高一数学指数与指数函数同步练习

合集下载

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设函数(x)=,则满足的的取值范围是().A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)【答案】D.【解析】当时,,,解得,因此,当时,,解得,因此,综上【考点】分段函数的应用.2.设函数则使得成立的的取值范围是()A.B.C.D.【答案】C【解析】当时,由,可得,即;当时,由,可得,即,综上.故选C【考点】函数的求值.3.已知定义在R上的函数满足,当时,,且.(1)求的值;(2)当时,关于的方程有解,求的取值范围.【答案】(1),(2)【解析】(1)由可知,代入表达式可求得的值.又,可求出的值;(2)由(1)可知方程为,对x进行讨论去绝对值符号,可得,据结合指数函数,二次函数的性质可求得的取值范围.试题解析:解:(1)由已知,可得又由可知 . 5分(2)方程即为在有解.当时,,令,则在单增,当时,,令,则,,综上: . 14分【考点】本题主要考查指数函数,二次函数求值域和分类讨论的数学思想方法.4.函数的图象必经过定点___________.【答案】【解析】∵指数函数过定点,∴函数过定点.【考点】函数图象.5.已知,,且,则与的大小关系_______.【答案】【解析】由,又由,所以,所以由可得,所以,,所以即.【考点】1.分数指数幂的运算;2.对数的运算;3.指数函数的单调性.6.函数在上的最大值比最小值大,则 .【答案】【解析】因为,根据指数函数的性质可知在单调递增,所以最大值为,最小值为,依题意有即,而,所以.【考点】指数函数的图像与性质.7.设,则的大小关系是()A.B.C.D.【答案】B【解析】把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为 ,所以 .综上, ,故选B【考点】1、指数函数的性质;2、对数函数的性质.8.若,则__________.【答案】【解析】【考点】指数函数的运算法则9.已知,则的大小关系是.【答案】【解析】因为指数函数在R上单调递减,所以。

新课标高一数学指数与指数函数练习题及答案

新课标高一数学指数与指数函数练习题及答案

指数与指数函数同步练习一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( )A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且b b a a -+=则b b a a --的值等于( ) A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2<a C、a <、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( ) A 、 1(1)2x + B 、14x + C 、2x D 、2x -6、下列2()(1)x x f x a a -=+是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数9、函数121x y =-的值域是( )A 、(),1-∞B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数x y a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限11、2()1()(0)21x F x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( )A 、是奇函数B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)n a b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若103,104x y ==,则10x y -= 。

高一数学上册第二章--指数函数知识点及练习题(含答案)

高一数学上册第二章--指数函数知识点及练习题(含答案)

课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。

高一数学同步练习——指数与指数函数练习题及答案

高一数学同步练习——指数与指数函数练习题及答案

同步练习——指数与指数函数一、选择题( 12*5 分)1.( 3 6a 946 3 94等于( )()) ( a )(A )a 16 (B ) a 8 (C )a 4 ( D ) a 22.函数 f ( x )=(a 2-1) x 在 R 上是减函数,则 a 的取值范围是( )(A ) a 1( B ) a 2 (C )a< 2(D )1< a23. 以下函数式中,知足 f(x+1)=1f(x) 的是 ()1(x+1) 12(A)(B)x+(C)2x(D)2 -x24a>2b ,(3) 11,(4)a 114.已知 a>b,ab0 以下不等式( 1)a 2>b 2,(2)23 >b 3 ,(5)(1 ) a <( 1 ) ba b3 3 中恒建立的有( )(A )1 个 (B )2 个 (C )3 个 (D )4 个5.函数 y=1 的值域是( )x12(A )(- ,1)(B )(- ,0) (0,+ )(C )(-1 ,+ )(D )(- ,-1 ) (0,+ )6.以下函数中,值域为 R +的是( )1 ( B )y=( 1)1-x(A )y=5 2x3(C )y= ( 1) x1(D )y= 1 2x27.以下关系中正确的选项是( )(A )(1221122)3<(1)3<( 1 ) 3(B )( 1 ) 3<( 1 )3<(1) 325 22 2 5(C )(1212221)3<(1)3<( 1 ) 3(D )( 1 )3<( 1 )3<( 1 ) 352 25 2 2x-1)8.若函数 y=3·2 的反函数的图像经过 P 点,则 P 点坐标是((A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1) 9.函数 f(x)=3 x +5, 则 f -1 (x) 的定义域是( ) (A )(0,+ ) ( B )(5,+ ) (C )(6,+ ) ( D )(- ,+ )10.已知函数 f(x)=a x +k, 它的图像经过点( 1, 7),又知其反函数的图像经过点( 4,0),则 函数 f(x) 的表达式是( ) (A)f(x)=2 x +5 (B)f(x)=5 x +3 (C)f(x)=3 x +4 (D)f(x)=4 x +311.已知 0<a<1,b<-1, 则函数 y=a x+b 的图像必然不经过()(A) 第一象限(B)第二象限(C) 第三象限(D)第四象限12.一批设施价值 a 万元,因为使用磨损,每年比上一年价值降低b%,则 n 年后这批设施的价值为()(B)a(1-nb%) (C)a[(1-(b%)) n(D)a(1-b%) n(A)na(1-b%)二、填空题(4*4 分)313.若 a 2 <a2 , 则 a 的取值范围是。

