开学模拟考01 期末检测卷(试题解析)-2020-2021学年七年级数学寒假学习精编讲义(人教版)

合集下载

2020-2021学年湖北省武汉市第一学期七年级期末模拟考数学试题卷

2020-2021学年湖北省武汉市第一学期七年级期末模拟考数学试题卷

2020-2021学年武汉市第一学期七年级期末模拟考数学试题卷考生须知:1. 本试卷分试题卷和答题卷两部分,满分120分,考试试卷100分钟。

2. 答题前,必须在答题卡上填写校名,班级,姓名,座位号。

3. 不允许使用计算器进行计算,凡题目中没有要求取近似值的,结果应保留根号或π一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果把收入100元记作+100元,那么支出80元记作( )A .﹣80元B .+100元C .+80元D .-20元2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A .44×108B .4.4×109C .4.4×108D .4.4×10103.下列各组中的两个单项式,属于同类项的是( )A .2a 与aB .2a 与2bC .2a b 与2abD .0.2ab -与12ba 4.若2(2)(1)x k k x +--的结果与x 的值无关,则k 的值为( )A .2B .3C .4D .6 5.下列方程变形中,正确的是( )A .由280x -=,得28x =-B .由1123x -=,得321x -= C .由123x x +=-,得213x x -=-- D .由23x =,得23x = 6.如图所示为几何体的平面展开图,则从左至右,其对应的几何体名称为( )A .圆锥,正方形,三棱锥,圆柱B .正方体,圆锥,圆柱,三棱柱C .圆锥,正方体,四棱柱,圆柱D .正方体,圆柱,圆锥,三棱柱7.农民在播种时,每垄地上每隔50cm 种一粒种子,为了保留湿度在种完种子后用塑料薄膜盖上,那么在一垄地上用5米长的塑料薄膜能盖上多少粒种子( )A .11或10B .9或10C .11或9D .11或128.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补9.有x 辆客车,若每辆客车乘50人,则还有10人不能上车,若每辆车乘52人,则车上只剩2个空位,下列方程中正确的是( )A .5010522x x +=-B .5010522x x -=-C .5010522x x +=+D .5010522x x -=+10.如图,点C,D 为线段AB 上两点,9AC BD +=,且75AD BC AB +=,设CD t =,则方程()()371232t x x x --=-+的解是( )A .2x =B .3x =C .4x =D .5x =二、填空题(本大题有6个小题,每小题4分,共24分)11.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.12.多项式__________与22m m +-的和是22m m -.13.一个棱柱的面数为14,棱数是36,则其顶点数为________.14.9点24分,时钟的分针与时针所成角的度数是_______________15.给定一列按规律排列的数:32-,1,710-,917,…,根据前4个数的规律,第2020个数是_____. 16.已知关于x 的一元一次方程1322019x x b +=+的解为2x =,则关于y 的一元一次方程()11212019y y b +=-+的解为___. 三、解答题(本大题有7小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)解方程:(1)3(2)2x x +=+;(2)7531164y y --=-.18.(本题满分8分)(1)先化简,再求值:2229633y x y x ⎛⎫-+--⎪⎝⎭,其中2x =,1y =-; (2)说明代数式()()()22222232522a ab ba ab b a ab b -+--+-++的值与a 的取值无关.19.(本题满分8分)有一天中午,一送外卖的小哥哥骑摩托车从饭店出发,向东走了2千米到达小彬家,接着向东走2.5千米到达小颖家,然后向西走了7千米到达小明家,最后回到饭店.(1)请以饭店为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)求出小明家距小彬家多远?(3)若摩托车每千米耗油0.06升,求这次行驶中共耗油多少升?20.(本题满分10分)如图,已知平面上四个点,,,A B C D ,按下列要求画出图形:(1)画线段BD 和线段BD 的延长线;(2)线段AC 和线段DB 相交于点O ;(3)连结线段BC ,反向延长线段BC .21.(本题满分10分)已知:射线OC 在AOB ∠的内部,:8:1AOC BOC ∠∠=,2COD COB ∠=∠,OE 平分AOD ∠.(1)如图,若点A ,O ,B 在同一条直线上,OD 是AOC ∠内部的一条射线,求COE ∠的度数;(2)若(018)BOC αα∠=︒<<︒, COE ∠的度数为多少(用含α的代数式表示).22.(本题满分12分)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:实施“阶梯电价”收费以后,该市居民陈先生家积极响应号召节约用电,2019年10月用电100千瓦时,交电费50元.(1)求上表中a 的值.(2)陈先生家2019年11月用电200千瓦时,应交费多少元?(3)若陈先生家2019年12月份的用电量为x 千瓦时()150x >,请用含x 的代数式表示陈先生一家应交多少元电费.23.(本题满分12分)如图,A 、B 两点在数轴上,这两点在数轴对应的数分别为﹣12、16,点P 、Q 分别从A ,B 两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒、4个单位/秒,它们运动的时间为t 秒,O 点对应的数是0.(规定:数轴上两点A ,B 之间的距离记为AB )(1)如果点P 、Q 在A 、B 之间相向运动,当它们相遇时,t = ,此时点P 所走的路程为 ,点Q 所走的路程为 ,则点P 对应的数是 .(2)如果点P 、Q 都向左运动,当点Q 追上点P 时,求点P 对应的数;(3)如果点P 、Q 在点A 、B 之间相向运动,当PQ =8时,求P 点对应的数.。

2020-2021学年七年级上学期期末数学试卷 (解析版)

2020-2021学年七年级上学期期末数学试卷 (解析版)

