高一数学指数函数经典例题

合集下载

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设函数(x)=,则满足的的取值范围是().A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)【答案】D.【解析】当时,,,解得,因此,当时,,解得,因此,综上【考点】分段函数的应用.2.设函数则使得成立的的取值范围是()A.B.C.D.【答案】C【解析】当时,由,可得,即;当时,由,可得,即,综上.故选C【考点】函数的求值.3.已知定义在R上的函数满足,当时,,且.(1)求的值;(2)当时,关于的方程有解,求的取值范围.【答案】(1),(2)【解析】(1)由可知,代入表达式可求得的值.又,可求出的值;(2)由(1)可知方程为,对x进行讨论去绝对值符号,可得,据结合指数函数,二次函数的性质可求得的取值范围.试题解析:解:(1)由已知,可得又由可知 . 5分(2)方程即为在有解.当时,,令,则在单增,当时,,令,则,,综上: . 14分【考点】本题主要考查指数函数,二次函数求值域和分类讨论的数学思想方法.4.函数的图象必经过定点___________.【答案】【解析】∵指数函数过定点,∴函数过定点.【考点】函数图象.5.已知,,且,则与的大小关系_______.【答案】【解析】由,又由,所以,所以由可得,所以,,所以即.【考点】1.分数指数幂的运算;2.对数的运算;3.指数函数的单调性.6.函数在上的最大值比最小值大,则 .【答案】【解析】因为,根据指数函数的性质可知在单调递增,所以最大值为,最小值为,依题意有即,而,所以.【考点】指数函数的图像与性质.7.设,则的大小关系是()A.B.C.D.【答案】B【解析】把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为,所以;把看成函数当时的函数值,因为 ,所以 .综上, ,故选B【考点】1、指数函数的性质;2、对数函数的性质.8.若,则__________.【答案】【解析】【考点】指数函数的运算法则9.已知,则的大小关系是.【答案】【解析】因为指数函数在R上单调递减,所以。

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

x
2
1 ,故值域为 y
|
0
y
1
.
8.(2021·黑龙江·绥化市第一中学高一期中)已知函数 f x 4x a 2x 3 , a R .
(1)当 a 4 ,且 x 0, 2 时,求函数 f x 的值域;
(2)若函数 f x 在0, 2 的最小值为1,求实数 a 的值;
【答案】(1)1,3 (2) a 2 2

y
2
x
是指数函数;
④ y xx 的底数是 x 不是常数,不是指数函数;

y
3
1 x
的指数不是自变量
x
,不是指数函数;
1
⑥ y x3 是幂函数.
故答案为:③
9.(2021·全国·高一专题练习)函数 y a2 5a 5 ax 是指数函数,则 a 的值为________.
【答案】 4
f
x
ax2 2x ,
a
1 x
x 1
3a,
x
1 的最小值为
2,则实数
a 的取值范围是______.
【答案】1,
【解析】由题意,函数
f
x
ax2 2x ,
a 1 x
x 1
3a, x
1 的最小值为
2

因为函数 f x 在[1, ) 上为增函数,可得 x 1时,函数 f x 有最小值为 2 ,
则当 x (,1) 时,函数 f x 2 , min

A. c a b
B. c b a
【答案】A
1
2
【解析】
b
1 4
3
1 2
3

C. b c a

指数函数习题(经典含答案及详细解析)

指数函数习题(经典含答案及详细解析)