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.三个数,,之间的大小关系()A.B.C.D.【答案】B【解析】对于,当时;对于,当时,;对于,当时,;故.【考点】对数函数,指数函数的性质.3..【答案】【解析】原式=【考点】指数与对数4.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.5.将函数的图像向左平移一个单位,得到图像,再将向上平移一个单位得到图像,作出关于直线对称的图像,则的解析式为 .【答案】【解析】根据平移口诀“上加下减”可得函数解析式为,函数解析式为,因为图像与图像关于直线对称,所以函数与函数互为反函数。

因为,所以,解得,所以,所以函数的反函数为,即的解析式为。

【考点】图像平移,指数和对数的互化。

6.已知,且,则A的值是()A.15B.C.±D.225【答案】B【解析】由得到代入到得:,利用换底法则得到,所以故选B【考点】指数函数综合题.7.三个数,之间的大小关系是A.B.C.D.【答案】C【解析】,所以;;。

所以。

故C正确。

【考点】指数函数和对数函数的单调性及运算。

8.计算:⑴ ;⑵.【答案】(1);(2).【解析】对于(1),主要是利用指数幂的运算性质进行化简求值;对于(2),主要是利用对数的运算性质进行化简求值,要求熟练的掌握指数幂和对数的运算性质.试题解析:(1)原式;(2)原式.【考点】本题主要考查了指数幂的运算性质和对数的运算性质,属于基础题..9.【答案】(1);(2)1.【解析】(1)由指数的运算法则,原式==;(2)由对数的运算法则,原式===1.试题解析:(1)原式= 5分= 7分(2)原式= 10分= 12分=1 14分考点:1、有理数指数幂的运算性质;2、对数的运算性质.10.已知,.(1)求的解析式;(2)解关于的方程(3)设,时,对任意总有成立,求的取值范围.【答案】(1)(2)当时,方程无解当时,解得若,则若,则(3)【解析】(1)利用换元法求解函数的解析式,设,则,代入即得解析式(2)依题意将方程中化简得,然后分和分别求解,(3)对任意总有成立,等价于当时,,然后分的取值来讨论.试题解析:解:(1)令即,则即(2)由化简得:即当时,方程无解当时,解得若,则若,则(3)对任意总有成立,等价于当时,令则令①当时,单调递增,此时,即(舍)②当时,单调递增此时,即③当时,在上单调递减,在上单调递增且即,综上:【考点】本题考查指数函数的性质及闭区间上的最值问题,考查了恒成立问题转化为求函数最值及分类讨论.11.计算 .【答案】14【解析】【考点】指数幂的运算;对数的运算12. (1)(2)计算【答案】(1) (2)【解析】(1)通过指数形式转化为对数的形式,让后再运算.(2)通过把除号改写为分数线,再把负指数化为正指数.再运算.试题解析:【考点】1.指数转化为对数形式.2.分式的运算.13.已知,则____________________.【答案】1【解析】由已知得,,,所以,,故.【考点】1.指数式与对数式之间的互化;2.对数运算.14.已知,则的增区间为_______________.【答案】(或)【解析】令函数,因为,,由函数零点存在性定理知,所以函数为减函数,又由函数的单调递减区间为,故所求函数的增区间为.【考点】1.函数的零点;2.指数函数;3.二次函数.15.函数的图象可能是()【答案】D【解析】,,排除A;当时,排除B;当时,排除C.故选D.【考点】指数函数的图像变换16.对于函数)中任意的有如下结论:①;②;③;④;⑤.当时,上述结论中正确结论的个数是( )A.2个B.3个C.4个D.5个【答案】B【解析】当时,,①错误;,②正确;,③正确;当时,,④错误;因为是上的递增函数,即:时,,或时,,因此与同号,所以,⑤正确.【考点】指数函数的性质17.化简或求值:(1);(2)计算.【答案】(1);(2)1.【解析】(1)将小数化成分数,利用指数幂的运算法则;(2)对于比较复杂的式子,把它拆成几部分分别化简或计算.本小题利用对数的运算法则分别对分子和分母进行求值.试题解析:(1)原式= 3分. 6分(2)分子=; 9分分母=;原式=. 12分【考点】指数幂与对数的运算法则.18.指数函数f(x)的图象上一点的坐标是(-3,),则f(2)=______________.【答案】4【解析】令指数函数为,其过点(-3,),则,求得,所以,f(2)=。