2020-2021学年七年级(上)期末数学试卷一、选择题1.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V“字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角α的度数为()A.25°B.35°C.45°D.55°2.2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人将“1.5万”用科学记数法表示应为()A.1.5×103B.15×103C.1.5×104D.15×1043.下表是11月份某一天北京四个区的平均气温:区县海淀怀柔密云昌平气温(℃)+1 ﹣3 ﹣2 0 这四个区中该天平均气温最低的是()A.海淀B.怀柔C.密云D.昌平4.下列计算正确的是()A.m2n﹣nm2=0 B.m+n=mnC.2m3+3m2=5m5D.2m3﹣3m2=﹣m5.已知关于x的方程mx+2=x的解是x=3,则m的值为()A.B.1 C.D.36.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.b+c>0 D.|a|>|b|7.下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若=1,则3(3x+1)﹣2(1﹣2x)=68.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB 与正北方向所成角的度数为()A.20°B.70°C.110°D.160°9.已知线段AB=8cm,AC=6cm,下面有四个说法:①线段BC长可能为2cm;②线段BC长可能为14cm;③线段BC长不可能为5cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④10.某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是()A.P→A B.P→B C.P→C D.P→D二、填空题(本题共16分,每小题2分)11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是.12.一个单项式满足下列两个条件:①系数是﹣2;②次数是3.写出一个满足上述条件的单项式:.13.计算:48°39′+67°31′=.14.如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长(填:大或小),理由为.15.已知一个长为6a,宽为2a的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长形,按图2的方式拼接,则阴影部分正方形的边长是.(用含a的代数式表示)16.如图,点C在线段AB上,D是线段CB的中点.若AC=4,AD=7,则线段AB的长为.17.历史上数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示.例如,对于多项式f(x)=mx3+nx+5,当x=2时,多项式的值为f(2)=8m+2n+5,若f(2)=6,则f(﹣2)的值为.18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A、B两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示.目前该商场有促销活动,促销方案如表2所示.表1:洗衣机和烘干机单价表洗衣机单价(元/台)烘干机单价(元/台)A品牌7000 11000B品牌7500 10000 表二:商场促销方案1.所有商品均享受8折优惠.2.所有洗衣机均可享受节能减排补贴,补贴标准为:在折后价的基础上再减免13%.3.若同时购买同品牌洗衣机和烘干机,额外可享受“满两件减400元”则选择品种的洗衣机和品种的烘干机支付总费用最低,支付总费用最低为元.三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分)19.计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(﹣)3.20.解方程:(1)3x﹣2=﹣6+5x;(2)=1.21.先化简,再求值:2(2xy2﹣x2y)﹣(x2y+6xy2)+3x2y,其中x=2,y=﹣1.22.如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE.四、解答题(本题共10分,第23题4分,第24题6分)23.如图是一个运算程序:(1)若x=﹣2,y=3,求m的值;(2)若x=4,输出结果m的值与输入y的值相同,求y的值.24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示:名次球队场次胜场负场总积分1 中国11 11 02 美国11 10 1 283 俄罗斯11 8 3 234 巴西11 21(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中.(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表,求巴西队胜场的场数.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A,B,C,D分别表示有理数a,b,c,d,且a<b,c<d.(1)如图1,M为线段AB的中点,①当点M与原点O重合时,用等式表示a与b的关系为;②求点M表示的有理数m的值(用含a,b的代数式表示);(2)已知a+b=c+d,①若三点A,B,C的位置如图所示,请在图中标出点D的位置;②a,b,c,d的大小关系为(用“<”连接)26.阅读下面材料:小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD,如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD 的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明:已知:如图3,点O在直线AD上,射线OC平分∠BOC.求证:∠AOC与∠BOC互补.(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余.(保留画图痕迹)(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是.27.给定一个十进制下的自然数x,对于x每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x的“模二数”,记为M2(x).如M2(735)=111,M2(561)=101.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如图所示.根据以上材料,解决下列问题:(1)M2(9653)的值为,M2(58)+M2(9653)的值为;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如M2(124)=100,M2(630)=010,因为M2(124)+M2(630)=110,M2(124+630)=110,所以M2(124+630)=M2(124)+M2(630),即124与630满足“模二相加不变”.①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有个.参考答案一、选择题(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V“字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角α的度数为()A.25°B.35°C.45°D.55°【分析】直接利用量角器量出其角度或估算得出答案.解:如图所示:食指和中指所夹锐角α的度数为:35°.故选:B.2.2019年10月1日国庆阅兵是中国特色社会主义进入新时代的首次阅兵,也是人民军队改革重塑后的首次集中亮相.此次阅兵编59个方(梯)队和联合军团,总规模约1.5万人将“1.5万”用科学记数法表示应为()A.1.5×103B.15×103C.1.5×104D.15×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将“1.5万”用科学记数法表示应为1.5×104.故选:C.3.下表是11月份某一天北京四个区的平均气温:区县海淀怀柔密云昌平气温(℃)+1 ﹣3 ﹣2 0 这四个区中该天平均气温最低的是()A.海淀B.怀柔C.密云D.昌平【分析】由表格可知:﹣3<﹣2<0<1即可求解.解:∵﹣3<﹣2<0<1,∴最低的是怀柔,故选:B.4.下列计算正确的是()A.m2n﹣nm2=0 B.m+n=mnC.2m3+3m2=5m5D.2m3﹣3m2=﹣m【分析】根据合并同类项法则逐一判断即可.解:A.m2n﹣nm2=0,正确,故本选项符合题意;B.m与n不是同类项,所以不能合并,故本选项不合题意;C.2m3与3m2不是同类项,所以不能合并,故本选项不合题意;D.2m3与﹣3m2不是同类项,所以不能合并,故本选项不合题意.故选:A.5.已知关于x的方程mx+2=x的解是x=3,则m的值为()A.B.1 C.D.3【分析】把x=3代入关于x的方程mx+2=x,得到关于m的新方程,通过解新方程求得m的值即可.解:把x=3代入关于x的方程mx+2=x,得3m+2=3.解得m=.故选:A.6.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.b+c>0 D.|a|>|b|【分析】观察数轴,找出a、b、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.解:A、∵a<﹣4,∴结论A错误;B、∵b<﹣1,d=4,∴bd<0,结论B错误;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,结论C错误;D、∵a<﹣4,b>﹣2,∴|a|>|b|,结论D正确.故选:D.7.下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若=1,则3(3x+1)﹣2(1﹣2x)=6【分析】根据等式的性质即可解决.解:A、若4x=2,则x=,原变形错误,故这个选项不符合题意;B、若4x﹣2=2﹣3x,则4x+3x=2+2,原变形错误,故这个选项不符合题意;C、若4(x+1)﹣3=2(x+1),则4(x+1)﹣2(x+1)=3,原变形错误,故这个选项不符合题意;D、若﹣=1,则3(3x+1)﹣2(1﹣2x)=6,原变形正确,故这个选项符合题意;故选:D.8.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB 与正北方向所成角的度数为()A.20°B.70°C.110°D.160°【分析】根据方向角的定义解答.解:如图,∠BOD即这条跑道所在射线OB与正北方向所成角.由于∠BOC=70°,∴∠BOD=180°﹣70°=110°所以这条跑道所在射线OB与正北方向所成角的度数为110°.故选:C.9.已知线段AB=8cm,AC=6cm,下面有四个说法:①线段BC长可能为2cm;②线段BC长可能为14cm;③线段BC长不可能为5cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④【分析】直接利用当A,B,C在一条直线上,以及当A,B,C不在一条直线上,分别分析得出答案.解:∵线段AB=8cm,AC=6cm,∴如图1,当A,B,C在一条直线上,∴BC=AB﹣AC=8﹣6=2(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=8+6=14(cm),故②正确;如图3,当A,B,C不在一条直线上,8﹣6<BC<8+6,故线段BC可能为5或9,故③错误,④正确.故选:C.10.某长方体的展开图中,P、A、B、C、D(均为格点)的位置如图所示,一只蚂蚁从点P 出发,沿着长方体表面爬行.若此蚂蚁分别沿最短路线爬行到A、B、C、D四点,则蚂蚁爬行距离最短的路线是()A.P→A B.P→B C.P→C D.P→D【分析】根据线段的性质:两点之间线段最短,可直接得出.解:由题意得:蚂蚁爬行距离最短的路线是P→D;故选:D.二、填空题(本题共16分,每小题2分)11.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是丁.【分析】根据绝对值最小的最接近标准,可得答案.解:|+1.5|=1.5,|﹣3.5|=3.5,|0.7|=0.7,|﹣0.6|=0.6,0.6<0.7<1.5<3.5,故最接近标准质量的足球是丁.故答案为:丁.12.一个单项式满足下列两个条件:①系数是﹣2;②次数是3.写出一个满足上述条件的单项式:﹣2x3(答案不唯一).【分析】利用单项式次数与系数的定义即可得出答案.解:一个单项式满足下列两个条件:①系数是﹣2;②次数是3.则满足上述条件的单项式:﹣2x3(答案不唯一).故答案为:﹣2x3(答案不唯一).13.计算:48°39′+67°31′=116°10' .【分析】根据度、分、秒的进制为60直接计算即可.解:39′+31′=70′=1°10′,故48°39′+67°31′=116°10'.故答案为:116°10'.14.如图,将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长小(填:大或小),理由为三角形的两边之和大于第三边.【分析】任意两边上的点和两点间的顶点恰好构成一个三角形,利用三角形的三边关系可以得出结论.解:将五边形ABCDE沿虚线裁去一个角得到六边形ABCDGF,则该六边形的周长一定比原五边形的周长小,理由是三角形的两边之和大于第三边.故答案为:小;三角形的两边之和大于第三边15.