2023中考九年级数学分类讲解 - 第八讲 三角形、全等三角形、等腰三角形(含答案)(全国通用版)
2023中考一轮复习:等腰三角形

考点12等腰三角形【命题趋势】等腰三角形的性质及判定是初中数学最为重要的知识点之一,也是重要几何模型的“发源地”,最为经典的“手拉手”模型就是以等腰三角形为特征总结的。
在浙江中考中,等腰三角形可以以选择题、填空题出现,来考察其性质;也可以以解答题出题,来考察其性质和判定的综合(此时多为压轴题)。
所占分值也是比较多,属于是中考必考的中等偏上难度的考点。
【中考考查重点】一、等腰三角形的性质和判定二、角平分线的性质与判定三、线段垂直平分线的性质与判定考向一:等腰三角形的性质和判定一.等腰三角形的性质和判定二.等边三角形的性质和判定定义三边长都相等的三角形是等边三角形性质轴对称性:等边三角形是轴对称图形,有3条对称轴等边三角形三个角都相等,分别都等于60°三线合一(等边三角形三边上均存在三线合一)。
判定定义法有两个角相等的等腰三角形是等边三角形有两个角等于60°的三角形是等边三角形【方法提炼】【同步练习】1.在△ABC中,AB=AC,D是BC中点,∠BAD=35°,则∠B的度数为()A.35°B.45°C.55°D.60°2.等腰三角形的一边等于5,一边等于11,则此三角形的周长为()A.10B.21C.27D.21或273.在直角坐标系中,已知点A(﹣1,1),在y轴负半轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的坐标为()A.(﹣1,0)B.(﹣,0)C.(0,1)D.(0,﹣)4.已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定5.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN =9,则线段MN的长()A.大于9B.等于9C.小于9D.不能确定6.如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=m,则△MGQ周长是()A.8+2m B.8+m C.6+2m D.6+m7.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN =BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个8.一个等腰三角形一腰上的高与另一腰夹角为50°,则顶角的度数为.9.如图,在正方形网格中,网格线的交点称为格点;已知A,B是两格点,若C点也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.10.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交直角两边于A,B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则△AOC的形状为.11.“中国海监50”在南海海域B处巡逻,观测到灯塔A在其北偏东80°的方向上,现该船以每小时10海里的速度沿南偏东40°的方向航行2小时后到达C处,此时测得灯塔A在其北偏东20°的方向上,求货轮到达C处时与灯塔A的距离AC.12.已知:如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=36°,求∠DBC的度数;(3)若AE=8,△CBD的周长为24,求△ABC的周长.13.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.☆其中:1.平行线的引入方法常见的有:①直接给出的平行;②平行四边形及特殊平行四边形;③梯形的上下底边;④辅助线作出的平行;⑤其他条件证明得到的平行;2.当等腰△是结论时,常接着用等腰△的性质;1.“知2得1”在圆中应用时,常用“角平分线+等腰→∥”,进而得某角=Rt∠,证直线与圆相切。
2023年中考数学专题复习——三角形、全等三角形、等腰三角形自我评估