2022-2022学年[苏教版]高一数学必修一312《指数函数》同步练习(含答案)

2022-2022学年[苏教版]高一数学必修一312《指数函数》同步练习(含答案)

2022-2022学年[苏教版]高一数学必修一312《指数函数》同步练习(含答案)2.2.2指数函数1.下列以某为自变量的函数中,是指数函数的序号是__________.+①y=(-4)某②y=π某③y=-4某④y=a某2(a>0且a≠1)⑤y=(a+1)某(a>-1且a≠0)1-2.方程3某1=的解是__________.93.指数函数y=f(某)的图象经过点(2,4),那么f(-1)·f(3)=__________.4.指数函数y=(2m-1)某是单调减函数,则m的取值范围是__________.5.设f(某)=3某+2,则函数f(某)的值域为__________.6.函数y=1-3某的定义域是__________.7.右图是指数函数①y=a某;②y=b某;③y=c某;④y=d某的图象,则a、b、c、d与1的大小关系是__________.-8.(1)已知函数f(某)=4+a某2(a>0,a≠1)的图象恒过定点P,则点P的坐标是__________.(2)函数f(某)=a某2+2某-3+m(a>1)恒过点(1,10),则m=__________.1-9.设y1=40.9,y2=80.48,y3=()1.5,则y1、y2、y3的大小关系为__________.21110.为了得到函数y=3某()某的图象,可以把函数y=()某的图象向__________平移33__________个单位长度.-11.函数y=2某1+1的图象是由函数y=2某的图象经过怎样的平移得到的?12.已知函数f(某)的定义域为[,4],求函数f(2某)的定义域.213.已知镭经过100年剩余的质量是原来质量的0.9576,设质量为1的镭经过某年后,剩留量是y,求y关于某的函数关系式.14.函数y=()3某-1的值域是__________.15.下列说法中,正确的序号是__________.函数y=-e某的图象:①与y=e某的图象关于y轴对称;②与y=e某的图象关于坐标原--点对称;③与y=e某的图象关于某轴对称;④与y=e某的图象关于y轴对称;⑤与y=e某-的图象关于坐标原点对称;⑥与y=e某的图象关于某轴对称.16.(1)已知指数函数f(某)=a某(a>0且a≠1)的图象经过点(3,π),则f(-3)的值为__________;(2)函数y=a某(a>0,且a≠1)在[1,2]上的最大值与最小值的和为6,则a的值为__________.17.一种单细胞生物以一分为二的方式进行繁殖,每三分钟分裂一次,假设将一个这种细胞放在一个盛有营养液的容器中,恰好一小时这种细胞充满容器,假设开始将两个细胞放入容器,同样充满容器的时间是__________分钟.a,某>1,18.(易错题)若函数f(某)=是R上的单调增函数,则实数a的取值a4-某+2,某≤12范围是__________.某19.下列四个图形中,是函数y=a|某|(a>1)的大致图象的序号是__________.1120.已知实数a,b满足等式()a=()b,下列五个关系式:23①0其中不可能成立的关系式有__________个.21.设函数f(某)定义在实数集上,它的图象关于直线某=1对称,且当某≥1时,f(某)=1233某-1,则f(),f(),f()的大小关系是__________.33222.已知函数f(某)=-m(m为常数)是奇函数,则m=__________.2+1某23.(1)已知02-1,某≤0,24.