已知一个长为6a,宽为2a的长方形,如图1所示,沿图中虚线裁剪成四个相同的小长形,按图2的方式拼接,则阴影部分正方形的边长是2a.(用含a的代数式表示)【分析】根据题意和题目中的图形,可以得到图2中小长方形的长和宽,从而可以得到阴影部分正方形的边长.解:由图可得,图2中每个小长方形的长为3a,宽为a,则阴影部分正方形的边长是:3a﹣a=2a,故答案为:2a.16.如图,点C在线段AB上,D是线段CB的中点.若AC=4,AD=7,则线段AB的长为10 .【分析】先根据线段的和差关系求得CD,再根据中点的定义求得BD,再根据线段的和差关系求得AB.解:∵AC=4,AD=7,∴CD=7﹣4=3,∵D是线段CB的中点,∴BD=3,∴AB=AD+BD=7+3=10.故答案为:10.17.历史上数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示.例如,对于多项式f(x)=mx3+nx+5,当x=2时,多项式的值为f(2)=8m+2n+5,若f(2)=6,则f(﹣2)的值为 4 .【分析】根据f(2)=6,可得:8m+2n+5=6,所以8m+2n=1,据此求出f(﹣2)的值为多少即可.解:∵f(2)=6,∴8m+2n+5=6,∴8m+2n=1,∴f(﹣2)=﹣8m﹣2n+5=﹣(8m+2n)+5=﹣1+5=4故答案为:4.18.小明家想要从某场购买洗衣机和烘干机各一台,现在分别从A、B两个品牌中各选中一款洗衣机和一款烘干机,它们的单价如表1所示.目前该商场有促销活动,促销方案如表2所示.表1:洗衣机和烘干机单价表洗衣机单价(元/台)烘干机单价(元/台)A品牌7000 11000B品牌7500 10000 表二:商场促销方案1.所有商品均享受8折优惠.2.所有洗衣机均可享受节能减排补贴,补贴标准为:在折后价的基础上再减免13%.3.若同时购买同品牌洗衣机和烘干机,额外可享受“满两件减400元”则选择B品种的洗衣机和B品种的烘干机支付总费用最低,支付总费用最低为12820 元.【分析】根据题意分四种方案:A品牌洗衣机和A品牌烘干机;A品牌洗衣机和B品牌烘干机;B品牌洗衣机和A品牌烘干机;B品牌洗衣机和B品牌烘干机.分别计算出支付总费用即可得出答案.解:购买A品牌洗衣机和A品牌烘干机费用=(7000+11000)×0.8﹣7000×0.8×13%﹣400=13272(元);购买A品牌洗衣机和B品牌烘干机费用=(7000+10000)×0.8﹣7000×0.8×13%=12872(元);购买B品牌洗衣机和A品牌烘干机费用=(7500+11000)×0.8﹣7500×0.8×13%=14020(元);购买B品牌洗衣机和B品牌烘干机费用=(7500+10000)×0.8﹣7500×0.8×13%﹣400=12820(元);综上所述,选择购买B品牌洗衣机和B品牌烘干机支付总费用最低,支付总费用最低为12820元.故答案为:B;B;12820.三、解答题(本题共25分,第19题8分,第20题8分,第21题4分,第22题5分)19.计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(﹣)3.【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.解:(1)7﹣(﹣6)+(﹣4)×(﹣3)=7+6+12=25;(2)﹣3×(﹣2)2﹣1+(﹣)3=﹣3×4﹣1+(﹣)=﹣12﹣1+(﹣)=﹣13.20.解方程:(1)3x﹣2=﹣6+5x;(2)=1.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.解:(1)移项,合并同类项,可得:﹣2x=﹣4,系数化为1,可得:x=2.(2)去分母,可得:3(3x+2)﹣2(x﹣5)=6,去括号,可得:9x+6﹣2x+10=6,移项,合并同类项,可得:7x=﹣10,系数化为1,可得:x=﹣.21.先化简,再求值:2(2xy2﹣x2y)﹣(x2y+6xy2)+3x2y,其中x=2,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:原式=4xy2﹣2x2y﹣x2y﹣6xy2+3x2y=﹣2xy2,当x=2,y=﹣1时,原式=﹣4.22.如图,已知平面上三点A,B,C,请按要求完成下列问题:(1)画射线AC,线段BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹);(3)利用刻度尺取线段CD的中点E,连接BE.【分析】(1)画射线AC,线段BC即可;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD即可;(3)利用刻度尺取线段CD的中点E,连接BE即可.解:如图所示:(1)射线AC,线段BC即为所求作的图形;(2)线段AB及延长线,点D以及线段CD即为所求作的图形;(3)点E以及线段BE即为所求作的图形.四、解答题(本题共10分,第23题4分,第24题6分)23.如图是一个运算程序:(1)若x=﹣2,y=3,求m的值;(2)若x=4,输出结果m的值与输入y的值相同,求y的值.【分析】(1)若x=﹣2,y=3,根据﹣2<3,把x、y的值代入|x|﹣3y即可.(2)若x=4,输出结果m的值与输入y的值相同,则y=m,分两种情况:4>m;4≤m,求出y的值是多少即可.解:(1)∵x=﹣2,y=3,﹣2<3,∴x<y,∴m=|﹣2|﹣3×3=﹣7.(2)∵x=4,输出结果m的值与输入y的值相同,∴y=m,①4>m时,∵|4|+3m=m,解得m=﹣2,符合题意.②4≤m时,∵|4|﹣3m=m,∴4﹣3m=m,解得m=1,不符合题意,∴y=﹣2.24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示:名次球队场次胜场负场总积分1 中国11 11 0 322 美国11 10 1 283 俄罗斯11 8 3 234 巴西11 21(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中.(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表,求巴西队胜场的场数.【分析】(1)依据中国队11场胜场中只有一场以3﹣2取胜,即可得到中国队的总积分.(2)设巴西队积3分取胜的场数为x场,依据巴西队总积分为21分,即可得到方程,进而得出x的值.解:(1)中国队的总积分=3×10+2=32;故答案为:32;(2)设巴西队积3分取胜的场数为x场,则积2分取胜的场数为(x﹣5)场,依题意可列方程3x+2(x﹣5)+1=21,3x+2x﹣10+1=21,5x=30,x=6,则积2分取胜的场数为x﹣5=1,所以取胜的场数为6+1=7,答:巴西队取胜的场数为7场.五、解答题(本题共19分,第25题6分,第26题6分,第27题7分)25.在数轴上,四个不同的点A,B,C,D分别表示有理数a,b,c,d,且a<b,c<d.(1)如图1,M为线段AB的中点,①当点M与原点O重合时,用等式表示a与b的关系为a+b=0 ;②求点M表示的有理数m的值(用含a,b的代数式表示);(2)已知a+b=c+d,①若三点A,B,C的位置如图所示,请在图中标出点D的位置;②a,b,c,d的大小关系为a<c<d<b(用“<”连接)【分析】(1)①根据M为线段AB的中点,点M与原点O重合,可知a与b互为相反数,则a+b=0;②根据M为线段AB的中点,可知m为a和b的平均数,从而可以用a、b的代数式表示出来;(2)①根据a+b=c+d,可以在图2中标出点D的位置;②根据①中画出的数轴可以得到a,b,c,d的大小关系.解:(1)①∵M为线段AB的中点,点M与原点O重合,∴a与b的关系为:a+b=0,故答案为:a+b=0;②∵M为线段AB的中点,∴点M表示的有理数m的值:;(2)①∵a+b=c+d,a<b,c<d,∴点D的位置的如下图2所示,;②由图2可得,a<c<d<b,故答案为:a<c<d<b.26.阅读下面材料:小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD,如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD 的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明:已知:如图3,点O在直线AD上,射线OC平分∠BOC.求证:∠AOC与∠BOC互补.(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余.(保留画图痕迹)(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是45°或|β﹣45°|.【分析】(1)根据画法写出了已知和求证,即可完成证明;(2)根据小聪的画法,画出一个∠AOH,使∠AOH与∠BOH互余即可;(3)根据∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),画出图形即可写出锐角∠MPN的度数.解:(1)证明:点O在直线AD上,∴∠AOB+BOD=180°.即∠AOB+∠BOC+∠COD=180°.∴∠AOC+∠COD=180°.OC平分∠BOD,∴∠BOC=∠COD.∴∠AOC+∠BOC=180°∴∠AOC与∠BOC互补.(2)如图所示即为所求作的图形.(3)如图,∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.锐角∠MPN的度数是45°∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β,PQ平分∠FPF′.则锐角∠MPN的度数是|β﹣45°|.故答案为:45°或|β﹣45°|.27.给定一个十进制下的自然数x,对于x每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x的“模二数”,记为M2(x).如M2(735)=111,M2(561)=101.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如图所示.根据以上材料,解决下列问题:(1)M2(9653)的值为1011 ,M2(58)+M2(9653)的值为1101 ;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如M2(124)=100,M2(630)=010,因为M2(124)+M2(630)=110,M2(124+630)=110,所以M2(124+630)=M2(124)+M2(630),即124与630满足“模二相加不变”.①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有38 个.【分析】(1)M2(9653)的值为1011,M2(58)=12M2(9653)=1011,所以M2(58)+M2(9653)的值为1101;(2)①M2(23)=01,M2(12)=10,求出M2(23)+M2(12)=11,M2(23+12)=11,可得M2(23)+M2(12)=M2(23+23);M2(23)=01,M2(65)=01,求出M2(23)+M2(65)=10,M2(23+65)=00,可得M2(23)+M2(65)≠M2(23+65);M2(23)=01,M2(97)=11,求出M2(23)+M2(97)=100,M2(23+297)=100,可得M2(23)+M2(97)=M2(23+97);②模二结果是10有:12,32,52,72,14,34,54,74,16,36,56,76,18,38,10,30,50,70满足题意;模二结果是11有:77,97,79,99满足题意;模二结果是01有:27,29,47,49,67,69,87,89满足题意;模二结果是00有:20,22,24,26,40,42,44,46,60,62,64,66满足题意;38个.解:(1)M2(9653)的值为1011,M2(58)=12M2(9653)=1011,∴M2(58)+M2(9653)的值为1101;(2)①M2(23)=01,M2(12)=10,∴M2(23)+M2(12)=11,M2(23+12)=11,∴M2(23)+M2(12)=M2(12+23),∴12与23满足“模二相加不变”,∵M2(23)=01,M2(65)=01,∴M2(23)+M2(65)=10,M2(23+65)=00,∴M2(23)+M2(65)≠M2(23+65),∴65与23不满足“模二相加不变”,∵M2(23)=01,M2(97)=11,∴M2(23)+M2(97)=100,M2(23+97)=100,∴M2(23)+M2(97)=M2(23+97),∴97与23满足“模二相加不变”;②模二结果是10有:12,32,52,72,92,14,34,54,74,94,16,36,56,76,96,18,38,58,78,98,10,30,50,70,90共25个,它们与模二数23的和是11,∴12,32,52,72,14,34,54,74,16,36,56,76,18,38,10,30,50,70满足题意;模二结果是11有:11,31,51,71,91,13,33,53,73,93,15,35,55,75,95,17,37,57,77,97,19,39,59,79,99共30个,它们与模二数23的和是100,∴77,97,79,99满足题意;模二结果是01有:21,23,25,27,29,41,43,45,47,49,61,63,65,67,69,81,83,85,87,89共20个,它们与模二数23的和是10,∴27,29,47,49,67,69,87,89满足题意;模二结果是00有20,22,24,26,28,40,42,44,46,48,60,62,64,66,68,80,82,84,86,88共20个,它们与模二数23的和是01,∴20,22,24,26,40,42,44,46,60,62,64,66满足题意;∴共有38个.。