指数函数习题一、选择题1.概念运算⎩⎨⎧>≤=⊗ba b b a a b a ,那么函数x x f 21)(⊗=的图象大致为( )2.函数f (x )=x 2-bx +c 知足f (1+x )=f (1-x )且f (0)=3,那么f (b x )与f (c x )的大小关系是( )A .f (b x )≤f (c x )B .f (b x )≥f (c x )C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x -1|在区间(k -1,k +1)内不单调,那么k 的取值范围是( )A .(-1,+∞)B .(-∞,1)C .(-1,1)D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的概念域是A ,函数g (x )=lg(a x -2x -1)的概念域是B ,假设A ⊆B ,那么正数a 的取值范围( )A .a >3B .a ≥3C .a > 5D .a ≥ 55.已知函数⎩⎨⎧>≤--=-77)3)(3()(6x a x x a x f x ,假设数列{a n }知足a n =f (n )(n ∈N *),且{a n }是递增数列,那么实数a 的取值范围是( )A .[94,3) B .(94,3) C .(2,3)D .(1,3) 6.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,那么实数a 的取值范围是( ) A .(0,12]∪[2,+∞) B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14)∪[4,+∞) 二、填空题7.函数y =a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a 2,那么a 的值是________. 8.假设曲线|y |=2x +1与直线y =b 没有公共点,那么b 的取值范围是________.9.(2020·滨州模拟)概念:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的概念域为[a ,b ],值域为[1,2],那么区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y =2342x x ---+的概念域、值域和单调区间.11.(2020·银川模拟)假设函数y =a 2x +2a x -1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的概念域为[0,1].(1)求a 的值;(2)假设函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a ⊗b =⎩⎪⎨⎪⎧ a a ≤b b a >b 得f (x )=1⊗2x =⎩⎪⎨⎪⎧ 2x x ≤0,1 x >0.答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2.又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,那么3x ≥2x ≥1,∴f (3x )≥f (2x ).若x <0,那么3x <2x <1,∴f (3x )>f (2x ).∴f (3x )≥f (2x ).答案:A3.解析:由于函数y =|2x -1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,因此有k -1<0<k +1,解得-1<k <1.答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x >1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,那么u ′(x )=a x ln a -2x ln2>0,因此函数u (x )在(1,2)上单调递增,那么u (x )>u (1)=a -3,即a ≥3.答案:B5. 解析:数列{a n }知足a n =f (n )(n ∈N *),那么函数f (n )为增函数,注意a 8-6>(3-a )×7-3,因此⎩⎪⎨⎪⎧ a >13-a >0a 8-6>3-a ×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2, 当0<a <1时,必有a ≥12,即12≤a <1, 综上,12≤a <1或1<a ≤2. 答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =a x 在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32. 答案:12或328. 解析:别离作出两个函数的图象,通过图象的交点个数来判定参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如下图,由图象可得:若是|y |=2x +1与直线y =b 没有公共点,那么b 应知足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图知足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数成心义,那么只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的概念域为{x |-4≤x ≤1}.令t =-x 2-3x +4,那么t =-x 2-3x +4=-(x +32)2+254, ∴当-4≤x ≤1时,t max =254,现在x =-32,t min =0,现在x =-4或x =1. ∴0≤t ≤254.∴0≤-x 2-3x +4≤52. ∴函数y =2341()2x x --+[28,1].由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知, 当-4≤x ≤-32时,t 是增函数, 当-32≤x ≤1时,t 是减函数. 依照复合函数的单调性知:y =1()2在[-4,-32]上是减函数,在[-32,1]上是增函数. ∴函数的单调增区间是[-32,1],单调减区间是[-4,-32]. 11. 解:令a x =t ,∴t >0,那么y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去).②假设0<a <1,∵x ∈[-1,1],∴t =a x ∈[a ,1a ],故当t =1a,即x =-1时, y max =(1a+1)2-2=14. ∴a =13或-15(舍去). 综上可得a =3或13. 12. 解:法一:(1)由已知得3a +2=18⇒3a =2⇒a =log 32.(2)现在g (x )=λ·2x -4x ,设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,因此g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,因此实数λ的取值范围是λ≤2.法二:(1)同法一.(2)现在g (x )=λ·2x -4x ,因为g (x )在区间[0,1]上是单调减函数,因此有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x ]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立.因为u ∈[1,2],只需λ≤2u 恒成立,因此实数λ的取值范围是λ≤2.。