(1)设函数f(某)=1若f(某0)>1,则某0的取值范围是__________.某,某>0.211(2)若某1、某2为方程2某=()-+1的两个实数解,则某1+某2=.2某1125.(易错题)(1)函数f(某)=()某-()某+1,某∈[-3,2]的值域是__________;42(2)已知函数y=a2某+2a某-1(a>0,且a≠1)在区间[-1,1]上有最大值14,则a的值为__________.11326.已知函数f(某)=(某+)·某.2-12(1)求f(某)的定义域;(2)讨论f(某)的奇偶性;(3)证明f(某)>0.-某27.讨论函数f(某)=()某2-2某的单调性,并求其值域.528.分别比较函数f(某)=2某2-2某-1,g(某)=(2)某2-2某-1与函数y=某2-2某-1的单调性之间的关系.答案与解析基础巩固1.②⑤由指数函数的定义知①③④不是指数函数;②是;⑤∵a>-1且a≠0,∴a+1>0且a+1≠1.∴y=(a+1)某(a>-1且a≠0)是指数函数.1---2.-1由=32,知3某1=32,9∴某-1=-2,即某=-1.3.4设f(某)=a某,由题意f(2)=4,即a2=4.又a>0且a≠1,∴a=2.∴f(某)=2某.-∴f(-1)·f(3)=21·23=22=4.114.<m<1由指数函数的性质知0<2m-1<1,∴<m<1.225.(2,+∞)∵3某>0,∴3某+2>2,即f(某)>2,∴f(某)的值域为(2,+∞).6.(-∞,0]要使函数有意义,必须1-3某≥0,即3某≤1,3某≤30,∴某≤0.∴函数的定义域为(-∞,0].7.b<a<1<d<c直线某=1与四个指数函数图象交点的坐标分别为(1,a),(1,b),(1,c),(1,d).由图象可知纵坐标的大小关系,即得答案.8.(1)(2,5)(2)9(1)函数图象随变量a的变化而变化,但恒有当某=2时,f(2)=4+a0=5,∴P(2,5).(2)∵f(某)恒过点(1,10),∴把(1,10)点代入解析式得a12+2某1-3+m=10,即m+a0=10,∴m=9.某9.y2<y3<y1y1=(22)0.9=21.8,y2=(23)0.48=230.48=21.44,y3=21.5,∵y=2某为R上的单调增函数,且1.44<1.5<1.8,∴21.44<21.5<21.8,即y2<y3<y1.11-110.右1∵y=3某()某=()某1,∴把函数y=()某的图象向右平移1个单位长度便得3331-1到y=()某1的图象,即y=3某()某的图象.3311.解:∵指数函数y=2某的图象向右平移一个单位长度,就得到函数y=2某1的图象.再-向上平移一个单位长度,就得到函数y=2某1+1的图象.-∴函数y=2某1+1的图象是由函数y=2某的图象向右平移一个单位长度再向上平移一个单位长度而得到的.-12.解:∵f(某)的定义域为[,4],21-∴≤2某≤4,即21≤2某≤22.2又函数y=2某是R上的增函数,∴-1≤某≤2.故函数f(2某)的定义域为[-1,2].13.解:由题意知,一百年后质量为1的镭剩留量y1=1某0.9576=0.95761,二百年后质量为1的镭剩留量y2=y1某0.9576=0.9576某0.9576=0.95762,…,某百年后质量为1的镭剩留量y=(0.9576)某,某∴某年后,y=0.9576.100能力提升14.(0,1]方法一(单调性法):∵函数的定义域为[1,+∞),且u=某-1为增函数,y=()u为减函数,3∴由复合函数的单调性知,原函数为减函数.∴当某=1时yma某=1.又指数函数值域为y>0,。

