声制冷的基本原理

合集下载

观察制冷机实验报告

观察制冷机实验报告

制冷机原理观察实验
515010910042 王加鑫
观察对象
G-M制冷机、热声制冷装置、换热器
实验步骤
在实验室三位助教老师的介绍下分别详细观察了解G-M制冷机、热声制冷装置、换热器的构造和运行方式。

实验结果
一、G-M制冷机(及脉管)
背景
单极GM制冷机的系统示意图(图片来自互联网)G-M循环是由吉福特(Gifford)和麦克马洪(Mcmahon)二人发明,其原理是绝热气体放气制冷,制冷温度从液氦温度到液氮温度。

单级G-M机组成:压缩机组1,进气阀2,排气阀3,回热器4,换热器5和膨胀机6等组成。

脉管制冷机原理
原理:利用高压气体在脉管空腔的绝热放气膨胀过程中获得制冷效应
二、热声制冷装置
热声制冷机的基本结构主要由扬声器、板叠、热端换热器、冷端换热器、共振管等组成。

板叠是工作介质发生热力过程的场所,板叠通道间充满气体工作介质。

在热声制冷机中,多采用氮气、氦气或其他惰性气体作为工作介质。

制冷效应的产生还要依靠声波的存在,声波的存在会使气体工作介质发生压缩与膨胀等一系列热力过程。

技术特点:它使用的介质如He、Ne等对环境完全无害,并且除了类
似于扬声器的振动外,没有曲轴活塞运动,不需要密封。

三、换热器
原理:板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。

各种板片之间形成薄矩形通道,通过板片进行热量交换。

用作冷凝器和蒸发器。

实验感想
本次实验我在老师的带领下观察了制冷机,我学习到了更多关于制冷机的原理及应用方面的知识。

参观制冷工程的实验室也给我带来了不小的触动,可以说对科研多了一份近距离的了解吧。

六种常见制冷方式.docx

六种常见制冷方式.docx

六种常见制冷方式一、蒸汽式压缩制冷原理:在蒸汽压缩制冷循环系统中,压缩机从蒸发器吸入低温低压的制冷剂蒸汽,经压缩机绝热压缩成为高温高压的过热蒸汽,再压入冷凝器中定压冷却,并向冷却介质放出热量,然后冷却为过冷液态制冷剂,液态制冷剂经膨胀阀(或毛细管)绝热节流成为低压液态制冷剂,在蒸发器内蒸发吸收空调循环水(空气)中的热量,从而冷却空调循环水(空气)达到制冷的目的,流出低压的制冷剂被吸入压缩机,如此循环工作。

压缩机功能:把制冷剂蒸气从低压状态压缩至高压状态,创造了制冷剂在冷凝器中常温液化的条件。

被称为整个装置的“心脏”。

冷凝器功能:使压缩机排出的制冷剂过热蒸气冷却,并凝结为制冷剂液体,在冷凝器内制冷剂的热量排放给冷却介质。

分类:水冷式冷凝器、风冷式冷凝器、蒸发式冷凝器。

风冷式冷凝器:使用和安装方便,不需要冷却水、热量由分机将其带入大气中。

但同样传热系数低,相对其他类型重量偏大,翅片表面会积灰是散热能力下降,须及时清理。

蒸发器功能:依靠制冷剂液体的蒸发来吸收冷却介质热量的换热设备,它在制冷系统中的任务是对外输出冷量。

分类:满液式(沉浸式)蒸发器、干式蒸发器。

干式蒸发器:沉浸式蛇管、壳管式、板式、喷淋式等。

节流装置功能:截流降压:高压常温的制冷剂流过膨胀阀后,就变为低压、低温的制冷剂液体。

控制制冷剂流量:膨胀阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制阀的开度,调节进入蒸发器的制冷剂流量,使其流量与蒸发器的热负荷相匹配。