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.函数的图像过一个定点,则定点的坐标是【答案】(2,2)【解析】当x=2时,f(2)=a2-2+1=a0+1=2,∴函数y=a x-2+1的图象一定经过定点(2,2).故答案为:(2,2).【考点】含有参数的函数过定点的问题.2.函数的图象与函数的图象所有交点的横坐标之和等于()A.4B.6C.8D.10【答案】C【解析】由数形结合可知,两函数图像在直线两侧各有4个交点,其两两关于对称。

不妨令。

则所有交点横坐标之和为。

故C正确。

【考点】1函数图像;2余弦函数的周期;3数形结合思想。

3.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算4.(1)计算.(2)若,求的值.【答案】(1);(2).【解析】(1)利用对数恒等式、换底公式、对数的运算性质进行计算;(2)首先对已知等式进行平方求得的值,再对其平方可求得的值,最后代入所求式即可求得结果.试题解析:(1)原式=.(2)∵,∴,∴,∴,∴,∴原式.【考点】1、对数的运算性质;2、对数的换底公式;3、指数的运算性质.5.已知函数,则=.【答案】【解析】根据题题意:,,故.【考点】1.分段函数;2.指数、对数运算.6.三个数,,的大小顺序是 ( )A.B.C.D.【答案】C【解析】因为,,,所以,故选C.【考点】1.指数函数的单调性;2.对数函数的单调性.7.计算的值为_________.【答案】2【解析】原式【考点】根式、指数、对数的运算8.三个数大小的顺序是()A.B.C.D.【答案】A【解析】由题意得,.,,,,故选A【考点】考察指数函数,和对数函数,分别与1和0的之对比.9.若实数,满足,则关于的函数的图象形状大致是()【答案】B【解析】由等式,可得,根据指数函数的图像可知(或者根据函数的奇偶性、单调性、特殊值来判断),正确答案为B.【考点】1.对数式与指数式的互化;2.指数函数图像、奇偶性、单调性.10.若a<0,>1,则( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<0【答案】D【解析】是上的增函数,由,所以是上的减函数, 由,所以故选D【考点】指数函数,对数函数的单调性.11.三个数的大小关系为()A.B.C.D.【答案】D【解析】判断几个数的大小多用构造函数单调性来解题.因为是上的减函数,所以因为是上的减函数,所以因为是上的增函数,所以故选D【考点】用指数函数与对数函数单调性比较大小,转化思想应用.12.若,则函数的图象一定过点_______________.【答案】【解析】由函数过定点,令,即时,恒等于-3,故函数图像过定点;故答案为:.【考点】指数函数的图像和性质.13.设,,,则的大小关系是()A.B.C.D.【答案】D【解析】由对数函数的性质知:,所以答案选.【考点】1.指数大小比较;2.对数函数的性质.14.计算:(1);(2)【答案】(1)6;(2).【解析】(1)直接采用换底公式计算即可;(2)利用指数幂的运算性质逐个运算即可.试题解析:(1)原式=(2)原式=【考点】1.换底公式的应用;2.指数幂的化简求值.15.函数的图象一定过点()A.B.C.D.【答案】B【解析】根据题意,由于函数,令x-1=0,x=1,可知函数值为2,故可知函数一定过点,选B.【考点】指数函数点评:本试题主要是考查了指数函数恒过(0,1)点的运用,属于基础题。