2023年中考数学专题复习——三角形(一)自我评估(时间:分钟满分:100分)(班级:姓名:得分:)一、选择题(每小题3分,共30分)1. 以下列各组长度的线段为边,能构成三角形的是()A. 6 cm,8 cm,15 cmB. 7 cm,5 cm,12 cmC. 4 cm,6 cm,5 cmD. 8 cm,4 cm,3 cm2. 如图,AB∥DF,AC⊥CE于点C,BC与DF交于点E.若∠A=20°,则∠CEF等于()A. 110°B. 100°C. 80°D. 70°第2题图第3题图第4题图第5题图3. 将一副三角尺按如图方式重叠,则∠1的度数为()A. 45°B. 60°C. 75°D. 105°4. 如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A. AB=BCB. EC=BFC. ∠A=∠DD. AB=CD5. 如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D,AE∥BD,交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 60°D. 70°6. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD,交AB于点E,则下列结论一定成立的是()A. BC=ECB. BC=BEC. EC=BED. AE=EC第6题图第7题图第8题图第9题图7. 如图,在△ABC中,AB=AC,D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A. 30°B. 36°C. 40°D. 45°8. 如图,在边长为12的等边三角形ABC中,D为边BC上一点,且BD=12CD,过点D作DE⊥AB于点E,F为边AC上一点,连接EF,DF,M,N分别为EF,DF的中点,连接MN,则MN的长为()A. 3B. 2C. 23D. 49. 如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上10. 如图,等边三角形A1C1C2的周长为1,作C1D1⊥A1C2于点D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边三角形A2C2C3;作C2D2⊥A2C3于点D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边三角形A3C3C4……且点A1,A2,A3,…,A n都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△A n C n C n+1(n≥2,且n为整数)的周长和为()A.11212nn---B.212nn-C.1212nn--D.1212nn+-第10题图二、填空题(每小题4分,共24分)11. 如图,∠1=∠2,BC=EC,请补充一个条件:能使用“AAS”方法判定△ABC≌△DEC.第11题图第12题图第13题图第14题图12. 如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是.13. 如图所示是由6个边长相等的正方形组合成的图形,∠1+∠2+∠3= °.14. 如图,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE.若∠EDM=84°,则∠A= °.15. 在探索数学名题“尺规三等分角”的过程中,有下列问题:如图,BD是ABCD的对角线,点E在BD 上,DC=DE=AE,∠1=25°,则∠C的大小是.第15题图第16题图16. 如图,在△ABC中,AD平分∠BAC,且AD=AC,E是AD延长线上一点,且AE=AB,过点E作EF ⊥AB于点F,则以下结论:①BD=EC;②∠ACE+∠BED=180°;③EC∥AB,④2AF=AC+AB;⑤△BEC 为等腰三角形.其中正确的有.(填序号)三、解答题(共46分)17.(8分)如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.第17题图18.(12分)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.第18题图19. (12分)图中是一副三角尺,含45°角的三角尺Rt△DEF的直角顶点D恰好在含30°角的三角尺Rt△ABC 斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE交AC于点G,GM⊥AB于点M.(1)如图①,当DF经过点C时,作CN⊥AB于点N,求证:AM=DN;(2)如图②,当DF∥AC时,DF交BC于点H,作HN⊥AB于点N,(1)的结论仍然成立,请你说明理由.①②第19题图20.(14分)(1)已知,△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°,如图①所示,求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变,如图②所示,(1)中的结论是否成立,并说明理由.①②第20题图三角形(一)自我评估一、1. C 2. A 3. C 4. D 5. A 6. B 7. B 8. A 9. D 10. C二、11. ∠A=∠D 12. 1 13. 135 14. 21 15. 105°16. ①②④⑤三、17. 证明:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD. 又AB=AE,∠B=∠E,所以△ABC≌△AED.所以BC=ED.18.(1)解:因为AB=AC,所以∠B=∠C=42°.因为AD⊥BC,所以∠ADB=90°.所以∠BAD=90°-∠B=90°-42°=48°.(2)证明:因为AB=AC,AD⊥BC,所以∠BAD=∠CAD.因为EF∥AC,所以∠F=∠CAD.所以∠BAD=∠F.所以AE=FE.19.(1)证明:因为∠ACB=90°,D是AB的中点,所以CD=AD=BD.因为∠B=90°-∠A=60°,所以△BCD是等边三角形.因为CN⊥DB,所以DN=12 DB.因为∠EDF=90°,△BCD是等边三角形,所以∠ADG=30°.因为∠A=30°,所以GA=GD.因为GM⊥AB,所以AM=12AD.所以AM=DN.(2)解:因为DF∥AC,所以∠FDB=∠A=30°,∠AGD=∠GDH=90°.所以∠ADG=60°.因为∠B=60°,AD=DB,所以△ADG≌△DBH.所以AG=DH.因为GM⊥AB,HN⊥AB,所以∠GMA=∠HND=90°.因为∠A=∠FDB,所以△AMG≌△DNH.所以AM=DN.20.(1)证明:如图①,过点D作DF∥BC,交AC于点F.因为△ABC是等腰三角形,∠A=60°,所以△ABC是等边三角形.所以∠ABC=60°.因为DF∥BC,所以∠ADF=∠ABC=60°,∠FDC=∠DCE.所以△ADF是等边三角形.所以AD=DF,∠AFD=60°.所以∠DFC=180°-60°=120°.因为∠EBD=180°-60°=120°,所以∠DFC=∠EBD.因为∠DCE=∠DEC,所以∠FDC=∠DEC,ED=CD.所以△DBE≌△CFD.所以EB=DF.所以EB=AD.①②第20题图(2)解:EB=AD成立.理由如下:如图②,过点D作DF∥BC,交AC的延长线于点F.同(1)可证△A D F是等边三角形.所以AD=DF,∠A FD=60°.因为∠DBE=∠A BC=60°,所以∠DBE=∠A FD.因为∠FD C=∠DCE,∠DCE=∠DEC,所以∠F DC=∠DEC,ED=CD.所以△DBE≌△CFD.所以EB=DF.所以EB=AD.。
2024年中考数学一轮复习考点课件:等腰三角形与直角三角形