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。

2020—2021学年七年级下学期数学《期末模拟测评》综合测试卷、练习卷(带答案解析)

2020—2021学年七年级下学期数学《期末模拟测评》综合测试卷、练习卷(带答案解析)

七年级下学期数学《期末模拟测评》综合测试卷、练习卷(带答案解析)一、选择题(本大题共10小题,共30.0分)1. 已知2a −1与−a +2是一个正数的平方根,则这个正数的值是A. 9B. 3C. 1D. 812. 点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是( )A. |b|<2<|a|B. 1−2a >1−2bC. −a <b <2D. a <−2<−b3. 如图,AB//CD ,∠FGB =154°,FG 平分∠EFD ,则∠AEF的度数等于( )A. 26°B. 52°C. 54°D. 77°4. 如图所示的平面直角坐标系中,点A 坐标为(4,2),点B坐标为(1,−3),在y 轴上有一点P 使PA +PB 的值最小,则点P 坐标为( )A. (2,0)B. (−2,0)C. (0,2)D. (0,−2)5. 已知方程组{2x +y =3x −2y =5,则2x +6y 的值是( )A. −2B. 2C. −4D. 46. 如果不等式{2x −1>3(x −1)x <m的解集是x <2,那么m 的取值范围是( )A. m =2B. m >2C. m <2D. m ≥27. 某校为了解学生课业负担的情况,随机抽取了50名七年级学生,调查学生每天完成课外作业所需的平均时间,并绘制了如图所示的频数分布直方图,根据图中信息,完成课外作业所需时间在1.5−2小时的频数是( )A. 15B. 20C. 10D. 28. 在同一平面内有2014条直线a 1,a 2,…,a 2014,如果a 1⊥a 2,a 2//a 3,a 3⊥a 4,a 4//a 5,…,依此类推,那么a 1与a 2014的位置关系是( )A. 垂直B. 平行C. 垂直或平行D. 重合9. 将下列数按如图方式进行有规律排列,则第19行的第37个数是( )A. 19B. −19C. √360D. −√36010. 已知关于x ,y 的二元一次方程组{x +3y =4−a x −y =3a,给出下列结论中正确的是( ) ①当这个方程组的解x ,y 的值互为相反数时,a =−2; ②当a =1时,方程组的解也是方程x +y =4+2a 的解; ③无论a 取什么实数,x +2y 的值始终不变; ④若用x 表示y ,则y =−x2+32;A. ①②B. ②③C. ②③④D. ①③④二、填空题(本大题共4小题,共12.0分)11. 若|x −y|+√y −2=0,则xy +1的值为______.12. 如图,把梯形ABCD 沿AD 方向平移得到梯形EFGH ,其中∠C =90°,HG =24 cm ,WG =8 cm ,WC =6 cm ,则阴影部分的面积为________________________________________.13. 定义运算a ⊗b =a 2−2ab ,下面给出了关于这种运算的几个结论:①2⊗5=−16; ②√2⊗(−1)3是无理数;③方程x ⊗y =0不是二元一次方程;④不等式组{(−3)⊗x +1>02⊗x −5>0的解集是−53<x <−14. 其中正确的是______(填写所有正确结论的序号). 14. 如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E(3,0)出发,同时沿正方形ABCD 的边作环绕运动,蚂蚁甲按顺时针方向以3个单位长度/秒的速度作匀速运动,蚂蚁乙按逆时针方向以1个单位长度/秒的速度作匀速运动,则两只蚂蚁出发后的第3次相遇点的坐标是______.三、计算题(本大题共2小题,共17.0分) 15. 计算:(1)2√5−5√5+3√5; (2)√3+1+3+|1−√3|; (3)√25−√−13+√144+√−643.16. (1){x −2y =12x +3y =16(2){4(x −y −1)=3(1−y)−2x 2+y 3=2.四、解答题(本大题共6小题,共61.0分)17. 已知√x +2y −7+|x −1|=0.(1)求x 与y 的值; (2)求x +y 的算术平方根.18. 若点P 的坐标为(x−13,2x −9),其中x 满足不等式组{5x −10≥2(x +1)12x −1≤7−32x,求点P所在的象限.19.如图,直线AB、CD相交于点O,CD⊥OF,OE平分∠BOD.(1)若∠AOC=72°,求∠EOF的度数;(2)若∠DOE比∠BOF大24°,求∠AOF的度数.20.列方程组解应用题:某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如表:批发价(元)零售价(元)黑色文化衫1025白色文化衫820假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?21.为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):组别分数人数第1组90<x≤1008第2组80<x≤90a第3组70<x≤8010第4组60<x≤70b第5组50<x≤603请根据以上信息,解答下列问题:(1)求出a,b的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?22.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(−3,1),①在点E(0,3),F(3,−3),G(2,−5)中,为点A的“等距点”的是______;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为______;(2)若T1(−1,−k−3),T2(4,4k−3)两点为“等距点”,求k的值.答案和解析1.【答案】A【解析】【分析】本题考查平方根.根据一个正数的两个平方根互为相反数先求出a的值,再计算这个正数的一个平方根,最后求得这个正数即可..【解答】解:∵2a−1与−a+2是一个正数的平方根,∴(2a−1)+(−a+2)=0a=−1,−a+2=−(−1)+2=3∴这个正数=32=9,故选A.2.【答案】C【解析】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1−2a>1−2b,故本选项不符合题意;C、如图所示,a<−2<b<2,则−a>2>b,故本选项符合题意;D、如图所示,a<−2<b<2且|a|>2,|b|<2,则a<−2<−b,故本选项不符合题意;故选:C.根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.本题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.3.【答案】B【解析】解:∵AB//CD , ∴∠FGB +∠GFD =180°, ∴∠GFD =180°−∠FGB =26°, ∵FG 平分∠EFD , ∴∠EFD =2∠GFD =52°, ∵AB//CD ,∴∠AEF =∠EFD =52°. 故选:B .先根据平行线的性质,得到∠GFD 的度数,再根据角平分线的定义求出∠EFD 的度数,再由平行线的性质即可得出结论.本题考查的是平行线的性质,用到的知识点为;两直线平行,内错角相等;两直线平行,同旁内角互补.4.【答案】D【解析】解:如图所示:作B 点关于y 轴对称点B′点,连接AB′,交y 轴于点P ,则此时AP +PB =AP +PB′=AB′的值最小,∵点B 坐标为(1,−3), ∴B′(−1,−3),设直线AB′的解析式为:y =kx +b(k ≠0), ∵点A 坐标为(4,2), ∴{4k +b =2−k +b =−3,解得,{k =1b =−2,∴直线AB′的解析式为:y =x −2, 令x =0,则y =0−2=−2, ∴P(0,−2), 故选:D .作B 点关于y 轴对称点B′点,连接AB′,交y 轴于点P ,则此时AP +PB 最小,进而利用待定系数法求出直线AB′的解析式,便可求得P 点的坐标.此题主要考查了利用轴对称求最短路线,一次函数的图象与性质,待定系数法等知识,得出P点位置是解题关键.5.【答案】C【解析】【分析】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.两式相减,得x+3y=−2,所以2(x+3y)=−4,即2x+6y=−4.【解答】解:两式相减,得x+3y=−2,∴2(x+3y)=−4,即2x+6y=−4,故选:C.6.【答案】D【解析】解:{2x−1>3(x−1)①x<m②,由①得,x<2,由②得,x<m根据已知条件,不等式组解集是x<2,则m的取值范围是m≥2.故选:D.先用含有m的代数式把原不等式组的解集表示出来,然后根据已知的解集得到关于m 的不等式,从而解答即可.本题考查了不等式的解集,已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.【答案】C【解析】解:根据频数分布直方图可以知道课外作业所需时间在1.5−2小时的频数是10.故选:C.根据频数分布直方图可以知道课外作业所需时间在1.5−2小时的频数.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;8.【答案】A【解析】解:∵a1⊥a2,a2//a3,a3⊥a4,a4//a5,…,∴a1⊥a2,a1⊥a3,a1//a4,a1//a5…以四次为一个循环,⊥,⊥,//,//规律:下标除以4余数为2或3垂直,下标除以4余数为0或1平行,2014÷4的余数为2,∴a1⊥a2014,所以直线a1与a2014的位置关系是:a1⊥a2014.故选A.根据观察发现规律,以四次为一个循环,⊥,⊥,//,//,根据此规律即可解决问题.本题考查了平行线的判定、规律探究题目,解题的关键是发现规律,以四次为一个循环,⊥,⊥,//,//.9.【答案】A【解析】【分析】本题考查了找规律在平方根中的应用,找到题目中数字的排列规律是解题的关键.观察发现,第n行有(2n−1)个数,且每行最后一个数字的绝对值等于行数,奇数行的最后一个为正,偶数行的最后一个为负,据此可求得答案.【解答】解:观察发现,第n行有(2n−1)个数,且每行最后一个数字的绝对值等于行数,奇数行的最后一个为正,偶数行的最后一个为负,∴第19行有2×19−1=37个数,∴第19行的第37个数是19.故选:A.10.【答案】D【解析】解:于x ,y 的二元一次方程组{x +3y =4−a ①x −y =3a ②, ①+②得,2x +2y =4+2a ,即:x +y =2+a , (1)①当方程组的解x ,y 的值互为相反数时,即x +y =0时,即2+a =0, ∴a =−2,故①正确,(2)②原方程组的解满足x +y =2+a ,当a =1时,x +y =3,而方程x +y =4+2a 的解满足x +y =6,因此②不正确,(3)方程组{x +3y =4−a ①x −y =3a ②,解得,{x =2a +1y =1−a ∴x +2y =2a +1+2−2a =3,因此③是正确的,(4)方程组{x +3y =4−a ①x −y =3a ②, 由方程①得,a =4−x −3y 代入方程②得,x −y =3(4−x −3y),即;y =−x 2+32因此④是正确的,故选:D .根据方程组的解法可以得到x +y =2+a ,①令x +y =0,即可求出a 的值,验证即可,②由①得x +y =0,而x +y =4+2a ,求出a 的值,再与a =1比较得出答案, ③解方程组可求出方程组的解,再代入x +2y 求值即可,④用含有x 、y 的代数式表示a ,进而得出x 、y 的关系,考查二元一次方程组的解法和应用,正确的解出方程组的解是解决问题的关键. 11.【答案】5【解析】解:∵|x −y|+√y −2=0,∴x −y =0,y −2=0,解得:x =2,y =2.∴xy +1=4+1=5.故答案为:5.依据非负数的性质可求得x 、y 的值,然后代入计算即可.本题主要考查的是非负数的性质,熟练掌握非负数的性质是解题的关键.12.【答案】168cm 2【解析】解:∵直角梯形ABCD 沿AD 方向平移到梯形EFGH ,∴HG =CD =24cm ,∴DW =DC −WC =24−6=18cm ,∵S 阴影部分+S 梯形EDWF =S 梯形DHGW +S 梯形EDWF ,∴S 阴影部分=S 梯形DHGW =12(DW +HG)×WG =12×(18+24)×8=168(cm 2). 故答案为168cm 2.根据平移的性质得HG =CD =24cm ,则DW =DC −WC =18cm ,由于S 阴影部分+S 梯形EDWF =S 梯形DHGW +S 梯形EDWF ,所以S 阴影部分=S 梯形DHGW ,然后根据梯形的面积公式计算.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等. 13.【答案】①③④【解析】解:①2⊗5=22−2×2×5=−16,故①正确;②√2⊗(−1)3=√22−2×2×(−1)3=√83=2是有理数,故②错误;③方程x ⊗y =0得x 2−2xy =0不是二元一次方程,故③正确;④不等式组{(−3)⊗x +1>02⊗x −5>0等价于{(−3)2−2×(−3)x +1>022−2×2x −5>0, 解得−53<x <−14,故④正确;故答案为:①③④.根据a ⊗b =a 2−2ab ,逐项计算和判定,可得答案.本题考查了新定义问题、不等式组的解集、实数的运算,二元一次方程的定义,利用a ⊗b =a 2−2ab 列式是解题关键.14.【答案】(1,−2)【解析】解:由图可知,正方形的边长为4,故正方形的周长为16∴蚂蚁甲和蚂蚁乙第一次相遇的时间为:16÷(3+1)=4(秒)蚂蚁乙走的路程为:1×4=4∴此时相遇点的坐标为:(1,2)再经过4秒蚂蚁甲和蚂蚁乙第二次相遇,相遇点坐标为:(−1,0)第三次相遇时蚂蚁乙又走了4秒,距离为4个单位,此时相遇点坐标为:(1,−2)故答案为:(1,−2).由图可知,正方形的边长为4,故正方形的周长为16,因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位,所以用正方形的周长除以(3+1),可得第一次相遇时间,从而算出蚂蚁乙所走过的路程,则第二次和第三次相遇过程中蚂蚁乙所走过的路程和第一次是相同的,从而结合图形可求得第三次相遇时的坐标.本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.15.【答案】解:(1)原式=(2−5+3)√5=0;(2)原式=√3+1+3+√3−1=2√3+3;(3)原式=5−(−1)+12+(−4)=5+1+12−4=14.【解析】本题考查了实数的运算,涉及了算术平方根,立方根和绝对值,根据算术平方根,立方根的定义和绝对值的意义化简计算即可,(1)把√5前的系数合并即可;(2)先去绝对值符号后再合并即可;(3)分别化简算术平方根,立方根后再合并即可.16.【答案】解:(1){x −2y =1 ①2x +3y =16 ②, 解:由①得:x =2y +1③,把③代入②得:2(2y +1)+3y =16,解得:y =2,把y =2代入③得,x =5,则方程组的解为{x =5y =2.; (2){4(x −y −1)=3(1−y)−2①x 2+y 3=2②, 解:由①得:4x −y =5③,由②得:3x +2y =12④,③×2+④得:11x =22,解得:x =2,把x =2代入④得,y =3,则方程组的解为{x =2y =3..【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.(1)由方程组中第一个方程表示出x ,代入第二个方程消去x 求出y 的值,进而求出x 的值,即可确定出方程组的解;(2)方程组整理后,利用加减消元法求出解即可.17.【答案】解:(1)∵√x +2y −7≥0,|x −1|≥0,√x +2y −7+|x −1|=0, ∴x −1=0,x +2y −7=0,解得:x =1,y =3;(2)x +y =1+3=4,∵4的算术平方根为2,∴x +y 的算术平方根为2.【解析】此题主要考查了算术平方根以及绝对值,正确得出x ,y 的值是解题关键.(1)直接利用算术平方根以及绝对值的性质分析得出答案;(2)结合(1)中所求,结合算术平方根的定义分析得出答案.18.【答案】解:{5x −10≥2(x +1)①12x −1≤7−32x②, 解①得:x ≥4,解②得:x ≤4,则不等式组的解是:x =4,∵x−13=1,2x −9=−1,∴点P 的坐标为(1,−1),∴点P 在的第四象限.【解析】先求出不等式组的解集,进而求得P 点的坐标,即可求得点P 所在的象限. 本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 19.【答案】解:(1)∵∠AOC =72°,∴∠BOD =72°,∵OE 平分∠BOD ,∴∠EOD =12×72°=36°, ∵CD ⊥OF ,∴∠FOD =90°,∴∠EOF =∠FOD −∠EOD =90°−36°=54°;(2)设∠BOF =x ,则∠DOE =24°+x ,∵OE 平分∠BOD ,∴∠BOE =∠DOE =24°+x ,∵CD ⊥OF ,∴∠FOD =90°,∴∠DOE +∠BOE +∠BOF =90°,∴24°+x +24°+x +x =90°,解得:x =14°,即∠BOF =14°,∴∠AOF =180°−∠BOF =180°−14°=166°.【解析】本题主要考查了对顶角,角平分线的定义,垂线性质,属于基础题.(1)依次由对顶角的性质,角平分线的定义,垂线性质可得;(2)设∠BOF =x ,则∠DOE =24°+x ,依次由角平分线定义,垂线性质,得到关于x 的方程解得x ,再由邻补角的性质即可.20.【答案】解:设黑色文化衫x 件,白色文化衫y 件,依题意得{x +y =140(25−10)x +(20−8)y =1860,解得{x =60y =80, 答:黑色文化衫60件,白色文化衫80件.【解析】设黑色文化衫x 件,白色文化衫y 件,依据黑白两种颜色的文化衫共140件,文化衫全部售出共获利1860元,列二元一次方程组进行求解.本题主要考查了二元一次方程组的应用,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程. 21.【答案】解:(1)抽取学生人数10÷25%=40(人),第2组人数40×50%−8=12(人),第4组人数40×50%−10−3=7(人),∴a =12,b =7;(2)360°×340=27°,∴“第5组”所在扇形圆心角的度数为27°;(3)成绩高于80分:1800×50%=900(人),∴成绩高于80分的共有900人.【解析】本题考查了统计表和统计图,熟练掌握扇形统计图是解题的关键.(1)先求出抽取学生人数,再求出a ,b 即可;(2)用360°乘第五组所占人数的分数即可;(3)用总人数乘成绩高于80分的人所占的百分比即可. 22.【答案】E 、F (−3,3)【解析】解:(1)①∵点A(−3,1)到x 、y 轴的距离中最大值为3,∴与A 点是“等距点”的点是E 、F .②当点B 坐标中到x 、y 轴距离其中至少有一个为3的点有(3,9)、(−3,3)、(−9,−3), 这些点中与A 符合“等距点”的是(−3,3).故答案为①E 、F ;②(−3,3);(2)T 1(−1,−k −3),T 2(4,4k −3)两点为“等距点”,①若|4k −3|≤4时,则4=−k −3或−4=−k −3解得k =−7(舍去)或k =1.②若|4k−3|>4时,则|4k−3|=|−k−3|解得k=2.根据“等距点”的定义知,k=1或k=2符合题意.即k的值是1或2.(1)①找到x、y轴距离最大为3的点即可;②先分析出直线上的点到x、y轴距离中有3的点,再根据“等距点”概念进行解答即可;(2)先分析出直线上的点到x、y轴距离中有4的点,再根据“等距点”概念进行解答即可.本题主要考查了坐标与图形性质,此题属于阅读理解类型题目,首先读懂“等距点”的定义,而后根据概念解决问题,难度较大,需要有扎实的基础,培养了阅读理解、迁移运用的能力.。