控制过热度:膨胀阀具有控制蒸发器出口制冷剂过热度的功能,即保持蒸发器的传热面积的充分利用,又防止压缩机冲缸事故的发生。

分类:手动节流阀、热力膨胀阀、毛细管、电子膨胀阀、浮球板、固定孔板、可变孔板。

二、蒸汽吸收式制冷以制冷剂 - 吸收剂为工作流体,称为吸收工质对。

常用工质对:溴化锂- 水(制冷剂是水)、氨- 水(制冷剂是氨)- 低沸点工质是制冷剂。

装置:吸收式制冷装置由发生器、冷凝器、蒸发器、吸收器、循环泵、节流阀等部件组成,工作介质包括制取冷量的制冷剂和吸收、解吸制冷剂的吸收剂,二者组成工质对。

空调器制冷系统原理及常见故障图文解析(简单易懂值得收藏)

空调器制冷系统原理及常见故障图文解析(简单易懂值得收藏)

空调器制冷系统原理及常见故障图⽂解析(简单易懂值得收藏)空调器的制冷制热基本原理空调器的制冷零部件介绍制冷系统常见故障分析制冷系统案例分析与讨论家⽤空调⽅案设计及常⽤专业术语空调器的制冷制热基本原理⼏个重要概念:焓:⽤于流体,指特定温度作为起点时物质所含的热量。

1标准⼤⽓压,0℃的焓值为0.焓随流体的状态、温度和压⼒等参数变化,当对流体加热或加给外功时,焓就增⼤;反之,流体被冷却或蒸汽膨胀向外作功,焓就减少。

熵:是⼀个导出的热⼒状态参数,当制冷剂吸收热量时,熵值必须增加,反之放热时,熵值减少;熵值的变化,可以判断制冷剂与外界之间热流的变化。

节流:指流体通过狭⼩截⾯时压⼒降低,不作外功,⽽且节流前后⼀定距离处的速度不变的过程。

如果制冷剂通过的电⼦膨胀阀,由于冷媒流速较⼤,通过阀门截⾯的时间短,冷媒基本来不及与外界进⾏热交换,这种情况当作绝热节流处理。

临界状态:在饱和状态中,液态和⽓态两相共存。

但当饱和温度继续升⾼,到达某⼀温度时,物质的液相和⽓相的区别就会消失,这时液相不再存在,此时对应状态点为临界点。

显热和潜热:显热是指物体被加热或冷却时只有温度变化⽽⽆相变(或形态变化)时所得到或放出的热量;潜热是指物体相变⽽温度不变时吸收或放出的热量。

空调器的制冷循环流程进⾏制冷运⾏时,来⾃室内机蒸发器的低压低温制冷剂⽓体被压缩机吸⼊压缩成⾼压⾼温⽓体,排⼊室外机冷凝器,通过轴流风扇的作⽤,与室外的空⽓进⾏热交换⽽成为中温⾼压的制冷剂液体,经过⽑细管的节流降压、降温后进⼊蒸发器,在室内机的风扇作⽤下,与室内需调节的空⽓进⾏热交换⽽成为低压低温的制冷剂⽓体,如此周⽽复始地循环⽽达到制冷的⽬的。

空调器的⼯作原理流程图(制冷)单级压缩蒸⽓制冷循环空调器的制热循环当进⾏制热运⾏时,电磁四通换向阀动作,使制冷剂按照制冷过程的逆过程进⾏循环。

制冷剂在室内机换热器中放出热量,在室外机换热器中吸收热量,进⾏热泵制热循环,从⽽达到制热的⽬的。

有关制冷的方式

有关制冷的方式

3.喷射式制冷:原理:靠液体汽化来制冷的。

这一点与蒸气压缩式及吸收式制冷完全相同,不同的是怎样从蒸发器中抽取蒸气,并将压力提高。

蒸气喷射式制冷机除采用水作为工作介质外,还可以用其它制冷剂做工作介质,比如用低沸点的氟里昂制冷剂,可以获得更低的制冷温度。

另外,将蒸气喷射式制冷系统中的喷射器于压缩机组合使用,喷射器作为压缩机入口前的增压器,这样可以用单级压缩制冷机制取更低的温度优缺点:热能为补偿能量形式;结构简单;加工方便;没有运动部件;使用寿命长,故具有一定的使用价值,例如用于制取空调所需的冷水。