高一数学必修 指数函数试题及答案

高一数学必修 指数函数试题及答案

高一数学必修1指数函数试题及答案1.已知集合M={-1,1},N=x12<2x+1<4,x∈Z,则M∩N等于( ) A.{-1,1} B.{-1}C.{0} D.{-1,0}【解析】因为N={x|2-1<2x+1<22,x∈Z},又函数y=2x在R上为增函数,∴N={x|-1<x+1<2,x∈Z}={x|-2<x<1,x∈Z}={-1,0}.∴M∩N={-1,1}∩{-1,0}={-1}.故选B.【答案】 B2.设14<14b<14a<1,那么( )A.aa<ab<ba B.aa<ba<abC.ab<aa<ba D.ab<ba<aa【解析】由已知及函数y=14x是R上的减函数,得0<a<b<1.由y=ax(0<a<1)的单调性及a<b,得ab<aa.由0<a<b<1知0<ab<1.∵aba<ab0=1.∴aa<ba.故选C.也可采用特殊值法,如取a=13,b=12.【答案】 C3.已知函数f(x)=a-12x+1,若f(x)为奇函数,则a=________. 【解析】解法1:∵f(x)的定义域为R,又∵f(x)为奇函数,∴f(0)=0,即a-120+1=0.∴a=12.解法2:∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=12x+1-a,解得a=12.【答案】124.函数y=2-x2+ax-1在区间(-∞,3)内递增,求a的取值范围.【解析】对u=-x2+ax-1=-x-a22+a24-1,增区间为-∞,a2,∴y的增区间为-∞,a2,由题意知3≤a2,∴a≥6.∴a的取值范围是a≥6.一、选择题(每小题5分,共20分)1.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A.y3>y1>y2 B.y2>y1>y3C.y1>y2>y3 D.y1>y3>y2【解析】y1=40.9=21.8,y2=80.48=21.44,y3=(12)-1.5=21.5,∵y=2x在定义域内为增函数,且1.8>1.5>1.44,∴y1>y3>y2.【答案】 D2.若142a+1<143-2a,则实数a的取值范围是( )A.12,+∞B.1,+∞C.(-∞,1) D.-∞,12【解析】函数y=14x在R上为减函数,∴2a+1>3-2a,∴a>12.故选A.【答案】 A3.设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则有( )A.f(13)<f(32)<f(23)B.f(23)<f(32)<f(13)C.f(23)<f(13)<f(32)D.f(32)<f(23)<f(13)【解析】因为f(x)的图象关于直线x=1对称,所以f(13)=f(53),f(23)=f(43),因为函数f(x)=3x-1在[1,+∞)上是增函数,所以f(53)>f(32)>f(43),即f(23)<f(32)<f(13).故选B.【答案】 B4.如果函数f(x)=(1-2a)x在实数集R上是减函数,那么实数a的取值范围是( ) A.(0,12) B.(12,+∞)C.(-∞,12) D.(-12,12)【解析】根据指数函数的概念及性质求解.由已知得,实数a应满足1-2a>01-2a<1,解得a<12a>0,即a∈(0,12).故选A.【答案】 A二、填空题(每小题5分,共10分)5.设a>0,f(x)=exa+aex(e>1),是R上的偶函数,则a=________.【解析】依题意,对一切x∈R,都有f(x)=f(-x),∴exa+aex=1aex+aex,∴(a-1a)(ex-1ex)=0.∴a-1a=0,即a2=1.又a>0,∴a=1.【答案】 16.下列空格中填“>、<或=”.(1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.【解析】(1)考察指数函数y=1.5x.因为1.5>1,所以y=1.5x在R上是单调增函数.又因为2.5<3.2,所以1.52.5<1.53.2.(2)考察指数函数y=0.5x.因为0<0.5<1,所以y=0.5x在R上是单调减函数.又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.【答案】<,<三、解答题(每小题10分,共20分)7.根据下列条件确定实数x的取值范围:a<1a1-2x(a>0且a≠1).【解析】原不等式可以化为a2x-1>a12,因为函数y=ax(a>0且a≠1)当底数a大于1时在R上是增函数;当底数a大于0小于1时在R上是减函数,所以当a>1时,由2x-1>12,解得x>34;当0<a<1时,由2x-1<12,解得x<34.综上可知:当a>1时,x>34;当0<a<1时,x<34.8.已知a>0且a≠1,讨论f(x)=a-x2+3x+2的单调性.【解析】设u=-x2+3x+2=-x-322+174,则当x≥32时,u是减函数,当x≤32时,u是增函数.又当a>1时,y=au是增函数,当0<a<1时,y=au是减函数,所以当a>1时,原函数f(x)=a-x2+3x+2在32,+∞上是减函数,在-∞,32上是增函数.当0<a<1时,原函数f(x)=a-x2+3x+2在32,+∞上是增函数,在-∞,32上是减函数.9.(10分)已知函数f(x)=3x+3-x.(1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.【解析】(1)f(-x)=3-x+3-(-x)=3-x+3x=f(x)且x∈R,∴函数f(x)=3x+3-x是偶函数.(2)由(1)知,函数的单调区间为(-∞,0]及[0,+∞),且[0,+∞)是单调增区间.现证明如下:设0≤x1<x2,则f(x1)-f(x2)=3x1+3-x1-3x2-2-x2=3x1-3x2+13x1-13x2=3x1-3x2+3x2-3x13x13x2=(3x2-3x1)?1-3x1+x23x1+x2.∵0≤x1<x2,∴3x2>3x1,3x1+x2>1,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数在[0,+∞)上单调递增,即函数的单调增区间为[0,+∞).。

