤x<2},B={x|-1<x≤3},C= 5 {x|x≤0或x≥2},则A∪B=____________, A∪B∪C=__________.
(3)A∩B={(x,y)|x+y=0且x-y=4}
x+y=0, ={(x,y)| x-y=4 x+y=0, 解方程组 x-y=4,
},
x=2, 得 y=-2.
∴A∩B={(2,-2)}.
第19页
第一章
1.1 1.1.3 第1课时
高考调研
新课标A版 ·数学 ·必修1
要点2 交集 (1)交集的三种语言 ①文字语言:由所有
属于集合A
且 属于集合B 的元素所
组成的集合,叫做A与B的交集. ②符号语言:A∩B= {x|x∈A,且x∈B} ③图形语言:如图中阴影部分.
1.3.1交集与并集教学设计-2023-2024学年高一上学期数学人教A版

§ 1.3.1集合的基本运算—交集与并集1、教学目标(1)通过实例,抽象概括两个集合的并集与交集的概念,从三种语言理解交集与并集含义,发展学生数学抽象素养;(2)会求两个简单集合的并集与交集,能用Venn 图表达集合的关系及运算,发展学生直观想象素养与数学运算素养.2、教学重点与难点教学重点:集合的交集与并集的概念; 用集合语言表达数学对象或数学内容. 教学难点: “且”、“或”的理解及正确进行集合的交与并.3、教学过程:环节1:呈现情境,提出问题我们知道,实数有加、减、乘、除等运算。
集合是否也有类似的运算呢?请观察、思考下列集合之间的关系:问题1:(1)记A={x|x 是有理数},B={x|x 是无理数},C={x|x 是实数},集合A,B,C 之间有什么关系?(2)某文具店现有铅笔、中性笔、直尺、笔记本、橡皮5种商品出售,现计划再进中性笔、直尺、笔记本、订书机、三角板5种商品。
那么进货后该文具店有哪些商品可出售?共几种?用集合A 、B 、C 分别表示文具店现有品种、计划进货品种、进货后共有品种,那么集合A,B,C 之间有怎样的关系?(或改为观察下面的集合,类比实数的加法运算,你能说出集合C 与集合A,B 之间的关系吗?(1){}5,3,1=A ,{}6,4,2=B ,{}6,5,4,3,2,1=C ; (2)A={x|x 是有理数},B={x|x 是无理数},C={x|x 是实数}.师生活动:学生讨论,教师引导完成。
(3)异分母分数41,31通分时,要先求它们的公分母。
记{}*∈==N k k x x A .3|, {}*∈==N k k x x B .4|,那么41,31的公分母的集合C 是什么?集合A,B,C 之间有怎样的关系?(4)设{}是矩形x x A |=,{}是菱形x x B |=,{}是正方形x x C |=,集合A,B,C 之间有怎样的关系?【设计意图】从具体、学生熟悉的例子入手,使学生感受建立集合运算的必要性,并通过归纳、抽象建构并集、交集概念。
【教案】1.1.3 第1课时 并集、交集-《新课程同步进阶攻略(人教A版必修一》第一章集合与函数概念

1.1.3集合的基本运算第1课时并集、交集[目标] 1.理解两个集合的并集和交集的定义,明确数学中的“或”“且”的含义;2.能借助于V enn图或数轴求两个集合的交集和并集,培养直观想象和数学运算两大核心素养;3.能利用交集、并集的性质解决有关参数问题,培养逻辑推理的核心素养.[重点] 两集合并集、交集的概念及运算.[难点] 两个集合并集、交集运算的应用及数形结合思想的渗透.知识点一并集[填一填]1.并集的定义文字语言表述为:由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B 的并集,记作A∪B,读作A并B.符号语言表示为:A∪B={x|x∈A,或x∈B}.图形语言(韦恩图)表示为如图所示的阴影部分.2.并集的运算性质(1)A∪B=B∪A;(2)A∪A=A;(3)A∪∅=A;(4)A∪B⊇A,A∪B⊇B;(5)A⊆B⇔A∪B=B.[答一答]1.