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.函数的图像过一个定点,则定点的坐标是【答案】(2,2)【解析】当x=2时,f(2)=a2-2+1=a0+1=2,∴函数y=a x-2+1的图象一定经过定点(2,2).故答案为:(2,2).【考点】含有参数的函数过定点的问题.2.函数的图象与函数的图象所有交点的横坐标之和等于()A.4B.6C.8D.10【答案】C【解析】由数形结合可知,两函数图像在直线两侧各有4个交点,其两两关于对称。

不妨令。

则所有交点横坐标之和为。

故C正确。

【考点】1函数图像;2余弦函数的周期;3数形结合思想。

3.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算4.(1)计算.(2)若,求的值.【答案】(1);(2).【解析】(1)利用对数恒等式、换底公式、对数的运算性质进行计算;(2)首先对已知等式进行平方求得的值,再对其平方可求得的值,最后代入所求式即可求得结果.试题解析:(1)原式=.(2)∵,∴,∴,∴,∴,∴原式.【考点】1、对数的运算性质;2、对数的换底公式;3、指数的运算性质.5.已知函数,则=.【答案】【解析】根据题题意:,,故.【考点】1.分段函数;2.指数、对数运算.6.三个数,,的大小顺序是 ( )A.B.C.D.【答案】C【解析】因为,,,所以,故选C.【考点】1.指数函数的单调性;2.对数函数的单调性.7.计算的值为_________.【答案】2【解析】原式【考点】根式、指数、对数的运算8.三个数大小的顺序是()A.B.C.D.【答案】A【解析】由题意得,.,,,,故选A【考点】考察指数函数,和对数函数,分别与1和0的之对比.9.若实数,满足,则关于的函数的图象形状大致是()【答案】B【解析】由等式,可得,根据指数函数的图像可知(或者根据函数的奇偶性、单调性、特殊值来判断),正确答案为B.【考点】1.对数式与指数式的互化;2.指数函数图像、奇偶性、单调性.10.若a<0,>1,则( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<0【答案】D【解析】是上的增函数,由,所以是上的减函数, 由,所以故选D【考点】指数函数,对数函数的单调性.11.三个数的大小关系为()A.B.C.D.【答案】D【解析】判断几个数的大小多用构造函数单调性来解题.因为是上的减函数,所以因为是上的减函数,所以因为是上的增函数,所以故选D【考点】用指数函数与对数函数单调性比较大小,转化思想应用.12.若,则函数的图象一定过点_______________.【答案】【解析】由函数过定点,令,即时,恒等于-3,故函数图像过定点;故答案为:.【考点】指数函数的图像和性质.13.设,,,则的大小关系是()A.B.C.D.【答案】D【解析】由对数函数的性质知:,所以答案选.【考点】1.指数大小比较;2.对数函数的性质.14.计算:(1);(2)【答案】(1)6;(2).【解析】(1)直接采用换底公式计算即可;(2)利用指数幂的运算性质逐个运算即可.试题解析:(1)原式=(2)原式=【考点】1.换底公式的应用;2.指数幂的化简求值.15.函数的图象一定过点()A.B.C.D.【答案】B【解析】根据题意,由于函数,令x-1=0,x=1,可知函数值为2,故可知函数一定过点,选B.【考点】指数函数点评:本试题主要是考查了指数函数恒过(0,1)点的运用,属于基础题。

