三相异步电动机的启动与制动ppt课件

合集下载

三相异步电动机的启动调速反转与制动一PPT课件

三相异步电动机的启动调速反转与制动一PPT课件

6
(2)Y-Δ降压启动
适用范围: 正常运行时定子绕组为三角形连接。
优点: 启动电流为全压启动时的1/3。
缺点:
TstY
1 3 TSt
不适合高启动转矩场合,适合空载或轻载启动
A
L1 L2 L3
UP' Z X
启 正常
QS1 FU
CY
B 动 运行
UP Z A
C
X
YB
U1 V W1
1
U2 V2 W2
Δ运行时,首尾相接构成闭环
回馈制动常用于高速且要求匀速下放重物的场合,另外在变极或变频调速过 程中,也会产生回馈制动。
16
•4
1、全压启动(直接启动)
全压启动是将电动机直接接到额定电压上的启动方式,又叫直 接启动。 优点:设备简单,操作方便,启动时间短。 缺点:启动电流较大,将使线路电压下降,影 响负载正常工作。
适用范围:电动机容量在10kW以下
5
2、降压启动
(1)定子串电阻启动
缺点:
外接启动电阻上有较大的功率损耗,经 济性较差。
——三相异步电动机的启动、 调速、反转与制动
1
三相异步电动机的启动、调速、反转与制动 能力目标:
1、能根据交流电动机的类型和使用场合,分析交流电动机 的启动、调速和制动
知识目标:
1、了解交流电机的结构,熟悉交流电机的工作原理 2、掌握交流电机的启动、调速与制动
任务一、认识交流异步电动机 任务二、三相异步电动机的启动、调速、反转与制动
流电通入两相绕组,产生固定不动的磁场n0。
电动机由于惯性仍在运转。
n1 0 N
转子导体切割固定磁场感应电流,载 流导体受到与转子惯性方向相反的电

三相异步电动机电气控制课件PPT45页

三相异步电动机电气控制课件PPT45页
1、反接制动控制线路
2、能耗制动控制线路 (3) 异步电动机调速控制系统
1、双速电动机控制线路 2、变频调速系统 (4)电动机的保护环节
2021/91/1、5 短路保护 2、过载保护 3、过电流保护
1
任三务相3 异机步床电控制动线机路电的气基控本环制节
全压启动
2021/9/15
2
任三务相3 异机步床电控制动线机路电的气基控本环制节
任三务相3 异机步床电控制动线机路电的气基控本环制节
三相异步电动机几种典型电气控制
(1)三相异步电动机的起动控制线路
全压启动
1.点动控制线路 2.长动控制线路 3.两地控制线路
降压启动
1.丫-△降压起动控制线路
2.串电阻(电抗器)降压起动控制线路
3.定子串自耦变压器降压启动
正反转控制 (2)三相异步电动机的制动控制线路
2021/9/15
25
任三务相3 异机步床电控制动线机路电的气基控本环制节
2、自动往返控制
SQ 2
SQ 1
(a) 往 返 运 动 图
FR
SB 1
SB 3
KM 1
SQ 1
KM 2 KM 1 SQ 2
SQ 2 SB 2
KM 1 KM 2
KM 2
SQ 1
2021/9/15
(b )
自动往返控制电路
按下正向起动按钮SB1,电动机 正向起动运行,带动工作台向前运 动。当运行到SQ2位置时,挡块压下 SQ2,接触器KMl断电释放,KM2通电 吸合,电动机反向起动运行,使工 作台后退。工作台退到SQl位置时, 挡块压下SQl,KM2断电释放,KM1通 电吸合,电动机又正向起动运行, 工作台又向前进,如此一直循环下 去,直到需要停止时按下SB3,KMl 和KM2线圈同时断电释放,电动机脱 离电源停止转动。

