高一数学指数函数PPT课件

合集下载

高一数学指数函数ppt课件

高一数学指数函数ppt课件

图像法
运算性质法
利用指数函数的运算性质,如乘法公 式和指数法则,推导出奇偶性的判断 方法。例如,若f(x)和g(x)都是奇函数, 则f(x)*g(x)也是奇函数。
通过观察指数函数的图像,判断其是 否关于原点对称或关于y轴对称,从而 确定函数的奇偶性。
06 典型例题解析与 课堂互动环节
典型例题选讲及思路点拨
指数函数的图像关于y轴对称。
当a>1时,函数在定义域内单调递增,图 像上升;当0<a<1时,函数在定义域内单 调递减,图像下降。
指数函数图像特点 函数图像过定点(0,1)。
指数函数性质探讨
指数函数的单调性
01
当a>1时,函数在R上单调递增;当0<a<1时,函数在R上单调
递减。
指数函数的周期性
02
指数函数不是周期函数。
应用举例
$3^4 = (frac{3}{2})^4 times 2^4$
对数转换
当底数不同且难以直接 计算时,可通过对数转 换为相同底数进行计算。
应用举例
比较 $7^{10}$ 和 $10^7$ 的大小,可转 换为比较 $10 times
log7$ 和 $7 times log10$。
复杂表达式化简技巧
利用指数函数构建可持续增长模型,可以预测未来经济发展的趋势和可能遇到的问 题,帮助学生了解经济增长的复杂性和不确定性。
05 指数函数图像变 换与性质变化规 律
平移、伸缩变换对图像影响
平移变换
指数函数图像沿x轴或y轴平移,不改 变函数的形状和周期性,只改变函数 的位置。
伸缩变换
通过改变函数的参数,实现对指数函 数图像的横向或纵向伸缩,从而改变 函数的周期和振幅。

指数函数的图象与性质课件-高一上学期数学人教A版(2019)必修第一册

指数函数的图象与性质课件-高一上学期数学人教A版(2019)必修第一册

3.探究函数 = 与 =
深理解;
两道题进一步促进形成
4.通过练习检测目标是否
用函数观点解决实际问
达成.
题的意识.
象与性质
1.用描点法或信息技术画函
数 = 的图象,归纳其
性质;
2.用描点法或信息技术化函
数 =

的图象归纳其性


的图象的关系,并用信

息技术验证.
小结
过程设计
性质.
过程设计
2设计意图
例 1 引导学生将每一组中的两个值可以
看作一个指数函数的两个函数值利用单
调性进行比较,引导学生总结规律方法.
通过应用函数的单调性比较大小,进一
步理解指数函数的单调性.例 2 引导学生
将实际问题转化为数学问题,通过建立
指数函数模型,培养学生数学建模能力
,使学生学习“有用的数学”.
2 思维与能力基础
学生在上一章学习了幂函数,知道研究具体函数基本思路及一般过程,即“背景-概念-图象和性质-
应用”,经历过利用图象归纳出函数性质的过程.本节的学习可采用类比的方法,引导学生发现研究的
对象,研究的内容、研究的方法.
3 思维与能力基础
指数函数性质的探索需要学生自行选择具体的函数,学生可能在底数的选取上没有思路,在得到
要求用信息技术画图;
3.增加了例4(利用图象分析和解决问题).
3.正文和习题中均没有图象和相关题目.
学情分析
1 知识基础
学生在前面学习了指数函数的概念,解析式,指数增长与指数衰减,在此基础上,能够根据解析
式采用描点法画出函数图象,能够根据指数增长与指数衰减两种类型,对a的取值进行讨论,研究指