但这种制冷机所需的工作蒸气的压力高,喷射器的流动损失大,因而效率较低。

因此在空调冷水机中采用溴化锂吸收式制冷机比蒸气喷射式制冷机有明显的优势。

4. 溴化锂吸附式制冷:系统组成:热源(燃烧器),高,低温发生器,高,低交,蒸发器,吸收器,冷却塔,泵组。

原理:溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水。

冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。

吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。

浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。

另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。

该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。

制冷机的工作原理

制冷机的工作原理

制冷机的工作原理
制冷机的工作原理是通过物质的相变过程来达到降低温度的目的。

一般来说,制冷机主要由压缩机、蒸发器、冷凝器和节流阀等组件组成。

首先,制冷机通过压缩机将低温、低压的制冷剂气体压缩成高温、高压的气体。

在这个过程中,制冷剂的压力和温度均升高。

接下来,高压气体进入冷凝器,通过与外界的接触和散热,将热量释放到外界,使制冷剂变成高压液体。

然后,高压液体进入节流阀,经过节流阀的扩散作用,使制冷剂压力急剧下降,同时温度也降低。

最后,制冷剂进入蒸发器,在蒸发器内与外界空气或物体接触,吸收热量进行蒸发,使制冷剂由液体转变为低温低压的蒸汽。

通过这个过程,蒸发器内的温度降低,从而达到降低整个制冷系统的温度的目的。

值得注意的是,制冷机是通过循环工作的,制冷剂会不断循环流动,完成对空气或物体的制冷过程。

整个制冷机的工作原理基于热力学的原理,充分利用了制冷剂的相变特性来实现温度的降低。

制冷系统原理

制冷系统原理

5、匹配制冷系统

以下各点是对一般情况而言的,以下数据 做一个参考。 *制冷工况匹配,以下对策中的“增加冷媒”仅作为最
后的手段,此方法应该尽量避免。
在标准制冷工况下匹配的目标:
1)排气温度目标值:85-90℃


高于目标值,则应该减短毛细管,加大室外机风 量或追加冷媒。 低于目标值,则加长毛细管,减少冷媒。 如果是特别匹配的高效制冷系统,排气温度较低, 一般在70-80 ℃。

异声或噪音超标



三、影响 EER、COP 的主要因素

逆卡诺循环的制冷系数

空调器的EER、COP影响主要因素
1、逆卡诺循环的制冷系数

逆向循环是一种消耗功的循环,所有的 制冷机都是按逆向循环来工作的。 当高温热源与低温热源的温度不变时, 具有两个可逆的等温过程和两个等熵过 程的逆向循环称为逆卡诺循环。

凝露工况不合格

5、匹配制冷系统
7)不合格项目微调与整改

室外机有冷媒流动声


毛细管组件用防振胶包住 在两个管径变化大的地方加过渡管 在过渡管处包防振胶
如果是风道的异声,则要改变风轮转速、安装位置或换 风轮 如果是制冷系统的异声,则在固频不合格处加配重块或 防振胶改变其固频 在配管振动大的地方贴防振胶 在压缩机排气管上加消声器 压缩机包隔音棉 钣金件上贴隔音棉

4、单级压缩蒸气制冷循环

节流机构:普通空调常用的是毛细管,高档的 空调器用电子膨胀阀。制冷剂经过节流机构时, 压力由冷凝压力降到蒸发压力,一部份制冷剂 会在节流的过程中闪发成为气体。 节流过程中制冷剂的焓值不变。