第2章三相异步电动机控制线路模板ppt课件

第2章三相异步电动机控制线路模板ppt课件
在多处位置设置控制按钮,均能对同一电机实行控制。控制回 路需要设置多套起、停按钮,分别安装在设备的多个操作位置
特 点:
起动按钮的常开触点并联;停止按钮的常闭触点串联。
操作
无论操作哪个启动按钮都可以实现电动机的起动; 操作任意一个停止按钮可以打断自锁电路,使电动机停止运行。
SB1乙
SB1甲
SB2甲
KM
2、工作台前进至终点自动停车; 3、工作台在终点时,启动电机只能反转; 4、工作台后退至原位自动停车; 5、工作台在前进或后退途中均可停车,再 启动后既可进也可退。
实现方法:在生产机械行程的终点和原位安装行程开关
运动过程
按下SB2 工作台正向运行 至终点位置撞开SQ2 电机停车
(反向运行同样分析)
SB2乙
K M
甲地
乙地
SB1甲、SB2甲实现就地控制; SB1乙、SB2乙实现远方控制。
(a)
(b)‍
‍多点控制电路‍
2.2.5 自动循环控制
正程:电动机正转; 逆程:电动机反转。
控制要求:
工作台 B
后退 前进
SQ4 SQ1
床身
工作台 A
SQ2 SQ3
机床工作示意图
1、工作台在原位时,启动电机只能正转;
(1)工作台在原位时: 启动后只能前进,不能后退。 (2)A前进到终点时: 立即后退,退回到原位自动停。
(3)A在途中时: 可停车;再启动时,既可前进也可后退。 (4)A在途中时,若暂时停电,复电时,A不会自行运动。 (5)A在途中若受阻,在一定时间内电机应自行断电而停车。
基本电路的结构特点: 1. 自锁——接触器常开触点与按钮常开触点相并联。 2. 互锁——两个接触器的常闭触点串联在对方线圈的电路

《三相异步电动机》课件

《三相异步电动机》课件

家用电器中的应用
家用电器中常使用三相异步电动 机,如洗衣机、冰箱等。
发展趋势
未来,三相异步电动机将逐渐应 用于新能源、电动汽车等领域, 促进技术的进步。
六、总结
三相异步电动机的特点和优缺点
三相异步电动机具有结构简单、运行稳定等特点,但启动力矩较小,需要额外的起动装置。
未来发展和应用前景
随着新能源和电动汽车等领域的快速发展,三相异步电动机有着广阔的应用前景。
三相异步电动机具有结构简单、运行稳定的优点, 但缺点是起动力矩较小,需要外部辅助装置。
二、原理
1 磁场转速与电动机转速
三相异步电动机的转速与其磁场旋转速度不同步,因此称为“异步”电动机。
2 感应电动机的工作原理
感应电动机利用旋转磁场在转子中产生感应电流,从而产生转矩,驱动机械运转。
3 转子的损耗和转矩
转子中的铜损、磁损等会导致能量损耗,同时会产生转矩,使电动机能够开展工作。
三、结构
组成
三相异步电动机由定子、转子、 端盖、轴等组件构成,各个局
定子上的线圈按照一定的规律 布置,形成电磁场,驱动转子 旋转。
各部件的作用和功能
不同部件在电机运行过程中, 起着各自不可或缺的作用,确 保电机正常工作。
四、运行和控制
1
启动、运行、停止
通过给定适当的电压和频率,电动机可以启动、运行和停止。
2
控制方式
运行电动机可以通过多种方式进行控制,如电阻起动、变频器控制等。
3
速度调节方法
可以通过改变电动机供电频率、极对数等参数来实现对电动机转速的调节。
五、应用
工业应用案例
三相异步电动机被广泛应用于各 种工业领域,如机械加工、生产 装配线等。

6三相异步电动机学习课件PPT

6三相异步电动机学习课件PPT

sN=
n0-nN n0
=
3 000-2 940 3 000
= 0.02
(2) 定子三相绕组为三角形联结
I1P =
IN 3
= 42.2 3
A = 24.36 A
(3) 输入有功功率
P1N= 3 UN IN N = 3×380×42.2×0.89 W = 24.8 kW
(4)
效率
N =
PN 100% = P1N
例1:三相异步电动机 p=3,电源f1=50Hz,电机额定 转速n=960r/min。
求:转差率s
同步转速:n0
60 f1 p
60 50 3
1000
r
/ min
转差率: s n0 n 1000 960 0.04
n0
1000
转矩平衡
电机输出转矩T2等于电磁转矩T减去空载转矩T0。即:
c
载的变化而自动调整,这种 s=1 能力称为自适应负载能力。
T TL Ts Tm
启动: Ts>TL (负载转矩),电机启动
转速n,转矩T
c点:转矩达最大Tm ,转速n继续,T,沿cb走
b点:T=TL,转速n不再上升,稳定运行
若TL ,暂时T< TL,n s I2 T
例3:三相异步电动机,额定功率PN=10kW,
§6.1 三相异步电动机的结构与工
作原理
磁铁
磁场旋转
n0 f
n
N
ei
e方向用 右手定则
确定
f方向用 左手定则
确定
S
闭合 线圈
磁极旋转
导线切割磁力线产生感应电动势
e B l v (右手定则)
磁感应强度 导线长 切割速度