高一数学必修1_指数函数及其性质_ppt

高一数学必修1_指数函数及其性质_ppt
1 0.8 0.6 0.4 0.2
-0.5 -0.2 -0.4
fx = 0.9x
0.5
1
1.5
2
2.5
3
3.5
4
例.函数 y=ax-2+2(a>0 且 a≠1)的图像必经过点( )
A.(0,1)
B.(1,1)
C.(2,2)
D.(2,3)
例、截止到1999年底,我国人口约13亿。如果今后 能将人口年平均增长率控制在1%,那么经过20年后, 我国人口数最多为多少(精确到亿)?
C.0<d<c<1<b<a
D.0<c<d<1<a<b
应用
比较下列各题中两个值的大小:
73; 21 01.87220..55.1,,10.7.833;0.22; 0.800..11, 0.800..22 ; 31.6 43 1.87110...663,,20.39113...661; 4 1.700..33 , 0.933..11; 1.3方 ((012.))7当当法,底底5数数: 相不231同同,,.5指指13数数00不相..22同同,时时1, ,.利利3用用00指指..77数数,函函数数的图23单像调的性变1133来化判规断律.来判断.
x … -3 -2 -1.5 -1 -0.5
y (1 )x … 8 4 2.8 2 1.4 2
0 0.5 1 1.5 2
3…
1 0.71 0.5 0.35 0.25 0.13 …
88 77 66 55 44 33 22 1
--66
--44
--22
22
44
66
8
7
6
y

高一数学必修1:2.1.2《指数函数及其性质的应用》课件

高一数学必修1:2.1.2《指数函数及其性质的应用》课件

例3 求下列函数的定义域:
1
(1) y 5 x1 ;(2) y 2 x4 .
问题提出 1.什么是指数函数?其定义域是什么?大致 图象如何?
2.任何一类函数都有一些基本性质,那么指 数函数具有那些基本性质呢?
知识探究(一):函数 y ax (a 1) 的性质
考察函数
y ax (的a图象:1)

2
想 共同点?
指数函数定义:
函数 y=ax (a>0,a≠1)叫做指数函数,
其中x是自变量,函数的定义域为R
探究1:为什么要规定a>0,且a 1呢?
①若a=0,则当x≤0时, ax无意义
②若a<0,对于x的某些数值,可能使 ax无意义11来自如:a 2、a 4等等
③若a=1,则对于任何x R,
a x =1,是一个常量,没有研究的必要性.
思考3:上述函数在其结构上有何共同特点?
思考4:我们把形如 y ax的函数叫做指数函
数,其中x是自变量.为了便于研究,底数a的 取值范围应如何规定为宜?
a 0, a 1
思考5:指数函数y=ax(a>0,a≠1)的定义 域是什么?
知识探究(二):指数函数的图象 思考1:研究函数的基本特性,一般先研究其
探究2:函数 y 2 3x是指数函数吗?
不是!指数函数中要求 a x的系数必须是1
思考:下列函数是指数函数吗,为什么?
y 2x2 y 4x2 y x y 2x
指数函数的图象和性质:
在同一坐标系中分别作出如下函数的图像:
y 2x
列表如下:
y
1
x
2
x -3 -2 -1
2 x 0.13 0.25 0.5

高一上学期数学人教B版学必修一第三章3.1.2指数函数课件(共17张PPT)

高一上学期数学人教B版学必修一第三章3.1.2指数函数课件(共17张PPT)
例题学习,初步应用模型
例1.比较下列各题中两个值的大小 :
① 1.72.5 ,1.73 ;

0.80.1,0.80.2 ;
③已知
(4)a (4)b 77
较a与b的大小
分析:运用对指数函数的图象及性质进行解答:直 接用性质,数形结合方法。
小结反思 本节课学习了哪些知识?
定义:y=ax (a>0,且a≠1)
y=ax 这类函数又叫什么函数呢?
指数函数!
用数学语言下定义 如何科学定义指数函数?
y a一x 般地,形如
(a0,且a 1)的函数叫做指数
函数,其中x是自变量 。
在本定义中要注意要点有?
⑴自变量:x在指数位置 ⑵定义域:R ⑶a的范围:0<a<1,a>1
⑷对应法则:y ax
用数学语言下定义
Байду номын сангаас
为什么有限制条件:a0,且a 1?
y与x有怎样的函数关系?
(1)如果 时我可以由一个复制成二个,
0<a<1,在R上是 函数 (2)如果 ,
, 比如
,这时对于
如如何何科 科学学定定义义指指数数函函等数数??,在实数范围内函数值不存在;
比较下列各题中两个值的大小 :
问题2: 庄子曰:一尺之棰,日取其半 ,万世不竭。
比较下列各题中两个值的大小 :
y 1 x 3
y
y 3x y 2x
y ax
(0 a 1)
1 1
0
x
0
1
1
0x
x
数形结合,深入理解 •思考:这两组图象有何共同特征?
1.定义域: R
2.值域: (0,+∞) 3.过定点(0,1) 即x=0 时,y=1 4.a>1,R上是增 函数 0<a<1,在R上是减 函数