2020-2021学年度第一学期七年级数学期末教学质量监测试卷含答案共三套

2020-2021学年度第一学期七年级数学期末教学质量监测试卷含答案共三套

2020-2021学年度第一学期期末教学质量监测试卷七年级数学总分120分时间90分钟一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确答案填写在答题卡相应的位置上.1. 3的倒数等于( )A.3 B.13C.﹣3 D.﹣132.习近平同志在十九大报告中指出:农业农村农民问题是关系到国计民生的根本性问题,我国现有农村人口约为589 730 000人,将589 730 000用科学记数法表示为( )A.589 73×104 B.589.73×106 C.5.8973×108 D.0.58973×1083.如图,它需再添一个面,折叠后才能围成一个正方体,下列选项中的黑色小正方形分别由四位同学补画,其中正确的是( )A. B.C.D.4.下列运算正确的是( )A.4m﹣m=3 B.2a3﹣3a3=﹣a3 C.a2b﹣ab2=0 D.yx﹣2xy=xy5.若x=2是方程4x+2m-14=0的解,则m的值为( )A.10 B.4 C.3 D.﹣36.单项式﹣25πx2y的系数和次数分别是( )A.﹣25π,3 B.25,4 C.25π,4 D.﹣25,47.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30° B.45° C.50° D.60°8.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB的中点,则线段DE的长为( ) 7题图A.12B.1 C.32D.29.右图是“沃尔玛”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为( )A.22元 B.23元 C.24元 D.26元10.找出以下图形变化的规律,则第101个图形中黑色正方形的数量是( )……(1) (2) (3) (4) (5)A.149 B.150 C.151 D.152二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.已知23x y是同类项,则式子m+n的值是.2n3mx y和212.在数轴上,与表示数﹣1的点的距离是三个单位长度的点表示的数是.13.若∠1=35°21′,则∠1的余角是.14.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD= 度.题15图15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”译文:“有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:有几个人共同出钱买鸡?设有x个人共同买鸡,根据题意列一元一次方程.16.已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|= .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:()411293⎛⎫-+-÷--- ⎪⎝⎭.18.解方程:72122x x +=-.19.化简:5(a 2b 3+ab 2)﹣(2ab 2+a 2b 3).四、解答题(二)(本大题3小题,每小题7分,共21分)20.某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库):+26,-32,-15,+34,-38,-20(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)如果进出的装卸费都是每吨5元,那么这3天要付多少装卸费?21.当x 为何值时,整式x 12++1和2x4-的值互为相反数?22.已知2250x y --=,求223(2)(6)4x xy x xy y ----的值.五、解答题(三)(本大题3小题,每小题9分,共27分) 23.填空,完成下列说理过程如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC . (1)求∠DOE 的度数;(2)如果∠COD=65°,求∠AOE 的度数. 解:(1)如图,因为OD 是∠AOC 的平分线, 所以∠COD=12∠AOC . 因为OE 是∠BOC 的平分线, 所以∠COE=12.所以∠DOE=∠COD+ =12(∠AOC+∠BOC)=12∠AOB= °.(2)由(1)可知∠BOE=∠COE= ﹣∠COD= °.所以∠AOE= ﹣∠BOE= °.24.某市居民用水实行阶梯水价,实施细则如下表:例如,某户家庭年使用自来水200 m3,应缴纳:180×5+(200-180)×7=1040元;某户家庭年使用自来水300 m3,应缴纳:180×5+(260-180)×7+(300-260)×9=1820元.(1)小刚家2017年共使用自来水170 m3,应缴纳元;小刚家2018年共使用自来水260 m3,应缴纳元.(2)小强家2018年使用自来水共缴纳1180元,他家2018年共使用了多少自来水?25.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。

2020—2021年部编人教版七年级数学上册期末模拟考试【及参考答案】

2020—2021年部编人教版七年级数学上册期末模拟考试【及参考答案】

2020—2021年部编人教版七年级数学上册期末模拟考试【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5 4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为()A.1°B.2°C.4°D.8°6.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-28.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩ 10.下列等式变形正确的是( ) A .若﹣3x =5,则x =35 B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=________.2.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是________. 3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.已知x =3是方程2x a -—2=x —1的解,那么不等式(2—5a )x <13的解集是________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分)1.计算那列各式(1)计算:﹣14+(﹣2)3÷4×[5﹣(﹣3)2](2)解方程435x -﹣1=723x -2.如果关于x ,y 的方程组437132x y k x y k -=⎧⎪⎨+-=-⎪⎩的解中,x 与y 互为相反数,求k 的值.3.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线CD上的一个动点。

2020-2021初一数学上期末第一次模拟试题(及答案)

2020-2021初一数学上期末第一次模拟试题(及答案)