第14章 三相异步电动机的启动及速度调节PPT课件

第14章  三相异步电动机的启动及速度调节PPT课件
14.1 异步电动机的启动性能
启动过程: 指电动机从静止到达正常工作转速的过程。
启动过程特点: 电流一般较大,转矩并不大
原因:开始时候n=0 ,U1
R1
R2' s
2
X 1
X
' 2
2
第1页/共73页
T CT1I2 cos2
功率因数cos2 很低
最初起动瞬间很大的启动电流引起定子 漏阻抗压降增大,主磁通约减少到额定值的一半。 一般情况:
一、转子回路串电阻启动 串入多级电阻,启动过程中采用逐级切除启动电
阻的方法。
第16页/共73页
特点和适用场合
1.起动开始时,使全部电阻均串入转子回路,随着转速 的上升,电磁转矩将减小。
2.为了缩短起动时间,通常随转速上升分级切除部分电 阻,使在整个起动过程中电动机保持有较大的电磁转矩。
3.待起动完毕后,转子绕组便被短路,转入正常运行。
第25页/共73页
2.双鼠笼式异步电动机( Double-squirrel-cage rotor ) 上笼Top bar: 截面小,电阻大 下笼Bottom bar: 截面大,电阻小 下笼交链的漏磁 通比上笼多,漏 抗大
第26页/共73页
(1)起动时 • 转子电流的频率f2=f1,转子漏抗大于转子电阻,
第18页/共73页
工作原理:
• BP实质上是一台只有初级绕组而且铁心损耗较大 的三相变压器。BP的铁耗大就相当于Rm大。而 铁耗与磁通的频率(等于转子频率f2=sf1)的1.3 次方成正比。开始启动时,s较大,故f2较大,Rm 也较大,相当于转子电阻自动增加,则Ist减小、 Tst增大;随着启动过程的进行,n逐渐变大、s逐 渐变小,则f2变小,也就是铁耗减小,所以Rm变 小,相当于转子电阻自动变小。

三相异步电动机完整ppt课件

三相异步电动机完整ppt课件
第3章 异步电动机
3.1 三相异步电动机的构造 3.2 三相异步电动机的工作原理 3.3 三相异步电动机的电磁转矩 3.4 三相异步电动机的机械特性 3.5 三相异步电动机的起动 3.6 三相异步电动机的调速 3.7 三相异步电动机的制动 3.8 三相异步电动机铭牌数据
.
1
电动机的分类: 交流电动机
n(1s)n0
异步电动机运行中: s(1~9)%
例1:一台三相异步电动机,其额定转速
n=975 r/min,电源频率 f1=50 Hz。试求电动机的 极对数和额定负载下的转差率。
解:根据异步电动机转子转速与旋转磁场同步转
速的关系可知:n0=1000 r/min , 即 p=3
额定转差率为
sn 0n10 % 0109 07 0 150 02% .5%
iB
iC
场 的分布情况
o
M
n0
A
YN
Z
C
SB
X
t 0
合成磁场方向向下
600
60
A
Y
NZ
CS
X
B
Y
S
C
A
Z
N
B X
t 60
t 90
合成磁场旋转60°合成磁场旋转90°
.
19
分析可知:三相电流产生的合成磁场是一旋转的磁场
即:一个电流周期,旋转磁场在空间转过360°
2.旋转磁场的旋转方向 取决于三相电流的相序
相交流电(星形联接)
iA
iC Im sint 120
A ZX
Im i iA iB iC
iC C
Y
o
B
t
iB
.
17