高一数学必修教学课件第三章指数函数的图像和性质

高一数学必修教学课件第三章指数函数的图像和性质
伸缩变换
对于形如$y = a^{bx}$的指数函数,可以通过伸缩基本指数函数的图像得到。具体地,当$b > 1$时,图像在纵 坐标方向上进行压缩,同时在横坐标方向上进行拉伸;当$0 < b < 1$时,图像在纵坐标方向上进行拉伸,同时 在横坐标方向上进行压缩。
图像特点总结与对比分析
指数函数图像特点
THANKS
感谢观看
阅读材料
推荐了一些与指数函数相 关的阅读材料,供学生课 后阅读,以拓宽视野。
下节课预习内容提示
下节课内容
简要介绍了下节课将要学 习的内容,包括指数函数 的运算性质和应用等。
预习要求
要求学生提前预习下节课 的内容,了解指数函数的 运算性质和应用场景,为 下节课的学习做好准备。
问题思考
提出了一些与下节课内容 相关的问题,引导学生进 行思考和预习。
解析
考察指数函数$y = 1.7^{x}$的单调性,由于底数大于1,函数在全体实数范围 内单调递增。因此,$1.7^{3} > 1.7^{2.5} > 1.7^{-1.5}$。
例题2
已知函数$f(x) = a^{x}(a > 0$且$a neq 1)$在区间$[-1,2]$上的最大值为4,最 小值为$m$,且函数$g(x) = (1 - 4m)sqrt{x}$在区间$[0, + infty)$上是单调函 数,求$a$和$m$的值。
明确任务要求
教师需要向学生明确任 务的要求,包括任务的 目标、完成时间、提交 方式等。
学生自主查阅资料及整理成果展示
1 2 3
学生自主查阅资料
学生可以利用图书馆、互联网等资源,自主查阅 与指数函数相关的资料,包括教材、参考书、学 术论文等。

4.2 指数函数课件ppt

4.2 指数函数课件ppt
(3)过定点(0,1),即x=0时,y=1
0<a<1
(4)当x<0时,y>1;
(4)当x<0时,0<y<1;当 x>0时, y>1
当x>0时,0<y<1

(5) 在R上是减函数
质 (5)在R上是增函数
当x值趋近于正无穷大时,函数值趋近 当x值趋近于正无穷大时,函数值
于正无穷大;
趋近于0;
当x值趋近于负无穷大时,函数值趋近 当x值趋近于负无穷大时,函数值
(2)1.5 ,
8
27
4
;
(3)2.3-0.28,0.67-3.1;
(4)(a-1)1.3,(a-1)2.4(a>1,且a≠2).
解 (1)(单调性法)由于2.53与2.55.7的底数是2.5,故构造函数y=2.5x,而函数
y=2.5x在R上是增函数.
又3<5.7,∴2.53<2.55.7.
-7
(2)(化同底)1.5 =
x
4
-2
4
∴a=2.
∴f(4)f(2)=24×22=64.
(2)解 由 y=(a2-3a+3)ax 是指数函数,可得
解得
= 1,或 = 2,
故 a=2.
> 0,且 ≠ 1,
2 -3 + 3 = 1,
> 0,且 ≠ 1,
反思感悟 指数函数是一个形式定义,其特征如下:
变式训练1下列以x为自变量的函数中,是指数函数的为(
8
27
4
=
4
3
2
3
3 -7
2
=
2
2