2020-2021初一数学上期末第一次模拟试题(及答案)一、选择题1.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为( )A.x(x-1)=2070B.x(x+1)=2070C.2x(x+1)=2070D.(1)2x x-=20702.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元3.如图的正方体盒子的外表面上画有3条黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B. C. D.4.如图所示运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3B.6C.4D.25.点C是线段AB上的三等分点,D是线段AC的中点,E是线段BC的中点,若6CE=,则AB的长为()A.18B.36C.16或24D.18或366.如图,两个正方形的面积分别为36,25,两阴影部分的面积分别为a,b(a>b),则a-b等于()A.9B.10C .11D .127.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )8.有理数a ,b 在数轴上的位置如图所示,则下列代数式值是负数的是( )A .+a bB .ab -C .-a bD .a b -+9.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 2015 10.钟表在8:30时,时针与分针的夹角是( )度. A .85B .80C .75D .7011.下列解方程去分母正确的是( ) A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3yD .由,得3(y+1)=2y+612.a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a +b >0B .ab <0C .|a |>|b |D .a +b >a ﹣b二、填空题13.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第1个图有2颗黑棋子,第2个图有7颗黑棋子,第3个图有14颗黑棋子…依此规律,第5个图有____颗黑棋子,第n 个图有____颗棋子(用含n 的代数式示).14.若13a+与273a -互为相反数,则a=________.15.如图,若输入的值为3-,则输出的结果为____________.16.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).17.元旦期间,某超市某商品按标价打八折销售.小田购了一件该商品,付款64元.则该项商品的标价为_____18.﹣225ab π是_____次单项式,系数是_____.19.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是_____度. 20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.三、解答题21.已知:点C 在直线AB 上,AC=8cm ,BC=6cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.22.已知关于x 的方程:2(x ﹣1)+1=x 与3(x +m )=m ﹣1有相同的解,求以y 为未知数的方程3332my m x--=的解. 23.先化简再求值:已知a ,b 满足2(2)|1|0a b b -++=,求()22223232a b ab ab a b ⎡⎤-++-⎣⎦的值.24.某班10名男同学参加100米达标测验,成绩小于或等于15秒的达标,这10名男同学成绩记录如下(其中超过15秒记为“+”,不足15秒记为“﹣”)序号12345678910成绩+1.2﹣0.6﹣0.8+10﹣1.4﹣0.5﹣0.4﹣0.3+0.8(1)有名男同学成绩达标,跑得最快的同学序号是号;跑得最快的同学比跑得最慢的同学快了秒;(2)这10名男同学的平均成绩是多少?25.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.2.C解析:C【解析】【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.3.D解析:D【解析】根据正方体的表面展开图可知,两条黑线在一行,且相邻两条成直角,故A、B选项错误;该正方体若按选项C展开,则第三行第一列处的黑线的位置应为小正方形的另一条对角线,所以C不符合题意.故选D.点睛:本题是一道关于几何体展开图的题目,主要考查了正方体展开图的相关知识.对于此类题目,一定要抓住图形的特殊性,从相对面,相邻的面入手,进行分析解答.本题中,抓住黑线之间位置关系是解题关键.4.D解析:D【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:根据题意得:可发现第1次输出的结果是24;第2次输出的结果是24×12=12;第3次输出的结果是12×12=6;第4次输出的结果为6×12=3;第5次输出的结果为3+5=8;第6次输出的结果为812⨯=4;第7次输出的结果为412⨯=2;第8次输出的结果为212⨯=1;第9次输出的结果为1+5=6;归纳总结得到输出的结果从第3次开始以6,3,8,4,2,1循环,∵(2017-2)÷6=335.....5,则第2017次输出的结果为2.故选:D.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.5.D解析:D【解析】【分析】分两种情况分析:点C在AB的13处和点C在AB的23处,再根据中点和三等分点的定义得到线段之间的关系求解即可.【详解】①当点C在AB的13处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=18;②当点C在AB的23处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=36.综合上述可得AB=18或AB=36.故选:D.【点睛】考查了线段有关计算,解题关键根据题意分两种情况分析,并画出图形,从而得到线段之间的关系.6.C解析:C【解析】【分析】设白色的部分面积为x,由题意可知a=36-x,b=25-x,根据整式的运算即可求出答案.【详解】设白色部分的面积为x,∴a+x=36,b+x=25,∴a=36-x,b=25-x,∴a-b=36-x-(25-x)=11,故选:C.【点睛】本题考查整式的运算,解题的关键是熟练设白色的部分面积为x,从而列出式子,本题属于基础题型.7.D解析:D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.8.C解析:C【解析】【分析】根据a,b在数轴的位置,即可得出a,b的符号,进而得出选项中的符号.【详解】根据数轴可知-1<a<0,1<b<2,a b>0,故此选项是正数,不符合要求,故此选项错误;∴A.+->0,故此选项是正数,不符合要求,故此选项错误;B.aba b<0,故此选项不是正数,符合要求,故此选项正确;C.--+>0,故此选项是正数,不符合要求,故此选项错误.D.a b故选:C.【点睛】此题考查有理数的大小比较以及数轴性质,根据已知得出a,b取值范围是解题关键.9.C解析:C试题分析:根据这组数的系数可知它们都是连续奇数,即系数为(2n-1),而后面因式x 的指数是连续自然数,因此关于x 的单项式是2n 1n x -(),所以第2015个单项式的系数为2×2015-1=4029,因此这个单项式为20154029x . 故选C 考点:探索规律10.C解析:C 【解析】 【分析】时针转动一大格转过的角度是30,再根据时针与分针相距的份数乘以每份的度数,即可得出答案. 【详解】解:∵在8:30时,此时时针与分针相差2.5个大格, ∴此时组成的角的度数为30 2.575︒⨯=︒. 故选:C . 【点睛】本题考查的知识点是钟面角,时针转动一大格转过的角度是30,分针转动一小格转过的角度是6︒,熟记以上内容是解此题的关键.11.D解析:D 【解析】 【分析】根据等式的性质2,A 方程的两边都乘以6,B 方程的两边都乘以4,C 方程的两边都乘以15,D 方程的两边都乘以6,去分母后判断即可. 【详解】 A .由,得:2x ﹣6=3﹣3x ,此选项错误; B .由,得:2x ﹣4﹣x =﹣4,此选项错误; C .由,得:5y ﹣15=3y ,此选项错误;D .由,得:3( y +1)=2y +6,此选项正确.故选D . 【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.B【解析】【分析】根据数轴上的两数位置得到a>0、b<0,b距离远点距离比a远,所以|b|>|a|,再挨个选项判断即可求出答案.【详解】A. a+b<0 故此项错误;B. ab<0 故此项正确;C. |a|<|b| 故此项错误;D. a+b<0, a﹣b>0,所以a+b<a﹣b, 故此项错误.故选B.【点睛】本题考查数轴,解题的关键是根据数轴找出两数的大小关系,本题属于基础题型.二、填空题13.n(n+2)﹣1【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系找到规律利用规律求解即可【详解】观察知:第1图有1×3﹣1=2个黑棋子;第2图有2×4﹣1=7个黑棋子;第3图有3×解析:[n(n+2)﹣1].【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】观察知:第1图有1×3﹣1=2个黑棋子;第2图有2×4﹣1=7个黑棋子;第3图有3×5﹣1=14个黑棋子;第4图有4×6﹣1=23个黑棋子;第5图有5×7﹣1=34个黑棋子…图n有n(n+2)﹣1个黑棋子.故答案为:34;[n(n+2)﹣1].【点睛】本题考查了图形的变化类问题,解题的关键是能够仔细观察并发现图形的变化规律,难度不大.首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.14.【解析】根据题意列出方程+=0直接解出a的值即可解题解:根据相反数和为0得:+=0去分母得:a+3+2a ﹣7=0合并同类项得:3a ﹣4=0化系数为1得:a ﹣=0故答案为 解析:43【解析】 根据题意列出方程13a ++273a -=0,直接解出a 的值,即可解题. 解:根据相反数和为0得:13a ++273a -=0, 去分母得:a+3+2a ﹣7=0, 合并同类项得:3a ﹣4=0, 化系数为1得:a ﹣43=0, 故答案为43. 15.1【解析】【分析】把-3代入程序中计算判断结果比0小将结果代入程序中计算直到使其结果大于0再输出即可【详解】把-3代入程序中得:把-2代入程序中得:则最后输出结果为1故答案为:1【点睛】本题考查有理解析:1 【解析】 【分析】把-3代入程序中计算,判断结果比0小,将结果代入程序中计算,直到使其结果大于0,再输出即可. 【详解】把-3代入程序中,得:()-33+7-9+7-20⨯==<, 把-2代入程序中,得:()-23+7-6+710⨯==>, 则最后输出结果为1. 故答案为:1 【点睛】本题考查有理数的混合运算,熟练掌握各运算法则是解题的关键.16.【解析】【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n 解析:()31-n【解析】 【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键.17.80【解析】【分析】根据标价×=售价求解即可【详解】解:设该商品的标价为x 元由题意08x =64解得x =80(元)故答案为:80元【点睛】考查了销售问题解题关键是掌握折扣售价标价之间的关系解析:80【解析】【分析】根据标价×10折扣=售价,求解即可. 【详解】解:设该商品的标价为x 元由题意0.8x =64解得x =80(元)故答案为:80元.【点睛】考查了销售问题,解题关键是掌握折扣、售价、标价之间的关系. 18.三﹣【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数由此可得答案【详解】是三次单项式系数是故答案为:三【点睛】本题考查了单项式的知识掌握单项式系数及次 解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键.19.160【解析】∵4至9的夹角为30°×5=150°时针偏离9的度数为30°×=10°∴时针与分针的夹角应为150°+10°=160°故答案为160° 解析:160【解析】∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×13=10°,∴时针与分针的夹角应为150°+ 10°=160°.故答案为160°. 20.12【解析】【分析】通过观察图形即可得到答案【详解】如图把正方体截去一个角后得到的几何体有12条棱故答案为:12【点睛】此题主要考查了认识正方体关键是看正方体切的位置解析:12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱. 故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.三、解答题21.7cm 或1cm【解析】【分析】 分类讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得答案.【详解】当点C 在线段AB 上时,如图1,由点M 、N 分别是AC 、BC 的中点,得MC=12AC=12×8cm=4cm ,CN=12BC=12×6cm=3cm ,由线段的和差,得MN=MC+CN=4cm+3cm=7cm ;当点C 在线段AB 的延长线上时,如图2,由点M 、N 分别是AC 、BC 的中点,得 MC=12AC=12×8cm=4cm ,CN=12BC=12×6cm=3cm . 由线段的和差,得MN=MC ﹣CN=4cm ﹣3cm=1cm ;即线段MN 的长是7cm 或1cm .【点睛】 本题考查了两点间的距离,利用了线段中点的性质,线段的和差,分类讨论是解题关键,以防遗漏.22.214y =-. 【解析】【分析】根据方程可直接求出x 的值,代入另一个方程可求出m ,把所求m 和x 代入方程3,可得到关于y 的一元一次方程,解答即可.【详解】解:解方程2(x ﹣1)+1=x得:x =1将x =1代入3(x +m )=m ﹣1得:3(1+m )=m ﹣1解得:m =﹣2将x =1,m =﹣2代入3332my m x --= 得:3(2)2332y ----=, 解得:214y =-. 【点睛】 本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.23.256ab -+;16【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】()22223232a b ab ab a b ⎡⎤-++-⎣⎦,=22223(2336)a b ab ab a b -++-=222232336a b ab ab a b ---+=256ab -+;∵2(2)|1|0a b b -++=,∴20a b -=,10b +=∴1b =-,2a =-则原式=25(2)(1)610616-⨯-⨯-+=+=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.(1) 7,6,2.6;(2) 这10名男同学的平均成绩是14.9秒【解析】【分析】(1)成绩小于或等于15秒的达标,不足15秒记为“﹣”,15秒的记为0,共有7人达标,跑得最快的同学所用时间最少,是序号为6的同学;跑得最快的同学所用时间为:(15﹣1.4)秒,跑得最慢的同学所用时间为:(15+1.2)秒,相减即可;(2)先计算10个记录 的平均数,再加15即可.【详解】(1)有7名男同学成绩达标,跑得最快的同学序号是6号;跑得最快的同学比跑得最慢的同学快了(15+1.2)﹣(15﹣1.4)=2.6秒.故答案为7,6,2.6;(2)(+1.2﹣0.6﹣0.8+1+0﹣1.4﹣0.5﹣0.4﹣0.3+0.8)÷10=﹣0.1, 15﹣0.1=14.9(秒).答:这10名男同学的平均成绩是14.9秒.【点睛】此题考查了正数和负数,有理数的计算,解题关键是要明确用时越短速度越快.25.(1)18,22;(2)4n+2;(3)25.【解析】【分析】(1)找规律可以将上字看做有四个端点每次每个端点增加一个,还有两个点在里面不发生变化,据此可得第四、五个上字所需棋子数;(2)根据(1)中规律即可得;(3)结合(2)中结论可列方程,解方程即可得.【详解】(1)∵第一个“上”字需用棋子4×1+2=6枚; 第二个“上”字需用棋子4×2+2=10枚; 第三个“上”字需用棋子4×3+2=14枚; ∴第四个“上”字需用棋子4×4+2=18枚,第五个“上”字需用棋子4×5+2=22枚, 故答案为18,22;(2)由(1)中规律可知,第n个“上”字需用棋子4n+2枚,故答案为4n+2;(3)根据题意,得:4n+2=102,解得:n=25,答:第25个上字共有102枚棋子.【点睛】此题考查了图形的变化类,关键是从图中特殊的例子推理得出一般的规律,本题的规律是四个端点每次每个端点增加一个,还有两个点在里面不发生变化.。