第8章 三相异步电动机的启动与制动 电机与拖动基础 课件 ppt

第8章 三相异步电动机的启动与制动 电机与拖动基础 课件 ppt
否则不能采用此法。
8.2.3 自耦变压器降压启动
M 3~
3 ~ UN
S1 FU
S2 TA
8.2.3 自耦变压器降压启动
M 3~
3 ~ UN
S1 FU
S2
启动
TA
8.2.3 自耦变压器降压启动
M 3~
3 ~ UN
S1 FU
运行
S2
TA
8.2.3 自耦变压器降压启动
电动机相电压比
U N2 KA UN N1
S1 FU
U2 V1 S2
U1
V2
W2
W1
8.2.2 Y- 启动 适用于:正常运行为△联结的电动机。 3 ~ UN
S1 FU
U2 V1
U1
V2
W2
W1
S2
Y 启动
适用于:正常运行为△联结的电动机。
3 ~ UN
定子相电压比
S1 FU
U2 V1
U1
V2
W2
W1
运行
S2
U1PY U1P△
=
UN 3 UN
由于 Tsa >250 N·m,而且 Isa<360 A,所以 能采用 KA = 0.8 的自耦变压器启动。
8.3 高启动转矩的三相鼠笼式异步电动机
(1) 深槽式异步电动机 槽深 h 与槽宽 b 之比为:h / b = 8 ~ 12
起动时,f2 高, 漏电抗大,电流的集
肤效应使导条的等效
面积减小,即 R2 , 使 Ts 。 运行时, f2 很低, 漏电抗很小,集肤效
解: (1) 能否直接启动
TN =
60 2
PN nN
=
60 2×3.14
×
37×103 985
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 星形—三角形(Y—△)降压起动
方法:起动时定子绕组接成Y形,运行时定子绕组则 接成△形,其接线图如图示。对于运行时定子绕组为Y形 的笼型异步电动机则不能用Y—△起动方法。
适用于正常运行 时接成的电机,
是普通机床上常用 的起动方法
起 动:Y
正常运行:
C
A
B
K1
6
1
35
4 2
△运行
K2
Y 启动
图8.4 Y—△起动电流分析图
r 2
8.1 三相异步电动机直接起动
起动电流过大,对电网冲击大。使电网电压降低, 对电机前端供电变压器影响大。使得变压器输入电压 幅度下降,超过了额定值的允许偏差△=±10%或更严 重。这样,一方面影响了异步电机本身,由于Tst与电 压 U的平方成正比,导致Tst下降更多,当重载时电机 将不能起动;另一方面,影响由同一台供电变压器供 电的其它负载,如电灯会变暗,用电设备失常,重载 的异步电机可能停转等。
图8. 鼠笼式异步电动机 的串电抗器起动
8.2 三相鼠笼式异步电动机降压起动
(2)起动电流和起动转矩的分析与计算 三相异步电动机定子串电抗器X起动时的 简化等值电路由如图(a)的直接起动变为图(b)。
(a)
(b)
r 2
8.2 三相鼠笼式异步电动机降压起动
T s2f1(R 3 k2 p (1 2 X U R k 2 X )22f3 1 (p X k1 2 U R 2 X )2
三相异步电动机的启动与制动
返回总目录
本章内容
三相异步电动机直接起动 三相鼠笼式异步电动机降压起动 高启动转矩的三相鼠笼式异步电动机 绕线式三相异步电动机的启动 三相异步电动机的各种运行状态 本章小结
r 2
8.1 三相异步电动机直接起动
三相异步电动机直接起动是指电动机 直接加额定电压,定子回路不串任何电器 元件时的起动。三相异步电机的起动要满 足生产机械对异步电动机起动性能的要求 起动转矩要大,以保证生产机械的正常起 动。缩小起动时间;起动电流要小。以减 小对电网的冲击。
Ts
8.2 三相笼型异步电动机的起动
Y形起动时每相绕组所加 U1U1 3UN 3
电压为
IU UN/ 3 1,电流
I U1
UN
3
I s
1 3
I
Is I
1 3
I则
所以
Is 3I
Is Is / 3
可见,Y—△起动时,对供电变压器造成冲击的起动 电流是直接起动时的1/3。
下面两种情况不能直接启动。变压器与 电机容量 之比不足够大。启动转矩不能满足要求。
r 2
8.1 三相异步电动机直接起动
综上所述,三相异步电机直接起动的情况
只适应于供电变压器容量较大,电动机容量小