高一数学:指数函数及其性质

高一数学:指数函数及其性质
高一数学:指数函数及其性质
目录
• 引言 • 指数函数的基本性质 • 指数函数的运算性质 • 指数函数的应用举例 • 指数函数的深入探究 • 复习与总结
01
引言
Chapter
指数函数的概念
指数函数是一种特殊的函数形式,形如$y=a^x$( $a>0$,$a≠1$)的函数叫做指数函数。
指数函数中的自变量$x$位于指数位置,而底数$a$是一 个大于0且不等于1的常数。
指数函数与对数函数的关系
01
互为反函数
指数函数和对数函数是一对互为反函数的函数,它们的图像关于直线
y=x对称。这意味着对于任意的x和y,如果y是指数函数的结果,那么x
就是对数函数的结果;反之亦然。
02
转换关系
通过指数函数和对数函数之间的转换关系,可以将一些复杂的问题简化
。例如,在解决与复利、放射性衰变等相关的问题时,可以利用对数性
02
掌握运算法则
熟练掌握指数运算法 则,并能够灵活运用 。
03
多做练习题
通过多做练习题来加 深对知识点的理解和 记忆,提高解题能力 。
04
及时复习总结
学习完一个知识点后 要及时复习总结,形 成自己的知识体系。
THANKS
感谢观看
,即(am)n=am×n。
幂的开方
对于指数函数的开方运算,一般需 先计算出指数函数的值再进行开方 运算,但也可通过换元法或其他技 巧进行简化计算。
复合幂运算
对于复杂的幂运算,如幂的乘方再 开方等,需根据运算优先级和结合 律进行计算,也可通过换元法或其 他技巧进行简化计算。
04
指数函数的应用举例
Chapter
指数函数的除法运算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Thank you for watching and listening. I hope you can make great progress
探究
(1)如果人口年平均增长率提高1个百分点, 利用 计算器分别计算20年,33年后我国的人口数。 (2)如果年平均增长率保持在2%,利用计算 器计算2020~2100年,每隔5年相应的人口数。 (3)你看到我国人口数的增长呈现什么趋势?
(4)你是如何看待我国的计划生育政策的?
为更好满足学习和使用需求,课件在下载 后自由编辑,请根据实际情况进行调整
1)
0的正分数指数幂为0 、 0的负分数指数幂没有意义
探究
课本P56问题2中的函数 P=( ) (t 0)与问题1中的函数y=1.073x
有什么共同特征?
一般地,函数y=ax (a>0且a 1)叫做 指数函数,其中x是自变量,函数的定义域 是R.
画函数y=2x的图象
xy
-2 1/4
-1.5 0.35
象画出 y=( 1 )x的图
0
象?2
y=2x
·
x
指数函数的图象和性质
0<a<1
y=ax y 图 (0<a<1) (0,1)

y=1
y=1
0
x

义 域
R
值 域
(0,+ )
a>1
y y=ax
(a>1)
(0,1)
0
x
性 (1)过定点(0,1),即x=0时,y=1 质 (2)在R上是减函数 在R上是增函数
回顾:
1、根式:一般地,如果xn=a,那么x叫做
a的次方根,其中n>1,且n N*
(1)当n为奇数时,记作
(2)当为偶数时,记作
负数没有偶次方根;
2.正数的正分数指数幂:
m
a n n am (a 0, m, n N*,且n 1)Leabharlann 正数的负分数指数幂:m
an
1
m
an
n
1 am
(a 0, m, n N*,且n
(1)1.72. 5 , 1.73
(2)0.8-0.1 , 0.8-0.2
(3)1.70. 3 ,0.93.1
例8 截止到1999年底,我国人口约13亿。 如果今后能将人口年平均增长率控制在 1%,那么经过20年后,我国人口数最多 为多少(精确到亿)?
练:根据国务院发表研究中心2000年 发表的《未来20年我国发展前景分析》 判断,未来20年,我国GDP年平均增 长率可望达到7.3%。那么,在2001年 至2020年,各年的GDP可望为2000年 的多少倍?
-1 1/2
-0.5 0.71
01
0.5 1.41
12
1.5 2.83
2
4
y
y=2x
0
x
画函数y=( 1 )x的图象
2
xy -2
y=( 1 )x
2
y
-1.5
-1 2
-0.5
0
0.5
1
0
x
1.5
2
思考:
函数y=2x的
y
图象与函数
y=( 1 )x
2
1
y=( 2 )x的图
·
象有什么关
系?可否利
用y=2x的图
探究
选取底数a(a>0,且a 1)的若 干个 不同的值,在同一平面直角 坐标系内作出相应的指数函数的 图象。观察图象,你能发现它们 有哪些共同特征?
例题:
例6 已知指数函数y=ax (a>0且a 1)的图 象经过点(3,),求f(0)、f(1)、f(-3)的 值 例7 比较下列各题中两个值的大小 :
相关文档
最新文档