“或”的数学内涵是什么?提示:“x∈A,或x∈B”包括了三种情况:①x∈A,但x∉B;②x∈B,但x∉A;③x∈A,且x∈B.2.A∪B的元素等于A的元素的个数与B的元素的个数的和吗?提示:不一定,用Venn图表示A∪B如下:当A与B有相同的元素时,根据集合元素的互异性,重复的元素在并集中只能出现一次,如上图②③④中,A∪B的元素个数都小于A与B的元素个数的和.知识点二交集[填一填]1.交集的定义文字语言表述为:由所有属于集合A且属于集合B的元素所组成的集合,叫做A与B 的交集,记作A∩B,读作A交B.符号语言表示为:A∩B={x|x∈A,且x∈B}.图形语言(韦恩图)表示为如图所示的阴影部分.2.交集的运算性质对于任何集合A,B,有(1)A∩B=B∩A;(2)A∩A=A;(3)A∩∅=∅;(4)A∩B⊆A,A∩B⊆B;(5)A⊆B⇔A∩B=A.[答一答]3.如何理解交集定义中“所有”两字的含义?提示:①A∩B中的任一元素都是A与B的公共元素;②A与B的所有公共元素都属于A∩B;③当集合A与B没有公共元素时,A∩B=∅.4.当集合A与B没有公共元素时,A与B就没有交集吗?提示:不能这样认为,当两个集合无公共元素时,两个集合的交集仍存在,即此时A∩B =∅.5.若A∩B=A,则A与B有什么关系?A∪B=A呢?提示:若A∩B=A,则A⊆B;若A∪B=A,则B⊆A.类型一集合的并集运算[例1](1)已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1}B.{-1,0,1,2}C.{-1,0,2} D.{0,1}(2)已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=()A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}[答案](1)B(2)A[解析](1)集合M,N都是以列举法的形式给出的,根据并集的定义,可得M∪N={-1,0,1,2}.(2)将集合M和N在数轴上表示出来,如图所示.可知M∪N={x|x<-5或x>-3}.当求两个集合的并集时,对于用描述法给出的集合,首先明确集合中的元素,其次将两个集合化为最简形式;对于连续的数集常借助于数轴写出结果,此时要注意数轴上方所有“线”下面的实数组成了并集,此时要注意端点处是实心点还是空心点;对于用列举法给出的集合,则依据并集的含义,可直接观察或借助于Venn图写出结果,但要注意集合中元素的互异性.[变式训练1](1)满足条件{1,3}∪B={1,3,5}的所有集合B的个数是(D)A.1B.2C.3D.4解析:由条件{1,3}∪B={1,3,5},根据并集的定义可知5∈B,而1,3是否在集合B中不确定.所以B可能为{5},{1,5},{3,5},{1,3,5},故B的个数为4.(2)已知集合A={x|-2≤x≤3},B={x|x<-1,或x>a,a≥4},求A∪B.解:∵A={x|-2≤x≤3},B={x|x<-1,或x>a,a≥4},如图所示.故A∪B={x|x≤3,或x>a,a≥4}.类型二集合的交集运算[例2](1)已知集合A={x||x|≤2,x∈R},B={x|x≤4,x∈Z},则A∩B=() A.(0,2) B.[0,2]C.{0,2} D.{0,1,2}(2)若集合A={x||x|≤1},B={x|x≥0},则A∩B=()A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅[分析]化简A、B,然后利用交集的定义或数轴进行运算.[答案](1)D(2)C[解析](1)∵|x|≤2,∴-2≤x≤2,即A={x|-2≤x≤2}.∵x≤4.∴0≤x≤16.又∵x∈Z,∴B={0,1,2,3,…,16},∴A∩B={0,1,2}.(2)∵A={x|-1≤x≤1},又B={x|x≥0},所以A∩B={x|-1≤x≤1}∩{x|x≥0}={x|0≤x≤1}.1.