的小容量鼠笼式异步电机。对于大容
量鼠笼式异步电机和绕线式异步电动机可采用
如下方法:(1)降低定子电压;(2)加大定
r 2
8.1 三相异步电动机直接起动 由三相异步电动机机械特性的物理表 达式知道,在额定电压下直接起动三相异 步电动机。即转差率 S=1,主磁通 ≈ 额 定磁通的1/2,功率因数cos 很小,造成了 起动电流相当大而起动转矩 并不大的结果。 例如,对于普通鼠笼式异步电动机,起动 电流 =(4~7)IN ( 为起动电流倍数) 起动转矩 =TN(0.9~1.3) 对于绕线式 三相异步电动机的起动转矩T S<TN 。
式中的短路阻抗 ZkRkjXk 在电动机设计后,电抗器
因此,
Xk 0.9Zk
Xk Zk
抗角的作用。
.且分析中,因误差不大,则不考虑阻
U 1I 1s(ZkjX)
U1 I1sZk
r 2
u 设串电抗时,电动机定子电压与直接启动时电压比值
为 ,则Байду номын сангаас
U1 u Zk
U1
Zk X
I1S U1 u Zk
I1S U1
Zk X
TS (U 1 )2u2( Zk )2
TS U 1
ZkX
r 2
工程实际中,往往先给定线路允许电动机启动电流的大
小 Is ,在计算电抗 X的大小。计算公式推导如下:
I1S u Zk
I1S
Zk X
uZ kuXZk
X
1u u
Zk
Zk
UN 3IS
UN 3KIIN
Ts
8.2 三相笼型异步电动机的起动
子端电阻或电抗;(3)对于绕线式异步电机还
可以采用加大转子端电阻或电抗的方法。对于
鼠笼式异步电机,可以结构上采取措施,如增
大转子导条的电阻,改进转子槽形。
r 2
8.1 三相异步电动机直接起动 为方便起见,列出起动电流 和起动转矩 的表达式为
I1 s
I2 s
U1 (R1R2 )2(X1X2 )2
Ts2f1(R13 Rp 2 )2U 12 R (2 X1X2 )2
(3)过大的起动电流使电动机受到电动力的冲击,绕组变形可能造成 短路而烧毁电动机。
(4)过大的起动电流会使电网线路电压降增大,对同一线路中的其他 电器设备造成影响。
8.2 三相鼠笼式异步电动机降压起动
1.定子串接电抗器或电阻起动 (1)接线原理图
三相鼠笼式异步电机在定子 回路中串接电抗器(可改接电阻 器,但能耗较大,适用于较小容 量电机)降压起动的接线原理图 如图所示。三相异步电机定子串 电抗起动。即开关2K接到“起动 ”端,使起动时电抗器接入定子 回路;起动后,切除电抗器,即 开关2K接到“运行”端。
❖ 总结
直接起动即全压起动。
全压起动条件:1)异步电动机功率低于7.5KW
2):
KI
I1st I1N
143起电 动源 电总 动容 k机 V k量 A V 容 A ( ) 量 ) (
直接起动时的影响:
(1)起动电流较大,可达额定电流的4~7 倍,甚至达到8~12倍。
(2)过大的起动电流造成电机过热,影响电动机的寿命。
(a) 直接起动(△形接法)
(b) Y-△起动(Y形接法)
(a) 直接起动(△形接法)
(b) Y-△起动(Y形接法)
起动时Y:
UY
1 3U
1
3UN1 IYlIYp
1 UN1 3 Zk
起动时
U UN1
Il
3Ip
3UN1 Zk
3UN1 Zk
IYl 1 Il 3
IstY1 3Is t,TstY1 3Ts t
Ts
8.2 三相笼型异步电动机的起动
Y—△起动时,起动电流 I
s
与直接起动时的
起动电流 I 5 的关系(注:起动电流是指线路电流
而不是指定子绕组的相电流):
电动机直接起动时,定子绕组接成△形,如
图8.4(a)所示,每相绕组所加电压大小为U1=UN,
即为线电压,每相绕组的相电流为 I △ ,
则电源输入的线电流为Is= 3 I 。
相关文档
最新文档