高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题一.选择题1.若xlog 23=1,则3x+9x的值为(B)A.3B.6C.2D.解:由题意x=,所以3x==2,所以9x=4,所以3x+9x=6故选B2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4解答:解:∵,∴设=m,a=log5m,b=log2m,c=2lgm,∴==2lgm(log m5+log m2)=2lgm•log m10=2.故选B.3.已知,则a等于()A.B.C. 2 D. 4解:因为所以解得a=4故选D4.若a>1,b>1,p=,则a p等于()A.1B.b C.l og b a D.a log b a解:由对数的换底公式可以得出p==log a(log b a),因此,a p等于log b a.故选C.5.已知lg2=a,10b=3,则log125可表示为(C)A.B.C.D.解:∵lg2=a,10b=3,∴lg3=b,∴log125===.故选C.6.若lgx﹣lgy=2a,则=(C)A.3a B.C.a D.解:∵lgx﹣lgy=2a,∴lg﹣lg=lg﹣lg=(lg﹣lg)=lg=(lgx﹣lgy)=•2a=a;故答案为C.7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0∵f(a)+f(b﹣2)=0∴a+(b﹣2)=0∴a+b=2故选D.8.=()A.1B.C.﹣2 D.解:原式=+2×lg2+lg5=+lg2+lg5=+1=,故选B.9.设,则=()A.1B.2C.3D.4解:∵,∴==()+()+()==3故选C10.,则实数a的取值区间应为(C)A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328∵3=log327<log328<log381=4∴实数a的取值区间应为(3,4)故选C.11.若lgx﹣lgy=a,则=(A)A.3a B.C.a D.解:=3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.12.设,则()A.0<P<1 B.1<P<2 C.2<P<3 D.3<P<4 解:=log112+log113+log114+log115=log11(2×3×4×5)=log11120.∴log1111=1<log11120<log11121=2.故选B.13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,则abc的值等于(A)A.1B.2C.3D.4解:∵a,b,c均为正数,且都不等于1,实数x,y,z满足,∴设a x=b y=c z=k(k>0),则x=log a k,y=log b k,z=log c k,∴=log k a+log k b+log k c=log k abc=0,∴abc=1.故选A.14.化简a2•••的结果是(C)A.a B.C.a2D.a3解:∵a2•••=a2•••==a2,故选C15.若x,y∈R,且2x=18y=6xy,则x+y为()A.0B.1C.1或2 D.0或2解:因为2x=18y=6xy,(1)当x=y=0时,等式成立,则x+y=0;(2)当x、y≠0时,由2x=18y=6xy得,xlg2=ylg18=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg18=xylg6,得x=lg18/lg6,则x+y=lg18/lg6+lg2/lg6=(lg18+lg2)/lg6=lg36/lg6=2lg6/lg6=2.综上所述,x+y=0,或x+y=2.故选D.16.若32x+9=10•3x,那么x2+1的值为(D)A.1B.2C.5D.1或5解:令3x=t,(t>0),原方程转化为:t2﹣10t+9=0,所以t=1或t=9,即3x=1或3x=9所以x=0或x=2,所以x2+1=1或5故选Dx x2A.﹣2<a<2 B.C.D.解;令t=2x,则t>0若二次函数f(t)=t2﹣at+a2﹣3在(0,+∞)上有2个不同的零点,即0=t2﹣at+a2﹣3在(0,+∞)上有2个不同的根∴解可得,即故选D18.若关于x的方程=3﹣2a有解,则a的范围是(A)A.≤a<B.a≥C.<a<D.a>解:∵1﹣≤1,函数y=2x在R上是增函数,∴0<≤21=2,故0<3﹣2a≤2,解得≤a<,故选A.二.填空题19.,则m=10.解:由已知,a=log2m,b=log5m.∴+=log m2+log m5=log m10=1∴m=10故答案为:10.20.已知x+y=12,xy=9,且x<y,则=.解:由题设0<x<y∵xy=9,∴∴x+y﹣2==12﹣6=6x+y+2==12+6=18∴=,=∴=故答案为:21.化简:=(或或).解:====.故答案为:(或或).22.=1.解:===1.故答案为:1.23.函数在区间[﹣1,2]上的值域是[,8].解:令g(x)=x2﹣2x=(x﹣1)2﹣1,对称轴为x=1,∴g(x)在[﹣1,1]上单调减,在[1,8]上单调递增,又f(x)=2g(x)为符合函数,∴f(x)=2g(x)在[﹣1,1]上单调减,在[1,,2]上单调递增,∴f(x)min=f(1)==;又f(﹣1)==23=8,f(2)==1,∴数在区间[﹣1,2]上的值域是[,8].故答案为:[,8].24.函数的值域为(0,8].解:令t=x2+2|x|﹣3==结合二次函数的性质可得,t≥﹣3∴,且y>0故答案为:(0,8].25.函数(﹣3≤x≤1)的值域是[3﹣9,39],单调递增区间是(﹣2,+∞)..解:可以看做是由y=和t=﹣2x2﹣8x+1,两个函数符合而成,第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=﹣2x2﹣8x+1,在[1,3]上的值域就可以,t∈[﹣9,9]此时y∈[3﹣9,39]函数的递增区间是(﹣∞,﹣2],故答案为:[3﹣9,39];(﹣2,+∞)三.