求两集合的交集时,首先要化简集合,使集合的元素特征尽量明朗化,然后根据交集的含义写出结果.2.在求与不等式有关的集合的交集运算中,应重点考虑数轴分析法,直观清晰.此时数轴上方“双线”(即公共部分)下面的实数组成了交集.[变式训练2] (1)已知A ={(x ,y )|x +y =3},B ={(x ,y )|x -y =1},则A ∩B =( C ) A .{2,1} B .{x =2,y =1} C .{(2,1)} D .(2,1) (2)若集合A ={x |1≤x ≤3,x ∈N },B ={x |x ≤2,x ∈N },则A ∩B =( D )A .{3}B .{x |1≤x ≤2}C .{2,3}D .{1,2}解析:(1)A ∩B ={(x ,y )|⎩⎪⎨⎪⎧x +y =3x -y =1}={(2,1)}.(2)由题意,知A ={1,2,3},B ={0,1,2},结合Venn 图可得A ∩B ={1,2},故选D.类型三 并集、交集的综合运算命题视角1:与参数有关的交集、并集问题[例3] 已知集合A ={x |0<x ≤2},B ={x |x ≥a ,a >0},求A ∪B ,A ∩B . [解] (1)当0<a <2时,如图(1)所示.所以A ∪B ={x |x >0},A ∩B ={x |a ≤x ≤2}. (2)当a =2时,如图(2)所示.所以A ∪B ={x |x >0},A ∩B ={2}.(3)当a >2时,如图(3)所示.所以A ∪B ={x |0<x ≤2,或x ≥a },A ∩B =∅.含参数的集合进行并集与交集的基本运算时,要注意参数的不同取值对相关集合的影响,此类问题应根据参数的不同取值进行分类讨论.如该题中,应依据a 与2的大小关系分为三类.若无a >0的限制条件,则应根据a 与0,2的大小分为五类.[变式训练3] 设集合A ={x |x 2+ax -12=0},B ={x |x 2+bx +c =0},且A ∪B ={-3,4},A ∩B ={-3},求实数a ,b ,c 的值.解:∵A ∩B ={-3},∴-3∈A ,且-3∈B , 将-3代入方程x 2+ax -12=0得a =-1, ∴A ={-3,4},又A ∪B ={-3,4},A ≠B ,∴B ={-3}. ∵B ={x |x 2+bx +c =0},∴(-3)+(-3)=-b ,(-3)×(-3)=c , 解得b =6,c =9,则a =-1,b =6,c =9. 命题视角2:并集、交集的性质运用[例4] 设集合A ={-2},B ={x ∈R |ax 2+x +1=0,a ∈R }.若A ∩B =B ,求a 的取值范围.[解] 由A ∩B =B ,得B ⊆A , 因为A ={-2}≠∅. 所以B =∅或B ≠∅.(1)当B =∅时,方程ax 2+x +1=0无实数解,即⎩⎪⎨⎪⎧ a ≠0,Δ<0,所以⎩⎪⎨⎪⎧a ≠0,1-4a <0,解得a >14.(2)当B ≠∅时,①当a =0时,方程变为x +1=0, 即x =-1.所以B ={-1},此时A ∩B =∅,所以a ≠0. ②当a ≠0时,依题意知方程ax 2+x +1=0有相等实根, 即Δ=0,所以1-4a =0,解得a =14.此时方程变为14x 2+x +1=0,其解为x =-2,满足条件.综上可得a ≥14.求解“A ∩B =B 或A ∪B =B ”类问题的思路:利用“A ∩B =B ⇔B ⊆A ,A ∪B =B ⇔A ⊆B ”转化为集合的包含关系问题.当题设中隐含有空集参与的集合关系时,其特殊性很容易被忽视,从而引发解题失误.[变式训练4] 已知集合A ={x |0≤x ≤4},集合B ={x |m +1≤x ≤1-m },且A ∪B =A ,求实数m 的取值范围.解:∵A ∪B =A ,∴B ⊆A .∵A ={x |0≤x ≤4}≠∅,∴B =∅或B ≠∅. 