制冷与低温技术原理—第2章制冷方法

制冷与低温技术原理—第2章制冷方法

2.1.2 蒸气压缩式制冷
1. 系统组成: 压缩机,冷凝器,膨胀阀,蒸发器等主要设备
组成,用管道将其连接成一个封闭的系统。
2. 制冷系统图:
3
膨 胀 阀
4
冷却介质
冷凝器 蒸发器
2
压缩机
1
被冷却介质
蒸气压缩式制冷的基本系统图
压缩机:起着压缩和输送制冷剂蒸汽并造成蒸发器 中低压力,冷凝器中高压力的作用,是整 个系统的心脏。
3. 多级热电堆式半导体制冷的基本原理
为了获得更低的温度或更大的温差可采用多级热电堆式 半导体制冷。它是由单级热电联结而成。 联结的方式有:串联,并联,及串并联。其中二级, 三级热电堆式半导体制冷最为常见。
a) 串联二级热电堆
b) 并联二级热电堆 c) 串,并联三级热电堆
多级热电堆式半导体制冷器原理图
• 压力0.52MPa。
固态CO2
液态CO2
常压下,干冰的升华 温度-78.5℃,升华热 为573.6kJ/kg。
升华
气态CO2
课后问题3; 干冰的物理性质 。
吸热

明 干冰的制冷能力比冰和冰盐都大。
2. 液体蒸发制冷
共同特点: 是利用液体汽化 时的吸热效应而 实现制冷的。
常用方法: ✓ 蒸气压缩式制冷 ✓ 吸收式制冷 ✓ 蒸气喷射式制冷 ✓ 吸附式制冷
高压液体流 经膨胀阀节 流,形成低 压低温的 气,液两相 混合物进入 蒸发器。
4. 应用:
➢ 蒸气压缩式制冷机是应用最广泛的制冷机。 是本课程的重点内容之一。
➢ 具有100多年的历史,相当完备,广泛应用 在空气调节,各种冰箱,食品冷藏,冷加工 方面。
➢ 制冷的温度范围为5℃ — -150℃。

时均流驱动热声制冷研究进展

时均流驱动热声制冷研究进展
低 温 与 超 导 第3 8卷 第 7期
本 期 头条
Fo u c s
Cr o & S pe c nd y. u ro Vo . 8 No 7 13 .
时 均 流 驱 动 热 声 制 冷 研 究 进 展
余炎 , 孙大 明, 徐雅 , 陈海俊 , 吴珂 , 严伟林 , 敖文 , 邱利 民
Ke wo d Me n f w,V re y r s: a o l o tx,Ae o c u t s h r o e u t f c ,S l ra o s c ,T e i m a o si e e t ef—o cl t n c s i ai l o
1 引言
热声效应是指可压缩流体的声振荡与固体介

( 浙江 大学制冷与低温研究所 , 州 3 02 ) 杭 10 7 摘要 : 时均流驱动热声制冷是 热声 领域 的全新方 向, 依据该 原理工 作 的热 声制冷 系统 能够利用 风能获得 制冷 效应 , 完全没有运动部件 , 为风能利用提供 了一种新思 路。文 中详 细介绍 了时 均流诱 导声振荡 的工作 机理 以及 时
Y a , u a ig uY ,C e a u , e a in A n i i i uY n S nD m n ,X a hnH i n WuK ,Y nWe i, oWe ,QuLm n j l (ntu f e grt nadCygnc,Z e agU i ri , n zo 10 7 hn ) Istt o f ea o n roeis hj n nv s y Haghu30 2 ,C ia ie R r i i i e t
电驱 动热声 制冷 J热 驱 动热 声 制 冷 以及 最 近 、 几年 才发展 起来 的时 均流驱 动 的热声制 冷 。 J 时均 流 ( 或平 均流 , a o 是指 具 有 显 著 Men f w) l
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目前的电冰箱及空调器所使用的制冷技术多为通过压缩机由制冷剂制冷。