高一数学上学期指数函数(习题)(原卷版)

高一数学上学期指数函数(习题)(原卷版)

专题12 指数函数1.若函数f (x )=(2a -5)·a x 是指数函数,则f (x )在定义域内( ) A .为增函数 B .为减函数 C .先增后减 D .先减后增2.设函数f (x )=x 2-a与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,则M =(a -1)0.2与N =⎝⎛⎭⎫1a 0.1的大小关系是( ) A .M =N B .M ≤N C .M <ND .M >N3.(多选)已知函数f (x )=a x -1+1(a >0,a ≠1)的图象恒过点A ,下列函数图象经过点A 的是( ) A .y =1-x +2 B .y =|x -2|+1 C .y =log 2(2x )+1D .y =2x -14.(创新型)设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( ) A .K 的最大值为0 B .K 的最小值为0 C .K 的最大值为1D .K 的最小值为15.已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( ) A .a <0,b <0,c <0 B .a <0,b ≥0,c >0 C .2-a <2c D .2a +2c <21.(2021·四川省广元中学模拟)已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a <2cD .2a +2c <22.(2021·山东菏泽联考)函数y =⎝⎛⎭⎫122x -x 2的值域为( ) A.⎣⎡⎭⎫12,+∞ B.⎝⎛⎦⎤-∞,12C.⎝⎛⎦⎤0,12 D .(0,2]3.(2021·陕西省铜川模拟)已知函数f (x )=⎩⎪⎨⎪⎧(12)x ,x >0-x 2-4x ,x ≤0,则此函数图象上关于原点对称的点有( )A .0对B .1对C .2对D .3对4.(2021·湖南株洲模拟)如图,四边形OABC 是面积为8的平行四边形,AC ∈CO ,AC 与BO 交于点E ,某指数函数y =a x (a >0且a ≠1)的图象经过点E ,B ,则a =( ) A. 2 B. 3 C .2D .35.(2021·安徽省淮南五中模拟)已知函数f (x )=e |x |,将函数f (x )的图象向右平移3个单位后,再向上平移2个单位,得到函数g (x )的图象,函数h (x )=⎩⎪⎨⎪⎧e (x -1)+2,x ≤5,4e 6-x +2,x >5,若对于任意的x ∈[3,λ](λ>3),都有h (x )≥g (x ),则实数λ的最大值为________.6.(2021·福建省厦门模拟)已知函数f (x )=2a ·4x -2x -1. (1)当a =1时,求函数f (x )在x ∈[-3,0]上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围.7.(2021·山东省栖霞模拟)已知a >0,且a ≠1,若函数y =|a x -2|与y =3a 的图象有两个交点,求实数a 的取值范围.8.(2021·浙江金华市·高三其他模拟)已知函数2,0(),0x x f x kx b x ⎧=⎨+<⎩,若对于任意一个正数a ,不等式1|()(0)3f x f ->∣在(,)a a -上都有解,则,k b 的取值范围是( )A .24,,,33k b ⎛⎫⎛⎫∈∈-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭R B .240,,33k b ⎛⎫<∈⎪⎝⎭C .2,,3k b ⎛⎫∈∈+∞⎪⎝⎭R D .40,,3k b ⎛⎫<∈-∞ ⎪⎝⎭9.(2021·安徽芜湖市·高三二模(理))函数()f x 是定义在R 上的偶函数,且当0x ≥时,()()1xf x a a =>.