当B =∅时,有m +1>1-m ,解得m >0.当B ≠∅时,用数轴表示集合A 和B ,如图所示,∵B ⊆A ,∴⎩⎪⎨⎪⎧m +1≤1-m ,0≤m +1,1-m ≤4,解得-1≤m ≤0.检验知m =-1,m =0符合题意.综上所得,实数m 的取值范围是m >0或-1≤m ≤0,即m ≥-1.1.已知集合A ={1,6},B ={5,6,8},则A ∪B =( B ) A .{1,6,5,6,8} B .{1,5,6,8} C .{6}D .{1,5,8}解析:求两集合的并集时,要注意集合中元素的互异性. 2.设S ={x |2x +1>0},T ={x |3x -5<0},则S ∩T =( D ) A .∅ B .{x |x <-12}C .{x |x >53}D .{x |-12<x <53}解析:S ={x |2x +1>0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12, T ={x |3x -5<0}=⎩⎨⎧x ⎪⎪⎭⎬⎫x <53, 则S ∩T =⎩⎨⎧x ⎪⎪⎭⎬⎫-12<x <53. 3.若集合A ={1,2},B ={1,2,4},C ={1,4,6},则(A ∩B )∪C =( D ) A .{1} B .{1,4,6} C .{2,4,6}D .{1,2,4,6}解析:由集合A ={1,2},B ={1,2,4},得集合A ∩B ={1,2}. 又由C ={1,4,6},得(A ∩B )∪C ={1,2,4,6}.故选D.4.已知集合A =⎩⎨⎧⎭⎬⎫1,2,12,B ={y |y =x 2,x ∈A },A ∪B =⎩⎨⎧⎭⎬⎫1,2,12,4,14.解析:∵B ={y |y =x 2,x ∈A }=⎩⎨⎧⎭⎬⎫1,4,14,∴A ∪B =⎩⎨⎧⎭⎬⎫1,2,12,4,14.5.已知A ={1,4,x },B ={1,x 2},且A ∩B =B ,求x 的值及集合B . 解:∵A ∩B =B ,∴B ⊆A ,∴x 2=4或x 2=x .解得x =±2或x =0或x =1.经检验知,x =1与集合元素的互异性矛盾,应舍去.∴x =±2或x =0,故B ={1,4}或B ={1,0}.——本课须掌握的两大问题1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x ∈A ,或x ∈B ”这一条件,包括下列三种情况:x ∈A 但x ∉B ;x ∈B 但x ∉A ;x ∈A 且x ∈B .因此,A ∪B 是由所有至少属于A 、B 两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值能否取到.学习至此,请完成课时作业4。
示范教案(集合的基本运算并集、交集)

示范教案(集合的基本运算-并集、交集)第一章:集合的基本概念1.1 集合的定义与表示方法引入集合的概念,讲解集合的定义介绍集合的表示方法,如列举法、描述法等举例说明集合的表示方法及其应用1.2 集合的基本运算介绍集合的基本运算,包括并集、交集、补集等讲解并集的定义及其运算规则讲解交集的定义及其运算规则第二章:集合的并集运算2.1 并集的定义与性质讲解并集的定义及其表示方法介绍并集的性质,如交换律、结合律等举例说明并集的性质及其应用2.2 并集的运算规则讲解并集的运算规则,如两个集合的并集等于它们的交集的补集等举例说明并集的运算规则及其应用2.3 并集的计算方法介绍并集的计算方法,如列举法、Venn图法等讲解并集计算方法的步骤及其应用第三章:集合的交集运算3.1 交集的定义与性质讲解交集的定义及其表示方法介绍交集的性质,如交换律、结合律等举例说明交集的性质及其应用3.2 交集的运算规则讲解交集的运算规则,如两个集合的交集等于它们的并集的补集等举例说明交集的运算规则及其应用3.3 