解答题26.计算:(1);(2).解:(1)==(2)===2+2﹣lg3+lg2+lg3﹣lg2+2=627.(1)若,求的值;(2)化简(a>0,b>0).解:(1)∵,∴x+x﹣1=9﹣2=7,x2+x﹣2=49﹣2=47,∴==3×6=18,∴==.(2)∵a >0,b >0,∴====.28.已知函数f (x )=4x ﹣2x+1+3. (1)当f (x )=11时,求x 的值;(2)当x ∈[﹣2,1]时,求f (x )的最大值和最小值.解:(1)当f (x )=11,即4x ﹣2x+1+3=11时,(2x )2﹣2•2x ﹣8=0 ∴(2x ﹣4)(2x +2)=0 ∵2x >02x +2>2,∴2x ﹣4=0,2x =4,故x=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) (2)f (x )=(2x )2﹣2•2x +3 (﹣2≤x ≤1) 令∴f (x )=(2x ﹣1)2+2当2x =1,即x=0时,函数的最小值f min (x )=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当2x =2,即x=1时,函数的最大值f max (x )=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)29.已知函数||22)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一上数学同步练习(4)--指数与指数函数一、选择题 1.化简(1+2321-)(1+2161-)(1+281-)(1+2-41)(1+221-),结果是( )(A )21(1-2321-)-1 (B )(1-2321-)-1(C )1-2321-(D )21(1-2321-)2.(369a )4(639a )4等于( )(A )a16(B )a8(C )a4(D )a 23.若a>1,b<0,且a b+a -b=22,则a b-a -b的值等于( )(A )6 (B )±2 (C )-2 (D )24.函数f (x )=(a 2-1)x在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2<a (C )a<2 (D )1<2<a5.下列函数式中,满足f(x+1)=21f(x)的是( ) (A)21(x+1) (B)x+41 (C)2x (D)2-x6.下列f(x)=(1+a x )2xa-⋅是( )(A )奇函数 (B )偶函数(C )非奇非偶函数 (D )既奇且偶函数7.已知a>b,ab 0≠下列不等式(1)a 2>b 2,(2)2a>2b,(3)ba 11<,(4)a 31>b 31,(5)(31)a <(31)b 中恒成立的有( )(A )1个 (B )2个 (C )3个 (D )4个8.函数y=1212+-x x 是( )(A )奇函数 (B )偶函数(C )既奇又偶函数 (D )非奇非偶函数 9.函数y=121-x 的值域是( ) (A )(-1,∞) (B )(-,∞0)⋃(0,+∞) (C )(-1,+∞) (D )(-∞,-1)⋃(0,+∞)10.下列函数中,值域为R +的是( ) (A )y=5x-21 (B )y=(31)1-x(C )y=1)21(-x(D )y=x21-11.函数y=2xx e e --的反函数是( )(A )奇函数且在R +上是减函数 (B )偶函数且在R +上是减函数(C )奇函数且在R +上是增函数 (D )偶函数且在R +上是增函数 12.下列关系中正确的是( )(A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51)32(C )(51)32<(21)31<(21)32 (D )(51)32<(21)32<(21)3113.若函数y=3+2x-1的反函数的图像经过P 点,则P 点坐标是( )(A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)14.函数f(x)=3x +5,则f -1(x)的定义域是( ) (A )(0,+∞) (B )(5,+∞) (C )(6,+∞) (D )(-∞,+∞)15.若方程a x-x-a=0有两个根,则a 的取值范围是( ) (A )(1,+∞) (B )(0,1) (C )(0,+∞) (D )φ16.已知函数f(x)=a x +k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是( )(A)f(x)=2x +5 (B)f(x)=5x +3 (C)f(x)=3x +4 (D)f(x)=4x+3 17.已知三个实数a,b=a a ,c=aaa ,其中0.9<a<1,则这三个数之间的大小关系是( )(A )a<c<b (B )a<b<c (C )b<a<c (D )c<a<b18.已知0<a<1,b<-1,则函数y=a x+b 的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 19.F(x)=(1+)0)(()122≠⋅-x x f x是偶函数,且f(x)不恒等于零,则f(x)( ) (A )是奇函数 (B )可能是奇函数,也可能是偶函数 (C )是偶函数 (D )不是奇函数,也不是偶函数20.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为( )(A )na(1-b%) (B )a(1-nb%) (C )a[(1-(b%))n (D )a(1-b%)n二、填空题1.若a 23<a2,则a 的取值范围是 。