2020-2021七年级数学上期末第一次模拟试卷附答案

2020-2021七年级数学上期末第一次模拟试卷附答案

2020-2021七年级数学上期末第一次模拟试卷附答案一、选择题1.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元 2.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有 ( ) A .1个B .2个C .3个D .4个 3.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3 4.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A .x+1=2(x ﹣2)B .x+3=2(x ﹣1)C .x+1=2(x ﹣3)D .1112x x +-=+ 5.如图的正方体盒子的外表面上画有3条黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .6.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中: ①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有 ( )A .1个B .2个C .3个D .4个 7.下列各数:(-3)2,0,212⎛⎫-- ⎪⎝⎭,227,(-1)2009,-22,-(-8),3|-|4-中,负数有( )A .2个B .3个C .4个D .5个8.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( )A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯9.4h =2小时24分.答:停电的时间为2小时24分.故选:C .【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.10.下列比较两个有理数的大小正确的是( )A .﹣3>﹣1B .1143>C .510611-<-D .7697->- 11.如图所示,C 、D 是线段AB 上两点,若AC=3cm ,C 为AD 中点且AB=10cm ,则DB=( )A .4cmB .5cmC .6cmD .7cm 12.已知:式子x ﹣2的值为6,则式子3x ﹣6的值为( )A .9B .12C .18D .24 二、填空题13.已知整数1a 、2a 、3a 、4a 、…,满足下列条件;10a =、211a a =-+、322a a =-+、433a a =-+、…,依此类推,则2019a =___________.14.某商店购进一批童装,每件售价120元,可获利20%,这件童装的进价是_____元.15.已知∠AOB =72°,若从点O 引一条射线OC ,使∠BOC =36°,则∠AOC 的度数为_____.16.如果方程2x +a =x ﹣1的解是﹣4,那么a 的值为_____.17.一个正方体的表面展开图如图所示,这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,则()x yz 的值为___.18.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.19.已知一个角的补角是它余角的3倍,则这个角的度数为_____.20.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了_______小时.三、解答题21.小明乘坐家门口的公共汽车前往西安北站去乘高铁,在行驶了三分之一路程时,小明估计继续乘公共汽车到北站时高铁将正好开出,于是小明下车改乘出租车,车速提高了一倍,结果赶在高铁开车前半小时到达西安北站.已知公共汽车的平均速度是20千米/小时(假设公共汽车及出租车保持匀速行使,途中换乘、红绿灯等待等情况忽略不计),请回答以下两个问题:(1)出租车的速度为_____千米/小时;(2)小明家到西安北站有多少千米?22.已知直线AB与CD相交于点O,且∠AOD=90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG平分∠BOF,试求∠GOH的度数.23.化简或化简求值:(1)化简:(2ab+a2b)+3(2a2b﹣5ab);(2)先化简,再求值:(﹣x2+3xy﹣2y)﹣2(12-x2+4xy32-y2),其中x=3,y=﹣2.24.某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“-”表示出库):+30,-25,-30,+28,-29,-16,-15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存300吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?25.已知一个多项式与3x2+9x的和等于3x2+4x-1,求这个多项式【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.2.D解析:D【解析】【分析】【详解】解:①3a+2b 无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a ²,∴原式计算错误,故此选项符合题意; ④∵53a −33a =23a ,∴原式计算错误,故此选项符合题意;⑤∵a ⩽0,−|a|=a ,∴原式计算错误,故此选项符合题意;故选D3.A解析:A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a的一元一次方程是解此题的关键.4.C解析:C【解析】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有13122x x+++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2xx++=-即x+1=2(x−3)故选C.5.D解析:D【解析】根据正方体的表面展开图可知,两条黑线在一行,且相邻两条成直角,故A、B选项错误;该正方体若按选项C展开,则第三行第一列处的黑线的位置应为小正方形的另一条对角线,所以C不符合题意.故选D.点睛:本题是一道关于几何体展开图的题目,主要考查了正方体展开图的相关知识.对于此类题目,一定要抓住图形的特殊性,从相对面,相邻的面入手,进行分析解答.本题中,抓住黑线之间位置关系是解题关键.6.B解析:B【解析】【分析】根据图示,可得c<a<0,b>0,|a|+|b|=|c|,据此逐项判定即可.【详解】∵c<a<0,b>0,∴abc>0,∴选项①不符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴b+c<0,∴a(b+c)>0,∴选项②符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴a-c=b,∴选项③符合题意.∵a cba b c++=-1+1-1=-1,∴选项④不符合题意,∴正确的个数有2个:②、③.故选B.【点睛】此题主要考查了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练掌握.7.C解析:C【解析】【分析】【详解】解:(−3) ²=9,212⎛⎫--⎪⎝⎭=−14,(-1)2009=−1,-22=−4,−(−8)=8,3|-|4-=34,则所给数据中负数有:212⎛⎫-- ⎪⎝⎭,(-1)2009,-22,3|-|4-,共4个故选C8.B解析:B【解析】解:将2400000用科学记数法表示为:2.4×106.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.无10.D解析:D【解析】【分析】根据负数的绝对值越大,这个数反而越小,可以对A、C、D进行判断;根据同分子分数大小比较的方法进行比较即可作出判断.【详解】A.﹣3<﹣1,所以A选项错误;B.14<13,所以B选项错误;C.﹣56>﹣1011,所以C选项错误;D.﹣79>﹣67,所以D选项正确.故选D.【点睛】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.11.A解析:A【解析】【分析】从AD的中点C入手,得到CD的长度,再由AB的长度算出DB的长度.【详解】解:∵点C为AD的中点,AC=3cm,∴CD=3cm.∵AB=10cm,AC+CD+DB=AB,∴BD=10-3-3=4cm.故答案选:A.【点睛】本题考查了两点间的距离以及线段中点的性质,利用线段之间的关系求出CD的长度是解题的关键.12.C解析:C【解析】【分析】首先把3x﹣6化成3(x﹣2),然后把x﹣2=6代入,求出算式的值是多少即可.【详解】∵x﹣2=6,∴3x﹣6=3(x﹣2)=3×6=18故选:C.【点睛】本题考查了整体代换的思想,有理数的运算法则,掌握整体代换的思想是解题的关键.二、填空题13.【解析】【分析】根据条件求出前几个数的值再分n 是奇数时结果等于-n 是偶数时结果等于-然后把n=2019代入进行计算即可得解【详解】a1=0a2=-|a1+1|=-|0+1|=-1a3=-|a2+2|解析:1009-【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12n -,n 是偶数时,结果等于-2n ,然后把n=2019代入进行计算即可得解. 【详解】a 1=0,a 2=-|a 1+1|=-|0+1|=-1,a 3=-|a 2+2|=-|-1+2|=-1,a 4=-|a 3+3|=-|-1+3|=-2,a 5=-|a 4+4|=-|-2+4|=-2,…,所以,n 是奇数时,a n =-12n -,n 是偶数时,a n =-2n , a 2019=-201912-=-1009. 故答案为:-1009.【点睛】本题是对数字变化规律的考查,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.14.100【解析】【分析】设这件童装的进价为x 元根据利润=售价﹣进价即可得出关于x 的一元一次方程解之即可得出结论【详解】解:设这件童装的进价为x 元依题意得:120﹣x =20x 解得:x =100故答案为:1解析:100【解析】【分析】设这件童装的进价为x 元,根据利润=售价﹣进价,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设这件童装的进价为x 元,依题意,得:120﹣x =20%x ,解得:x =100.故答案为:100.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.36°或108°【解析】【分析】先根据题意画出图形分两种情况作图结合图形来答题即可【详解】①如图∠AOC=∠AOB+∠BOC=72°+36°=108°②如图∠AOC=∠AOB﹣∠BOC=72°﹣36解析:36°或108°.【解析】【分析】先根据题意画出图形,分两种情况作图,结合图形来答题即可.【详解】①如图,∠AOC=∠AOB+∠BOC=72°+36°=108°②如图,∠AOC=∠AOB﹣∠BOC=72°﹣36°=36°故答案为36°或108°.【点睛】本题考查了角的和差关系计算,注意要分两种情况讨论.16.【解析】【分析】把x=﹣4代入方程得到一个关于a的一次方程即可求解【详解】把x=﹣4代入方程得:﹣8+a=﹣4﹣1解得:a=3故答案是:3【点睛】本题考查了一元一次方程方程的求解掌握一元一次方程的解解析:【解析】【分析】把x=﹣4,代入方程得到一个关于a的一次方程,即可求解.【详解】把x=﹣4代入方程得:﹣8+a=﹣4﹣1,解得:a=3.故答案是:3.【点睛】本题考查了一元一次方程方程的求解,掌握一元一次方程的解法是解题的关键.17.【解析】【分析】正方体的表面展开图相对的面之间一定相隔一个正方形根据这一特点确定出相对面再根据相对面上的两个数字互为倒数解答【详解】正方体的表面展开图相对的面之间一定相隔一个正方形x 与是相对面y 与2 解析:18- 【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再根据相对面上的两个数字互为倒数解答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“13”是相对面, “y”与“2”是相对面,“z”与“-1”是相对面, ∵各相对面上所填的数字互为倒数,∴()x yz =18-. 【点睛】此题考查正方体相对两个面上的文字,解题关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.18.99【解析】(+()+()+25×4=-1+100=99故答案为99解析:99【解析】(0.25)++(1-)0.5++(0.75-)+25×4=-1+100=99.故答案为99.19.45°【解析】【分析】根据互为余角的和等于90°互为补角的和等于180°用这个角表示出它的余角与补角然后列方程求解即可【详解】设这个角为α则它的余角为90°﹣α补角为180°﹣α根据题意得180°-解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.20.10【解析】∵轮船在顺水中的速度为28千米/小时在逆水中的速度为24千米/小时∴水流的速度为:(千米/时)∴水面上的漂浮物顺水漂流20千米所需的时间为:(小时)故答案为10点睛:本题解题的关键是要清解析:10【解析】∵轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,∴水流的速度为:(2824)22-÷=(千米/时),∴水面上的漂浮物顺水漂流20千米所需的时间为:20210÷=(小时).故答案为10.点睛:本题解题的关键是要清楚:在航行问题中,①顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;②水面上漂浮物顺水漂流的速度等于水流速度.三、解答题21.(1)40;(2)小明家到西安北站的距离为30千米.【解析】【分析】(1)根据公共汽车的平均速度是20千米/小时,改乘出租车,车速提高了一倍可得答案;(2)根据行驶三分之二的路程,乘出租车比乘公共汽车少用半小时列方程求解即可.【详解】解:(1)由题意可得,出租车的速度为40千米/小时,故答案为:40;(2)小明家到西安北站的距离为x千米,由题意得:2213320402x x,即11130602x x,解得:30x=,答:小明家到西安北站的距离为30千米.【点睛】本题主要考查了一元一次方程在实际生活中的应用,解题的关键在于把握题意,根据时间差来列一元一次方程,22.(1)35°;(2)∠BOE=2∠FOH,理由详见解析;(3)45°或135°.【解析】【分析】(1)根据∠AOD=90︒,∠DOE=20︒得∠AOE=∠AOD+∠DOE=110︒,再根据OH平分∠AOE,即可求解;(2)可以设∠AOH=x,根据OH平分∠AOE,可得∠HOE=∠AOH=x,进而∠FOH=90︒﹣∠HOE=90︒﹣x,∠BOE=180︒﹣∠AOE=180︒﹣2x,即可得结论;(3)分两种情况解答:当OE落在∠BOD内时,OF落在∠AOD内,当OE落在其他位置时,根据OH平分∠AOE,OG平分∠BOF即可求解.