交集的计算方法介绍交集的计算方法,如列举法、Venn图法等讲解交集计算方法的步骤及其应用第四章:集合的混合运算4.1 混合运算的定义与性质讲解混合运算的定义及其表示方法介绍混合运算的性质,如分配律等举例说明混合运算的性质及其应用4.2 混合运算的运算规则讲解混合运算的运算规则,如并集与交集的运算规则等举例说明混合运算的运算规则及其应用4.3 混合运算的计算方法介绍混合运算的计算方法,如列举法、Venn图法等讲解混合运算计算方法的步骤及其应用第五章:集合的应用举例5.1 集合在实际问题中的应用举例说明集合在实际问题中的应用,如统计数据处理、网络管理等讲解集合运算在实际问题中的重要性5.2 集合运算的综合应用举例说明集合运算在实际问题中的综合应用,如数据挖掘、图论等讲解集合运算的综合应用的方法及其步骤5.3 集合运算的拓展与应用介绍集合运算的拓展与应用,如模糊集合、多集等讲解集合运算的拓展与应用的方法及其步骤第六章:集合运算的练习题与解答6.1 集合运算的基础练习提供一些基础的集合运算练习题,如并集、交集的计算等引导学生通过列举法、Venn图法等方法解答练习题6.2 集合运算的进阶练习提供一些进阶的集合运算练习题,如混合运算、集合的应用等引导学生通过列举法、Venn图法等方法解答练习题6.3 集合运算练习题的解答与解析对练习题进行解答,解释解题思路和方法分析练习题的难度和考察点,帮助学生掌握集合运算的知识点第七章:集合运算的常见错误与注意事项7.1 集合运算的常见错误分析学生在集合运算中常见的错误,如概念混淆、运算规则错误等举例说明这些错误的产生原因和解题方法7.2 集合运算的注意事项提醒学生在进行集合运算时需要注意的事项,如符号使用、运算顺序等讲解注意事项的重要性及其在解题中的应用7.3 集合运算的解题技巧与策略介绍学生在解题时可以采用的集合运算技巧与策略,如化简、分解等讲解技巧与策略的运用方法和适用场景第八章:集合运算在实际问题中的应用案例分析8.1 集合运算在图论中的应用介绍集合运算在图论中的应用,如图的连通性、网络流等分析实际案例,讲解集合运算在图论问题中的作用和意义8.2 集合运算在数据挖掘中的应用介绍集合运算在数据挖掘中的应用,如数据预处理、特征选择等分析实际案例,讲解集合运算在数据挖掘问题中的作用和意义8.3 集合运算在其他领域的应用介绍集合运算在其他领域的应用,如计算机科学、经济学等分析实际案例,讲解集合运算在其他问题中的作用和意义第九章:集合运算的拓展与研究动态9.1 集合运算的拓展介绍集合运算的拓展方向,如模糊集合、多集、粗糙集等讲解拓展领域的研究动态和应用前景9.2 集合运算的研究方法与技术介绍集合运算的研究方法,如逻辑推理、数学建模等讲解研究技术在集合运算中的应用方法和实例9.3 集合运算的学术交流与资源共享介绍集合运算领域的学术交流与资源共享平台,如学术会议、期刊等鼓励学生积极参与学术交流,分享研究成果和经验第十章:总结与展望10.1 集合运算的教学总结总结本课程的教学内容和目标,强调集合运算的重要性和应用价值回顾学生在学习过程中的收获和不足,提出改进教学方法的建议10.2 集合运算的学习展望鼓励学生继续深入学习集合运算及相关领域知识,提高解决问题的能力展望集合运算在未来的发展趋势和应用前景,激发学生的学习兴趣和动力重点和难点解析1. 第一章至第五章的章节内容,主要涉及集合的基本概念、基本运算以及应用举例。
2020-2021高中数学第一册学案:1.1.3 第1课时交集与并集含解析

2020-2021学年高中数学新教材人教B版必修第一册学案:1.1.3 第1课时交集与并集含解析1.1.3集合的基本运算素养目标·定方向课程标准学法解读1.理解两个集合的并集与交集的含义,能求两个集合的并集与交集.2.在具体情境中,了解全集的含义.3.理解在给定集合中一个子集的补集的含义,能求给定子集的补集.4.能使用Venn图表达集合的基本运算,体会图形对理解抽象概念的作用。