若对任意的[]0,21x t ∈+,均有()[]3()f x t f x +≥,则实数t 的最大值是( )A .49-B .13-C .0D .1610.(2021·辽宁沈阳市·高三三模)已知()()2221,2,2,2,2xx xx a b c ∈===,则,,a b c 的大小关系为( ) A .a b c >> B .b c a >> C .b a c >>D .c a b >>11.(2021·江苏苏州市·高三其他模拟)生物体死亡后,它机体内原有的碳14含量P 会按确定的比率衰减(称为衰减率),P 与死亡年数t 之间的函数关系式为1()2ta P =(其中a 为常数),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若2021年某遗址文物出土时碳14的残余量约占原始含量的79%,则可推断该文物属于( )参考数据:2log 0.790.34≈-. 参考时间轴:A .战国B .汉C .唐D .宋12.(2021·河南高三月考(理))设实数a ,b 满足51118a b a +=,7915a b b +=,则a ,b 的大小关系为( ) A .a b <B .a b =C .a b >D .无法比较13.【多选题】(2021·全国高三专题练习)若函数1()x x f x e e -=-,则下述正确的有( )A . ()f x 在R 上单调递增B .()f x 的值域为(0,)+∞C . ()y f x =的图象关于点1(,0)2对称D . ()y f x =的图象关于直线12x =对称 14.已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( ) A .a <0,b <0,c <0 B .a <0,b ≥0,c >0 C .2-a <2c D .2a +2c <215.(2020·辽宁大连第一次(3月)双基测试)函数y =2x2x +1(x ∈R )的值域为________.16.已知函数f (x )=a x (a >0,a ≠1)在区间[-1,2]上的最大值为8,最小值为m .若函数g (x )=(3-10m )x 是单调递增函数,则a =________.17.(2020·福建养正中学模拟)已知函数f (x )=2x ,g (x )=x 2+2ax (-3≤x ≤3). (1)若g (x )在[-3,3]上是单调函数,求a 的取值范围;(2)当a =-1时,求函数y =f (g (x ))的值域.18.已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.19.【多选题】(2020·山东省青岛第十六中学高三月考)已知函数()()()()11211xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则下列正确的是( ) A .()102f f =⎡⎤⎣⎦ B .()21f f =⎡⎤⎣⎦C .()22log 32f f =⎡⎤⎣⎦D .()f x 的值域为10,2⎛⎤ ⎥⎝⎦。

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析

高一数学指数函数试题答案及解析1.函数的单调递减区间【答案】【解析】因为,根据复合函数的单调性可知该函数的单调递减区间为.【考点】本小题主要考查复合函数的单调区间的求法.点评:考查复合函数的单调性时,要注意“同增异减”,还要注意函数的定义域.2.设a,b,c∈R,且3= 4= 6,则( ).A.=+B.=+C.=+D.=+【答案】B【解析】设3= 4= 6= k,则a = log k,b= log k,c = log k,从而= log 6 = log3+log 4 =+,故=+,所以选(B).3.设指数函数,则下列等式中不正确的是()A.f(x+y)=f(x)·f(y)B.C.D.【答案】D【解析】根据指数幂的运算律知:A,B,C正确;。