长期以来得到广泛应用的制冷剂是氟利昂,它被称为电冰箱和空调器中不可缺少的“血液”,但近年来人们发现由于全世界大量使用氟利昂已使地球臭氧层变得稀薄,温室效应太阳益明显,人类赖以生存的生态环境受到严重的危害。

国际上已制定了控制氟利昂使用的“蒙特利尔议定书”。

一些国家相继宣布,到本世纪末,将全部停止氟利昂的使用。

因此,制冷技术科技界将面临两条途径:一是寻求氟利昂的替代物,这方面国内外正在进行大量的试验研究工作。

就目前情况看,这些替代物并不十分理想,例如它的制冷效率以及和润滑油的兼容性并不理想,而且这些替代物是否对人类生存环境绝对无害,还要经历很长时间的考验,才能下定论;另一条途径则是广泛地开发新的制冷技术。

在此情况下,声制冷技术是值得关注和研究的课题之一。

1 声制冷原理所谓声制冷,即利用声能达到热量从冷端转移到热端的一门技术。

在热力学中,最基本的热机有两类:发动机和制冷机。

发动机将从高温热源吸收的热量部分转化为机械能输出,并向低温热源释放热量。

制冷机则消耗外界提供的功,由低温热源泵热,并向高温热源释放热量。

这里它没有对热机中功的形式加以限制,它可以是机械能形式的功,也可以是电功,磁功等。

声能是一种振荡形式的能量,如果能够实现热能与声能的相互转化并与外界热源的热量交换,即可制成声发动机和声制冷机。

利用热声效应可以实现声能与热能的相互转化以及与外热源的热量交换。

1.1 热声效应热声效应是指可压缩的流体的声振荡与固体介质之间由于热相互作用而产生的时均能量效应。

可产生热声效应的流体介质必须有可压缩性、较大的热膨胀系数、小的普朗特数,而且对于要求较大温差,较小能量流密度的场合,流体比热要小,对于要求较小温差,较大能量流密度的场合,流体比热要大。

因此,理想气体如空气、氦气,特别是氦气,适用于较大温差,较小能量流密度的场合;在近临界区的简单液体,如CO2,简单的碳氢化合物CmHm等,适用于较小温差,较大能量流密度的场合。

显然,后者适用于家用电器的制冷。

其实,在我们的太阳常生活中,存在着大量的“热声效应”(1)。

例如,在讲演者周围建立起的声场中,声波在空气介质中传播,会引起压强与位移的变化。

而压强与位移的变化又会导致气体介质的温度振荡,这些变化与振荡以及它们与周围固体边界发生相互作用就会产生热声效应。

但是这里由热声效应引起的局部温度振荡和热流的量都很小,前者约为10-4℃,后者约为10-8w/m2,所以人们不易感觉得到,更无法加以利用了。

其中主要原因是由于声源的能量较小,如果声源的图1 共振型热声制冷机的工作原理图2 驻波热声制冷机图3 行波热声制冷机图4 Stirling制冷机能量有足够大,那么由热声效应引起的温度振荡和热流也就相当可观了。

下面的实例就能说明这一点,房间内的高声谈话,在相距1m处的声压级约为68~74dB;蒸汽机车在5m处的声压级约为110dB;飞机强力发动机在相距5m处的声压级约为140dB,它的声功率约为104w。