1.学习本节时,重视对“交集”“并集”“补集"等概念的理解,特别是“且”“或”的区别,可结合维恩图或数轴理解.2.解题时注意运用图示法(维恩图、数轴、函数图像等)表示集合及进行运算,可以直观、快速地解答集合的运算问题.3.注意“集合运算"⇔“集合关系”间的转化,容易解决集合运算中的参数问题.4.养成用“交集、并集、补集”的思想去解决实际问题,提升数学学科素养。
第1课时交集与并集必备知识·探新知基础知识1.交集思考1:两个非空集合的交集可能是空集吗?提示:两个非空集合的交集可能是空集,即A与B无公共元素时,A与B的交集仍然存在,只不过这时A∩B=∅。
反之,若A∩B=∅,则A,B这两个集合可能至少有一个为空集,也可能这两个集合都是非空的,如:A={1,3,5,7,9},B={2,4,6,8,10},此时A∩B =∅.2.并集思考2:集合A∪B中的元素个数如何确定?提示:①当两个集合无公共元素时,A∪B的元素个数为这两个集合元素个数之和;②当两个集合有公共元素时,根据集合元素的互异性,同时属于A和B的公共元素,在并集中只列举一次,所以A∪B的元素个数为两个集合元素个数之和减去公共元素的个数.3.交集与并集的运算性质交集的运算性质并集的运算性质A∩B=B∩A A∪B=B∪AA∩A=A A∪A=AA∩∅=∅∩A=∅A∪∅=∅∪A=A如果A⊆B,则__A∩B=A__,反之也成立如果A⊆B,则__A∪B=B__,反之也成立思考3:判断集合A={2,3}与集合B={2,3,5}的关系,并写出A∩B和A∪B,你能发现什么规律?提示:A与B的关系为A B,A∩B={2,3},A∪B={2,3,5},由以上结论可推测A⊆B⇔A∩B=A⇔A∪B=B.基础自测1.已知集合M={-1,0,1},N={0,1,2},则M∪N=(C) A.{0,1}B.{-1,0,2}C.{-1,0,1,2}D.{-1,0,1}解析:M∪N={-1,0,1,2}.2.设集合M=(-3,2),N=[1,3],则M∩N=(A)A.[1,2)B.[1,2]C.(2,3]D.[2,3]解析:因为M=(-3,2),且N=[1,3],所以M∩N=[1,2).3.已知集合M={x|x2=9},N={x|-3≤x〈3,x∈Z},则M∩N =(B)A.∅B.{-3}C.{-3,3}D.{-3,-2,0,1,2}解析:由题意,得M={-3,3},由于N={-3,-2,-1,0,1,2},则M∩N={-3}.4.若集合A={x|-5<x〈2},B={x|-3<x<3},则A∪B=__{x|-5〈x<3}__,A∩B=__{x|-3〈x<2}__.5.已知A={-1}且A∪B={-1,3},则所有满足条件的集合B=__{3}或{-1,3}__.关键能力·攻重难类型交集的运算┃┃典例剖析__■典例1(1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=(A)A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}(2)已知A={x|x≤-2或x>5},B={x|1<x≤7},则A∩B=__(5,7]__。
课件3:1.1.3第1课时 并集与交集

本课小结
1.交集与并集的概念 2.交集与并集的性质
本节内容结束
更多精彩内容请登录:
典例讲解
例3 设A={x︱x是锐角三角形},B={x︱x是钝角三 角形},求A∪B.
锐角三角形
斜三角形
பைடு நூலகம்
钝角三角形
解: A∪B= {x︱x是锐角三角形} ∪{x︱x是钝角三 角形} ={x︱x是斜三角形}
典例讲解
例4 设A={x︱-1<x<2},B={x︱1<x<3},求
A∪B.
B
A
A∪B
-1 0 1 2 3
A∩B={x︱x∈A,且x∈B} 并集:一般地,由所有属于集合A或属于集合B的 元素所组成的集合,叫做A与B的并集,记作A∪B, 即
A∩B={x︱x∈A,或x∈B} 两个概念关键的区别在哪里?