2.若10x=3,10y=4,则10x-y= 。

3.化简⨯53xx 35xx×35xx = 。

4.函数y=1151--x x 的定义域是 。

5.函数y=(31)1822+--x x (-31≤≤x )的值域是 。

6.直线x=a(a>0)与函数y=(31)x ,y=(21)x ,y=2x ,y=10x的图像依次交于A 、B 、C 、D 四点,则这四点从上到下的排列次序是 。

7.函数y=3232x -的单调递减区间是 。

8.若f(52x-1)=x-2,则f(125)= .9.函数y=m 2x +2m x-1(m>0且m ≠1),在区间[-1,1]上的最大值是14,则m 的值是 . 10.已知f(x)=2x,g(x)是一次函数,记F (x )=f[g(x)],并且点(2,41)既在函数F (x )的图像上,又在F -1(x )的图像上,则F (x )的解析式为 . 三、解答题1. 设0<a<1,解关于x 的不等式a1322+-x x >a522-+x x 。

2. 设f(x)=2x ,g(x)=4x,g[g(x)]>g[f(x)]>f[g(x)],求x 的取值范围。

3. 已知x ∈[-3,2],求f(x)=12141+-xx 的最小值与最大值。

4. 设a ∈R,f(x)=)(1222R x a a x x ∈+-+⋅,试确定a 的值,使f(x)为奇函数。

5. 已知函数y=(31)522++x x ,求其单调区间及值域。

6. 若函数y=4x -3·2x+3的值域为[1,7],试确定x 的取值范围。

7. 若关于x 的方程4x+2x·a+a+a=0有实数根,求实数a 的取值范围。

8. 已知函数f(x)=)1(11>+-a a a xx , (1)判断函数的奇偶性; (2)求该函数的值域;(3)证明f(x)是R 上的增函数。

第四单元 指数与指数函数一、 选择题1.0<a<1 2.433.14.(-∞,0)⋃(0,1) ⋃(1,+ ∞) ⎪⎩⎪⎨⎧≠-≠--015011x x x ,联立解得x ≠0,且x ≠1。

5.[(31)9,39] 令U=-2x 2-8x+1=-2(x+2)2+9,∵ -399,1≤≤-∴≤≤U x ,又∵y=(31)U 为减函数,∴(31)9≤y ≤39。

6。

D 、C 、B 、A 。

7.(0,+∞)令y=3U,U=2-3x 2, ∵y=3U为增函数,∴y=32323x -的单调递减区间为[0,+∞)。

8.0 f(125)=f(53)=f(52×2-1)=2-2=0。

9.31或3。

Y=m 2x+2m x-1=(mx+1)2-2, ∵它在区间[-1,1]上的最大值是14,∴(m -1+1)2-2=14或(m+1)2-2=14,解得m=31或3。

10.2710712+-x11.∵ g(x)是一次函数,∴可设g(x)=kx+b(k ≠0), ∵F(x)=f[g(x)]=2kx+b。

由已知有F (2)=41,F (41)=2,∴ ⎪⎩⎪⎨⎧=+-=+⎪⎩⎪⎨⎧==++1412222412412b k b k b k b k 即,∴ k=-712,b=710,∴f(x)=2-710712+x 三、解答题1.∵0<a<2,∴ y=a x在(-∞,+∞)上为减函数,∵ a 1322+-x x >a522-+x x , ∴2x 2-3x+1<x 2+2x-5,解得2<x<3, 2.g[g(x)]=4x4=4x22=2122+x ,f[g(x)]=4x2=2x22,∵g[g(x)]>g[f(x)]>f[g(x)], ∴2122+x >212+x >2x22,∴22x+1>2x+1>22x,∴2x+1>x+1>2x,解得0<x<13.f(x)=43)212(12124121412+-=+=+-=+-----xx x x xx , ∵x ∈[-3,2], ∴8241≤≤-x .则当2-x =21,即x=1时,f(x)有最小值43;当2-x =8,即x=-3时,f(x)有最大值57。

4.要使f(x)为奇函数,∵ x ∈R,∴需f(x)+f(-x)=0, ∴f(x)=a-122)(,122+-=-+-xx a x f =a-1221++x x ,由a-1221221+-+++x x x a =0,得2a-12)12(2++x x =0,得2a-1,012)12(2=∴=++a xx 。

5.令y=(31)U ,U=x 2+2x+5,则y 是关于U 的减函数,而U 是(-∞,-1)上的减函数,[-1,+∞]上的增函数,∴ y=(31)522++x x 在(-∞,-1)上是增函数,而在[-1,+∞]上是减函数,又∵U=x 2+2x+5=(x+1)2+4≥4, ∴y=(31)522++x x 的值域为(0,(31)4)]。

6.Y=4x-33232322+⋅-=+⋅x xx ,依题意有⎪⎩⎪⎨⎧≥+⋅-≤+⋅-1323)2(7323)2(22x x x x 即⎪⎩⎪⎨⎧≤≥≤≤-1222421xx x或,∴ 2,12042≤<≤≤xx 或 由函数y=2x的单调性可得x ]2,1[]0,(⋃-∞∈。

7.(2x)2+a(2x)+a+1=0有实根,∵ 2x>0,∴相当于t 2+at+a+1=0有正根,则⎪⎩⎪⎨⎧>+>-≥∆⎩⎨⎧≤+=≥∆010001)0(0a a a f 或 8.(1)∵定义域为x R ∈,且f(-x)=)(),(1111x x f a a a a xxxx ∴-=+-=+---是奇函数; (2)f(x)=,2120,11,121121<+<∴>++-=+-+x xx x x a a a a a ∵即f(x)的值域为(-1,1);(3)设x 1,x 2R ∈,且x 1<x 2,f(x 1)-f(x 2)=0)1)(1(2211112121221<++-=+--+-x x x x x x x x a a a a a a a a (∵分母大于零,且a 1x<a 2x ) ∴f(x)是R 上的增函数。

相关文档
最新文档