如果能有如此之大功率的声源,就很有必要利用热声效应进行转换了。

从能量转换角度,可以将热声效应分为两类:一是用热来产生声,即热驱动的声振荡,二是用声来产生热流,即声驱动的热传输。

对应这两类热声效应制成的热机也分为两类:热声发动机和热声制冷机(简称声制冷机)。

1.2 声制冷的基本原理热声发动机和热声制冷机都是利用热声效应制成的热机。

现以共振热声制冷机为例,说明其工作原理(见图1)。

由图1(a)可知,它是由声源和声共振器构成。

声源S可以是低频活塞式声发生器或改装的中频扬声器,它的作用是实现声功的输入。

声共振器里又包括热声管组、热端热交换器、冷端热交换器和气体介质。

冷端热交换器从外界热源吸收热量,实现热量的输入。

热端热交换器向外界热源释放热量,实现热量的输出。

热声管组实现声功和热量的相互转换。

声共振器是为了在内部建立起声驻波场,这样声源输出功率虽不太大,但波腹处的声压级却很高。

首先,声源发出声音在气体介质中传播时产生声压,声压引起了气体介质的绝热压缩或绝热膨胀(即与外界无热量交换的压缩和膨胀)。

这样,会导致气体温度变化,然后与管组发生热交换。

图1(b)所示,右边气团因声波作用发生绝热膨胀时,内能减少,温度降低,此时右边气团温度低于当时与之*近的管组温度,因此右边气团从管组得到能量。

同时左边气团发生绝热压缩,内能增加,温度升高,因此左边位置的气团会将热量传递给与之*近的管组。

这样,在一个声波周期内,气团就使热量沿管组从右边移到左边,通常一个气团和温度变化及其转移的热量都是微量。

因此,必须有一系列的气团,以合适的相位接力式地工作,才能将足够的热量泵向声压波腹处而产生显著的热声效应。

这样就要求热声管组的整体长度和宽度都必须足够大,才能沿管组方向产生定向热流,使热由低温端泵到高温端,使低温端得以制冷。

2 声制冷机的类型2.1 共振型声制冷机共振型声制冷机又分为共振型驻波声制冷机和共振型行波声制冷机。

共振型驻波声制冷机是在美国Los Alamos国家实验室,由低温物理专家Wheatlay领导的小组,在1986年研制成功的。

它以Rott和Thomann关于驻波声场的热声理论为指导,利用在管内产生的接近共振的驻波声场来产生热声效应进行工作。

如图2所示,它的声源是一个声发生器,声发生器提供动力产生声振动。

声共振器的终端是一个共振球体,这样可使在热声管组末端的冷端热交换器处的阻抗为零(使质点速度最大),因而在热声管组中产生声驻波。

这种制冷机只有一个运动部件,即声发生器。

它能达到的最低温度为198K,在246K时制冷量为3W,性能系数为卡诺循环的12%。

共振型行波声制冷机是美国麻省理工大学的Ceperley于1979年提出的。

它包括声发生器、室温热端热交换器、热声管组、冷端热交换器及行波声导管。

如图3所示,这些部件构成一个行波回路,而回路的长度正好应为一个声波长。

声发生器提供动力产生声振荡。

在声回路中产生接近共振的行波声场。

冷端热交换器从低温热源吸收能量,热量由热声管组消耗声功从低温端泵向高温端,热端交换器将热声管组来的热流释放给环境。

这种声制冷机也只有一个运动部件,即声发生器。

2.2 回热式声制冷机Stirling声制冷机是回热式声制冷机的典型。

图5 脉冲管制冷机Stirling声制冷机实际上是一种带有声吸收器的行波式制冷机。

最基本的Stirling声制冷机包括以下部件:声发生器、热端热交换器、热声管组、冷端热交换器和声吸收器。

如图4所示,这种声制冷机是*声发生器活塞和声吸收器活塞的协调运动来建立行波声场的,即声发生器活塞运动超前声吸收器活塞运动一个相位角θ(0<θ<π)。

当θ约为π/2时,其中声场的行波能量可达到最大。

还有一种Stirling制冷机带有排出器结构,即分置式声制冷机。