故选D4.若函数是定义在R上的奇函数,则函数的图象关于()A.轴对称B.轴对称C.原点对称D.以上均不对【答案】B【解析】因为函数是定义在R上的奇函数,所以则所以是偶函数。

故选B5.三个数,,之间的大小关系为()A.B.C.D.【答案】B【解析】因为,,,所以,故应选.【考点】1、指数与指数函数;2、对数与对数函数;6.定义运算为:,例如:,则的取值范围是__________.【答案】【解析】由题意可得,,∵时,,综上可得,的取值范围是,故答案为.7.已知,则三者的大小关系是A.B.C.D.【答案】A【解析】由函数的图象与性质可知:;由函数的图象与性质可知:;∴故选:A8.若,则等于A.B.C.D.【答案】A【解析】因为,故选A.9.已知函数(,且).(1)若函数在上的最大值为2,求的值;(2)若,求使得成立的的取值范围.【答案】(1)或;(2).【解析】(1)分类讨论和两种情况,结合函数的单调性可得:或;(2)结合函数的解析式,利用指数函数的单调性可得,求解对数不等式可得的取值范围是.试题解析:(1)当时,在上单调递增,因此,,即;当时,在上单调递减,因此,,即.综上,或.(2)不等式即.又,则,即,所以.10.已知,,,则,,的大小关系是()A.B.C.D.【答案】C【解析】因为,,,所以,故选C.11.若3<a<4,化简的结果是()A.7-2a B.2a-7C.1D.-1【答案】C【解析】∵,∴,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
(2)
【例3】比较大小:
高一数学指数函数平移问题
x 1 x 2 x 1 x 2 ⑴y=2 与 y=2 . ⑵y =2 与 y =2 f(x)的图象 向左平移a 个单位得到f(x + a)的图象;向右平移a 个单位得到f(x — a)的图象; 向上平移a 个单位得到f(x) + a 的图象;向下平移a 个单位得到f(x) — a 的图象. 指数函数•经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: 1 (1)y = 3厂 (2)y = ..2x 2 1 (3)y = .3 3x 1 解 (1)定义域为x € R 且x 丰2 .值域y > 0且沪
1 . ⑵由2x+
2 — 1 >0,得定义域{x|x >— 2},值域为y 》0. ⑶由 3— 3x-1 > 0,得定义域是{x|x < 2},: 0<
3 — 3x — 1 v 3,二值域是 0 < y V 3 .
及时演练 求下列函数的定义域与值域 (1) y
(2) y (|)|x|;
【例2】指数函数y = ax , y = b x , y = c x , y = d x 的图像如图2. 6 — 2所示, 则a 、b 、c 、d 、1之间的大小关系是 [ ] A . a v b v 1 v c v d C . b v a v 1 v d v c B . a v b v 1 v d v c D . c v d v 1 v a v b 选(c),在x 轴上任取一点(x , 0),则得 b v a v 1 v d v c . J
y
y=c E
r
匪.6-2
及时演练 指数函数①' ②「J —」 满足不等式1’ 一」;「-,则它们的图象是().
(1) 2、3 2、5 4、8 8、
9
16的大小关系是:
(2)0.6
3
•••0.6 5 > (3) 2
图像如图 2. 6-3,取 x = 3.6,得 4.53・6>3.73.6二 4.54*1 >3.73・6. 说明 如何比较两个幕的大小:若不同底先化为同底的幕,
再利用指数函数的单调性进行比较,如例
2中的(1).若是两个不同底且指数也不同的幕比较大小时,有两个技巧,其一借助 1作桥梁,如例2
中的(2).其二构造一个新的幕作桥梁,这个新的幕具有与 4.54」同底与3.73.6同指数的特点,即为
4.53.6(或 3.74.1),如例 2 中的(3).