A与B的关系
A
B A∩B≠
A B A B
A
B
A∩B=
A B B A
A(B) A=B
A∩B
A∪B
典例讲解
A.A∪D=D
B.C∪B=B
C.C∪B=C
D.B∪D=B
答案:B
提高练习
2.若A={1,3,x},B={x2,1},且A∪B={1,3,x}, 则这样不同的x有( )个.
A.1
B.2
C.3
D.4
答案:C
提高练习
3.设集合M={1,-3,0),N={t2 -t+1 },若M∪N=M,
则t=
.
答案:1,0
第一章 集合与函数概念
1.1.3 集合的基本运算
第一课时 并集与交集
新知讲解
A={4,5,6,8} A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.3集合的基本运算(并集、交集)
【教学目标】
1、熟练掌握交集、并集的概念及其性质。
2、能利用数轴、韦恩图来解决交集、并集问题。
3、体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力。
【教学重难点】
教学重点:会求两个集合的交集与并集。
教学难点:会求两个集合的交集与并集。
【教学过程】
(一)复习集合的概念、子集的概念、集合相等的概念。
(二)教学过程
一、情景导入
1、观察下面两个图的阴影部分,它们同集合A 、集合B 有什么关系?
2、(1)考察集合A={1,2,3},B={2,3,4}与集合C={2,3}之间的关系.
(2)考察集合A={1,2,3},B={2,3,4}与集合C={1,2,3,4}之间的关系.
二、检查预习
1、交集:一般地,由所有属于A 又属于B 的元素所组成的集合
,叫做A,B 的交集.记作A ∩B (读作"A 交B "),
即A ∩B ={x|x ∈A ,且x ∈B }.
如:{1,2,3,6}∩{1,2,5,10}={1,2}.
又如:A={a,b,c,d,e },B={c,d,e,f}.则A ∩B={c,d,e}
2、并集:一般地,对于给定的两个集合
A,B 把它们所有的元素并在一起所组成的集合,叫做A,B 的并集.记作
A ∪
B (读作"A 并B "),即A ∪B={x|x ∈A ,或x ∈B }.
如:{1,2,3,6}∪{1,2,5,10}={1,2,3,5,6,10}.
又如:A={a,b,c,d,e },B={c,d,e,f}.则A ∪B={a,b,c,d,e,f}
三、合作交流
A ∩B=
B ∩A; A ∩A=A; A ∩Ф=Ф; A ∩B=A
A B A ∪B= B ∪A; A ∪A=A; A ∪Ф=A; A ∩B=B
A B 注:是否给出证明应根据学生的基础而定.
四、精讲精练
例1、已知集合M ={(x,y)|x+y=2},N={(x,y)|x -y=4},那么集合M ∩N 为( )A.x=3,y=-1
B.(3,-1)
C.{3,-1}
D.{(3,-1)}解析:由已知得
M ∩N ={(x,y)|x+y =2,且x -y=4}={(3,-1)}.也可采用筛选法.首先,易知A 、B 不正确,因为它们都不是集合符号.又集合M ,N
的元素都是数组(x,y),所以C 也不正确.点评:求两集合的交集即求同时满足两集合中元素性质的元素组成的集合.本题中就
是求方程组42y x y x
的解组成的集合.另外要弄清集合中元素的一般形式
. A B
变式训练1:已知集合M={x|x+y=2},N={y|y= x2},那么M∩N为
例2.设A={x|-1<x<2},B={x|1<x<3},求A∪B.
解析:可以通过数轴来直观表示并集。
解:A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3}.
变式训练2:已知A={x|x2-px+15=0},B={x|x2-ax-b=0},且A∪B={2,3,5},A∩B={3},求p,a,b的值。
答案:P=8, a=5 ,b=-6
【板书设计】
一、基础知识
1.交集
2.并集
3.性质
二、典型例题
例1:例2:
小结:
【作业布置】本节课学案预习下一节。