【详解】解:(1)因为∠AOD=90︒,∠DOE=20︒所以∠AOE=∠AOD+∠DOE=110︒因为OH平分∠AOE所以∠HOE=12∠AOE=55︒所以∠FOH=90︒﹣∠HOE=35︒;故答案为35︒;(2)∠BOE=2∠FOH,理由如下:设∠AOH=x,因为OH平分∠AOE所以∠HOE=∠AOH=x所以∠FOH=90︒﹣∠HOE=90︒﹣x∠BOE=180︒﹣∠AOE=180︒﹣2x所以∠BOE=2∠FOH;(3)如图3,当OE落在∠BOD内时,OF落在∠AOD内因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE因为OG平分∠BOF∠FOG=∠GOB=12∠BOF所以∠GOH=∠GOF﹣∠FOH=12∠BOF﹣(∠AOH﹣∠AOF)=12(180︒﹣∠AOF)﹣12∠AOE+∠AOF=90︒﹣12∠AOF﹣12(90︒+∠AOF)+∠AOF=90︒﹣12∠AOF﹣45︒﹣12∠AOF+∠AOF=45︒;所以∠GOH的度数为45︒;如图4,当OE落在其他位置时因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE因为OG平分∠BOF∠FOG=∠GOB=12∠BOF所以∠GOH=∠GOF+∠FOH=12∠BOF+∠AOH+∠AOF=12(180︒﹣∠AOF)+12∠AOE+∠AOF=90︒﹣12∠AOF+12(90︒﹣∠AOF)+∠AOF=90︒﹣12∠AOF+45︒﹣12∠AOF+∠AOF=135︒;所以∠GOH的度数为135︒;综上所述:∠GOH的度数为45︒或135︒.【点睛】本题考查了余角和补角、角平分线定义,解决本题的关键是掌握角平分线定义,进行角的和差计算.23.(1)7a2b﹣13ab;(2)﹣5xy﹣2y+3y2,46.【解析】【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】(1)(2ab+a2b)+3(2a2b﹣5ab) =2ab+a2b+6a2b﹣15ab=7a2b﹣13ab;(2)(﹣x2+3xy﹣2y)﹣2(12-x2+4xy32-y2)=﹣x2+3xy﹣2y+x2﹣8xy+3y2=﹣5xy﹣2y+3y2,当x=3,y=﹣2时,原式=﹣5×3×(﹣2)﹣2×(﹣2)+3×(﹣2)2=30+4+12=46.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.(1)经过这7天,仓库里的水泥减少了57吨;(2)7天前仓库里存有水泥357吨;(3)这7天要付(58a+115b)元装卸费.【解析】【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【详解】(1)∵+30-25-30+28-29-16-15=-57;∴经过这7天,仓库里的水泥减少了57吨;(2)∵300+57=357(吨),∴那么7天前,仓库里存有水泥357吨.(3)依题意:进库的装卸费为:[(+30)+(+28)]a=58a;出库的装卸费为:[|-25|+|-30|+|-29|+|-16|+|-15|]b=115b,∴这7天要付(58a+115b)元装卸费.【点睛】本题考查了正数和负数及列代数式的知识,(1)有理数的加法是解题关键;(2)剩下的减去多运出的就是原来的,(3)装卸都付费.25.-5x-1.【解析】【分析】设所求多项式为A,再根据A=(3x2+4x-1)-(3x2+9x)即可.【详解】设所求多项式为A,则A=(3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年人教版七年级数学上册期末检测卷开学模拟考01试卷满分:100分 考试时间:120分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020秋•齐齐哈尔期末)用a -表示的一定是( ) A .正数 B .负数C .正数或负数D .正数或负数或0【解答】解:如果a 是小于0的数,那么a -就是正数;如果a 大于0,那么a -就是负数;如果a 是0,那么a -也是0.所以a -表示的一定是正数或负数或0. 故选:D .2.(3分)(2020•东胜区模拟)十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长到80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A .12810⨯B .13810⨯C .14810⨯D .130.810⨯【解答】解:80万亿用科学记数法表示为13810⨯. 故选:B .3.(3分)(2018秋•官渡区期末)下列结论正确的是( ) A .2x =是方程214x +=的解 B .5不是单项式C .23ab -和2b a 是同类项D .单项式3ab的系数是3 【解答】解:A 、 1.5x =是214x +=的解,不符合题意;B 、5是单项式,不符合题意;C 、23ab -和2b a 是同类项,符合题意;D 、单项式3ab的系数是13,不符合题意,故选:C .4.(3分)(2019秋•丰南区期末)将如图补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是( )A .B .C .D .【解答】解:A 、出现“U ”字的,不能组成正方体,A 错;B 、以横行上的方格从上往下看:B 选项组成正方体;C 、由两个面重合,不能组成正方体,错误;D 、四个方格形成的“田”字的,不能组成正方体,D 错.故选:B .5.(3分)(2020春•新蔡县期末)在方程:32x y -=,202x x +=,12x=,2326x x =+中,一元一次方程的个数为( ) A .1个B .2个C .3个D .4个【解答】解:所列方程中一元一次方程为12x=, 故选:A .6.(3分)(2020秋•新都区校级月考)现有四种说法: ①几个有理数相乘,当负因数有奇数个时,积为负; ②几个有理数相乘,积为负时,负因数有奇数个; ③当0x <时,||x x =-; ④当||x x =-时,0x <. 其中正确的说法是( ) A .②③B .③④C .②③④D .①②③④【解答】解:①几个有理数相乘,只要有一个因数为0,不管负因数有奇数个还是偶数个,积都为0,而不会是负数,错误; ②正确;③正确;④当||x x =-时,0x ,错误. 故选:A .7.(3分)(2017秋•越秀区校级期中)已知等式325a b =+,则下列等式中不一定成立的是( ) A .352a b -=B .3126a b +=+C .2533a b =+D .325ac bc =+【解答】解:已知325a b =+选项A :按照等式的性质1,等式两边同时减去5,可得352a b -=,故A 一定成立; 选项B :按照等式的性质1,等式两边同时加上1,可得3126a b +=+,故B 一定成立; 选项C :按照等式的性质2,等式两边同时除以3,可得253a b =+,故C 一定成立;选项D :只有在1c =时,可由325a b =+推得325ac bc =+,故D 不一定成立. 故选:D .8.(3分)(2020秋•五常市期末)一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x 元,可列方程为( ) A .0.828(150%)x x +=+ B .0.828(150%)x x -=+ C .280.8(150%)x x +=⨯+D .280.8(150%)x x -=⨯+【解答】解:设成本是x 元,可列方程为: 280.8(150%)x x +=⨯+.故选:C .9.(3分)(2020秋•南岗区校级期中)如图,直线AB 、CD 相交于点O ,40AOC ∠=︒,OE 平分AOD ∠,则(EOD ∠= )A .55︒B .60︒C .65︒D .70︒【解答】解:40AOC ∠=︒, 180140AOD AOC ∴∠=︒-∠=︒. OE 平分AOD ∠,1702EOD AOD ∴∠=∠=︒.故选:D .10.(3分)(2019秋•罗山县期末)如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n 个图案中有白色六边形地面砖( )块.A .64(1)n ++B .64n +C .42n -D .42n +【解答】解:第一个图案中,有白色的是6个,后边是依次多4个.∴第n 个图案中,是64(1)42n n +-=+.故选:D .二.填空题(共8小题,满分16分,每小题2分)11.(2分)(2019秋•和平区期末)22.5︒= 22 度 分;1224︒'= 度. 【解答】解:22.522(0.560)2230︒=︒+⨯'=︒'; 122412(2460)12.4︒'=︒+÷︒=︒.故答案为22、30、12.4.12.(2分)(2020秋•南岗区校级月考)一艘轮船沿江从A 港顺流航行到B 港的速度为26千米/时,水流速度为v 千米/时,则这艘轮船按原航线从B 港航行到A 港的速度为 (262)v - 千米/时. 【解答】解:由题意知,轮船在水中静水速度:(26)v -千米/时. 所以,这艘轮船按原航线从B 港航行到A 港的速度为(262)v -千米/时. 故答案是:(262)v -.13.(2分)(2019秋•绵阳期末)已知2|312|(1)02n m -++=,则2m n -= 10 .【解答】解:2|312|(1)02nm -++=,|312|0m ∴-=,2(1)02n+=,4m ∴=,2n =-,28(2)10m n ∴-=--=,故答案为10.14.(2分)(2019秋•淮滨县期末)如果代数式2238a b -++的值为1,那么代数式2462a b -+的值等于 16 .【解答】解:2238a b -++的值为1, 22381a b ∴-++=, 2237a b ∴-+=-, 2462a b ∴-+22(23)2a b =--++ 2(7)2=-⨯-+142=+16=故答案为:16.15.(2分)(2020秋•金昌期末)若1x =是关于x 的方程32mx m -=的解,则m 的值为 1- . 【解答】解:把1x =代入方程,得:32m m -=, 解得:1m =-. 故答案是:1-.16.(2分)(2020春•南昌期末)如图,在甲,乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东55︒,若同时开工,则在乙地公路按南偏西 55 度的走向施工,才能使公路准确接通.【解答】解:如图://AD OC ,55COD ADO ∴∠=∠=︒,即乙地公路走向应按南偏西55度的走向施工,才能使公路准确接通.故答案为:55.17.(2分)(2019秋•平顶山期末)已知a 、b 互为相反数,c 、d 互为倒数,那么225a b cd +-= 5- . 【解答】解:由题意知0a b +=,1cd =, 则原式2()5a b cd =+- 2051=⨯-⨯ 05=-5=-,故答案为:5-.18.(2分)(2019秋•黄陂区期末)如图,有公共端点P 的两条线段MP ,NP 组成一条折线M P N --,若该折线M P N --上一点Q 把这条折线分成相等的两部分,我们把这个点Q 叫做这条折线的“折中点”.已知点D 是折线A C B --的“折中点”,点E 为线段AC 的中点,3CD =,5CE =,则线段BC 的长为 4或16 .【解答】解:①如图,3CD =,5CE =,点D 是折线A C B --的“折中点”, AD DC CB ∴=+点E 为线段AC 的中点, 152AE EC AC ∴=== 10AC ∴=7AD AC DC ∴=-= 7DC CB ∴+=4BC ∴=;②如图,3CD =,5CE =,点D 是折线A C B --的“折中点”, BD DC BD ∴=+点E 为线段AC 的中点, 152AE EC AC ∴=== 10AC ∴=13AD AC DC ∴=+= 13BD ∴=16BC BD DC ∴=+=.综上所述,BC 的长为4或16. 故答案为4或16.三.解答题(共7小题,满分54分) 19.(8分)(2020秋•甘南县期末)计算: (1)513()(24)638-+⨯-.(2)20183314(2)3()5-+--+÷-.【解答】解:(1)原式513(24)(24)(24)638=⨯--⨯-+⨯-2089=-+-21=-;(2)原式51483()3=-+++⨯-385=+-6=.20.(10分)(2020秋•莫旗期末)解方程: (1)3(1)9x -+=; (2)315223x x ---=. 【解答】解:(1)去括号,可得:339x --=,移项,合并同类项,可得:312x -=, 系数化为1,可得:4x =-.(2)去分母,可得:3(31)122(5)x x --=-, 去括号,可得:9312210x x --=-, 移项,合并同类项,可得:75x =, 系数化为1,可得:57x =. 21.(6分)(2020秋•金昌期末)先化简,再求值:22225(3)4(3)a b ab ab a b ---+,其中12a =,4b =-. 【解答】解:原式2222221554123a b ab ab a b a b ab =-+-=-, 当12a =,4b =-时,原式3811=--=-. 22.(6分)(2019秋•包河区期末)如图,已知ABC ∆. (1)画出ABC ∆的高AD ;(2)尺规作出ABC ∆的角平分线BE (要求保留作图痕迹,不用证明).【解答】解:(1)如图,AD 即为ABC ∆的高.(2)如图,BE 即为ABC ∆的角平分线.23.(6分)(2020春•延庆区期中)已知:点M 是直线AB 上的点,线段12AB =,2AM =,点N 是线段MB 的中点,画出图形并求线段MN 的长.【解答】解:由于点M 的位置不确定,所以需要分类讨论:①点M 在点A 左侧,如图1:12AB =,2AM =, 12214M B AB AM ∴=+=+=,N 是MB 的中点(已知), 12MN MB ∴=(中点定义), 14MB =,11472MN ∴=⨯=;②点M 在点A 右侧,如图2:12AB =,2AM =,12210MB AB AM ∴=-=-=,N 是MB 的中点(已知), 12MN MB ∴=(中点定义), 10MB =, 11052MN ∴=⨯=,综上所述,MN 的长度为5或7.24.(8分)(2020秋•拱墅区校级期中)如图,一个瓶子的容积为1升,瓶内装着一些溶液,当瓶子正放时,瓶内溶液的高度为20cm ,倒放时,空余部分的高度为5cm (如图).现把溶液全部倒在一个底面直径为8cm 的圆柱形杯子里.求: (1)瓶内溶液的体积.(2)圆柱形杯子溶液的高度是多少?【解答】解:(1)设瓶内溶液的体积为x 升,则空余部分的体积为520x 升, 依题意,得:5120x x +=, 解得:0.8x =.答:瓶内溶液的体积为0.8升. (2)2500.81000[(82)]()cm ππ⨯÷⨯÷=.答:圆柱形杯子溶液的高度是50cm π.25.(10分)(2019秋•高阳县期末)某商场开展春节促销活动出售A 、B 两种商品,活动方案如下两种: 方案一AB每件标价 90元 100元 每件商品返利按标价的30%按标价的15%例如买一件A 商品,只需付款90(130%)-元方案二所购商品一律按标价的20%返利(1)某单位购买A 商品30件,B 商品20件,选用何种方案划算?能便宜多少钱?(2)某单位购买A 商品x 件(x 为正整数),购买B 商品的件数是A 商品件数的2倍少1件,若两方案的实际付款一样,求x 的值.【解答】解:(1)方案一付款:3090(130%)20100(115%)3590⨯⨯-+⨯⨯-=(元), 方案二付款:(309020100)(120%)3760⨯+⨯⨯-=(元), 35903760<,37603590170-=(元),∴选用方案一更划算,能便宜170元;(2)设某单位购买A 商品x 件,则方案一需付款:90(130%)100(115%)(21)23385-+--=-,x x x方案二需付款:[90100(21)](120%)23280+--=-,x x x当两方案付款一样时可得,2338523280-=-,x x解得:5x=,答:某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少1件,若两方案的实际付款一样,x的值为5.。

相关文档
最新文档