其中排出器作用是一端吸收声功,而在另一端输出声功,它起到了声功流反馈作用,其它部件作用与基本的Stirling制冷机相同。

Stirling制冷机的特点是工作温度范围宽,效率较高,结构紧凑。

分置式结构,体积小,重量轻,特别适用于机载冷却设备。

2.3 脉冲管制冷机早在1963年就有人提出了脉冲管制冷机,它是一个行波声制冷机和驻波声制冷机的组合(2)。

它由声发生器、热端热交换器1、热声管组、冷端热交换器、脉冲管和热端热交换器2等部件组成,如图5所示。

其中脉冲管和热端热交换器2的作用是接受由冷端热交换器输入的声功流以建立驻波场。

脉冲管制冷机近几年来得到很大发展,由基本型脉冲管制冷发展到小孔型脉冲管和双向进气型脉冲管制冷机等型式。

小孔型脉冲管制冷机在带有脉冲管的热端热交换器2处又加了一个亥姆霍兹共振器,它是一种共振吸收结构。

当其工作在共振频率附近时,由于小孔声阻产生强烈的声吸收作用,声功被吸收耗散为热。

这样制冷机中声场的行波分量得以增强,热声管组泵热量增加。

小孔型脉冲管制冷机的性能比基本型脉冲管制冷机性能大为改善,其泵热能力和达到的最低温度与Stirling制冷机接近,但其行波分量的增强是以共振器耗散功为代价,其制冷系数小于Stirling制冷机。

双向进气式脉冲管制冷机在小孔型脉冲管制冷机的基础上,用一段旁路管道将带脉冲管的热端热交换器2与热端热交换器1连接起来,管道中的气柱相当于排气结构。

这些在热交换器1处形成“双向进气”,当阻抗匹配合理时,可通过该管道吸收一部分声功,使制冷能力和效率有所提高。

上述声制冷机所用的声介质多为气体介质。

气体介质适用于较大温差,较小能量流密度场合,它不适合用于家电行业中的电冰箱和空调器。

我们知道,液体介质适用于较小温差,较大能量流密度场合,所以将声制冷机中的气体介质改为液体介质,无疑会带来较佳效果。

美国的Los Alamos实验室采用了液态丙烯作为声介质。

因其较大的热膨胀系数和较小的体积压缩率,在高压下工作时,制冷功率和效率都会显著提高。

3 声制冷机的发展前景声制冷机的研究和开发兴起于本世纪80年代。

在这方面工作的主要有美国Los Alamos实验室及美国海军研究生院。

Los Alamos于1990年展示了一台热声制冷机,制冷最低温度达89K,在制冷温度为120K时,制冷功率为5W。

美国加州的海军研究生院于80年代曾研制了一台热声冰箱(STAR)用于1992年1月发射的“发现”号航天飞机上,在地面产生比室温低80K的温度,当制冷功率为3W时,峰值效率为卡诺热机的20%。

这两台声制冷机都使用电动声源,工作频率在400~500Hz之间。

美国海军研究生院目前正致力于声制冷的家用电冰箱和空调器的研究和开发。

声制冷的家用电冰箱(TALSR)已研制成功,冷藏室温度为4℃,冷冻室的温度可达-22℃(3)。

当前,声制冷原理已用于红外传感、雷达及其它低温电子器件的降温。

低温电子器件的制冷问题与常规民用制冷相比,有自己的独特之处,它要求制冷温度低(-50℃~-200℃)。

但制冷量不大,要求制冷机的机械振动小,可*性高和小型轻量化。

声制冷技术刚好适合了这些方面的要求。

因此可以期望声制冷技术在低温电子学器件制冷方面有好的应用前景。

4 结束语目前,家用电冰箱和空调器均采用机械式的压缩机制冷技术。

鉴于广大用户对静音化的要求极为迫切,国内外在家电制冷设备的降噪技术方面也做出不少的成绩,但更高水平的静音化目前困难不少。

我们设想在不久的将来能在电冰箱制冷系统上附加一套结构简单的声制冷系统并以电冰箱压缩机的噪声作为声制冷系统的能源,将会使整台电冰箱或空调器的制冷效率进一步提高,而其噪声将有突破性的下降。

参考资料:/dispbbs.asp?boardid=4&id=277&star=1&page=1。

相关文档
最新文档