1 【例5】 已知函数f(x) = a - 2*+ 1,若f(x)为奇函数,则a=
.
1 1 【解析】 解法
1: T f(x)的定义域为R ,又T f(x)为奇函数,• f(0) = 0,即a - 2+1 = 0.「. a = q 1 1 1 1 解法 2
:T
f(x)为奇函数,.•• f( 一 x) = 一 f(x),即 a — 2-x + 1 = 2%+ 1 一a ,解得 a = ^.【答
案】
2
3 2
【例6】求函数y = (3)x — 5x + 6的单调区间及值域.
4
3
解 令u = x 2 — 5x + 6,贝Uy =(2)u 是关于u 的减函数,而u = x 2 — 5x
5
5
+ 6在x € ( x,—]上是减函数,在x € [ — , 3 )上是增函数..•.函数
y =(3)"一5x + 6的单调增区间是(x, 5],单调减区间是 谆, x ).
(3)4.5 4" _______ 3.73・6 1
解(1) T . 2 2 2 , 3 2
2 > 1,该函数在 2 4 v — v
5 9 4 函数y = 2
1 3 又一 v - v 3 8 9
16 v ..2 •
解(2) T 0.6 5 > 1,
3 (2)
2
3
,5 4 2 ® , 1 8 2 8 ,
9
16
)上是增函数,
解(3)借助数4.53・6打桥,利用指数函数的单调性,
4.54.1 >4.53・6,作函数 y 〔 = 4.5x , y 2= 3.7x 的
及时演练(1)1.72.5 与 1.73
( 2 ) 0.8 0.1 与 0.8 0.2
( 3 ) 1.703 与 0.93.1
(4)3.52.1 和
2.0
2.7
【例4】比较大小n1a n 与n a n 1 (a >0且a ^1, n >1).
1
• aE v 1,
n(n 1)
当a > 1 时,T n > 1,
1 n(n 1)
> 0,
当 0<a V 1,T n >1, ・ n(n 1)
…a > 1,
5 1 i
又■「u = x 2 — 5x + 6 = (x )2 》 ,
2 4 4
3 1
函数y = (—)u ,在u € [ — , *)上是减函数,
4 4 所以函数y =(?)x2— 5x + 6的值域是(0, 也•
4 —
— —
【例7】求函数y = (-)x (2)x + 1(x > 0)的单调区间及它的最大值.
— — — — — —
解 y=£)x ]2 (-)x — [(2)x 2]2 4,令尸(2)x ,v x >o ,
— —
••• 0V U < —,又T U = g )x 是乂€ [0 ,+* )上的减函数,函数 y = (u
)2
— — — — — —
在u € (0,-]上为减函数,在 纭,—)上是增函数•但由0V (-)x < -
— — — —
得X 》—,由—w (—)x w —,得0= x W —,-函数y =(—广 (一)x + —单调增
2 2 3
4 2
区间是[—,+* ),单调减区间[0,—]
a x 2 — _ 2(a x| a x 2)
a x 2 — _ (a x| —)®2 —) (a x
2
+ —) > 0,• f(x —) V f(x 2),故f(x)在R 上为增函数.
当x = 0时, 函数y 有最大值为—•
【例8】已知f(x)= x
a x
a
—(a >—)
(—)判断f(x)的奇偶性; 解(—)定义域是R .
⑵求f(x)的值域;
⑶证明f(x)在区间(— 8,+^ )上是增函数.
a x

f(—x) =
x a x
a

-=—f(x),
••
f(x)为奇函数.
x
(2)
函数尸Oh ,
山 >0 — —V y V —,即 f(x)的值域为(—
—,—).
—y
(—)设任意取两个值x —
x?€ (— m ,+m )且 x —V x 2. f(x —) — f(x 2)
x l

a | =x | —
a 1
T a > —,x — V x 2,a x — V a x 2, (a x —
+ —)。

相关文档
最新文档