9,12,15 ).
(2) 研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如
果n表示大于1的整数,x=2n,y=n2-1,z=n2+1,那么以x,y,z为三
边的三角形为直角三角形[即(x,y,z)为勾股数],请你加以证明.
解:∵ x2+y2=(2n)2+(n2-1)2=4n2+n4-2n2+1=n4+2n2+1=
B. 15°
C. 20°
D. 25°
考点二
等腰三角形的判定
典例4 如图,下列说法中,正确的是( B )
A. ①是等腰三角形
B. ②是等腰三角形
C. ①和②均是等腰三角形
D. ①和②都不是等腰三角形
典例4图
典例5 (2023·蚌埠模拟)在如图所示的网格中找到格点C,使△ABC为
等腰三角形,则这样的点有( C )
开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形
模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的
高是( B )
第4题
A. 4m
B. 6m
1
2
3
C. 10m
4
5
6
7
8
D. 12m
9
10
11
12
13
14
15
5. 如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使
三边相等,即==(如图1)
三个内角相等,每一个角都等于60°,
性质 即∠=∠=∠ = 60° 如图1
等边三角形
等边三角形是轴对称图形,有⑤
三 条对称轴
三条边相等的三角形是等边三角形(定义)
判定 三个角都相等的三角形是等边三角形
九年级数学中考复习直角三角形和等腰三角形 课件

在△BPP′中,∵PP′=5,BP=12,BP′=13, ∴PP′2+BP2=BP′2. ∴△BPP′为直角三角形,∠BPP′=90°. ∴∠APB=∠APP′+∠BPP′=60°+90°=150°. 故点 P 与点 P′之间的距离为 5,∠APB 的度数为 150°.
4、勾股定理. 1、有一个角为90°的三角形是直角三角形; 判 2、如果一个三角形的两个角互余,那么这个三角形是直角三角形; 定 3、一条边上的中线等于这条边的一半的三角形; 4、勾股定理的逆定理.
面 积
知识点4:等腰直角三角形
1、两直角边相等; 性 2、两锐角相等且都等于45°; 质 3、斜边中线将三角形分为两个全等的等腰直角三角形;
知识点2:等边三角形
1、三边相等,三个角相等,且每个角都等于60°; 性 2、三线合一; 质 3、等边三角形是轴对称图形,有3条对称轴.
1、三条边相等的三角形是等边三角形; 判
2、三个角相等的三角形是等边三角形; 定
3、有一个角是60°的等腰三角形是等边三角形.
面 积
知识点3:直角三角形
1、直角三角形的两个锐角互余; 性 2、斜边上的中线等于斜边的一半; 质 3、30°角所对的直角边等于斜边的一半;
4、是轴对称图形,有1条对称轴. 1、有一个角为90°的等腰三角形是等腰直角三角形; 判 2、有两边相等的直角三角形是等腰直角三角形; 定 3、有一个角是45°的直角三角形是等腰直角三角形; 4、有两个角是45°的三角形是等腰直角三角形.
面 积
拓展知识
勾股定理的拓展应用:若直角三角形的三边分别记为a、b、c,分别
例 3 如图,P 是正三角形 ABC 内的一点,且 PA=5,PB=12,PC=13, 若将△PAC 绕点 A 逆时针旋转后,得到△P′AB,求点 P 与点 P′之间的距 离及∠APB 的度数.
初中数学难点之八:等腰三角形、等边三角形、直角三角形

初中数学难点之八:等腰三角形、等边三角形、直角三角形等腰三角形、等边三角形、直角三角形是初中数学重点考察内容,也是学习的难点。
一、等腰三角形的概念1. 定义有两条边相等的三角形叫做等腰三角形。
两条相等的边叫做腰,所夹的角叫做顶角,另一边叫做底边,底边与腰形成的两个角叫做底角。
2. 性质(1)等腰三角形是轴对称图形,底边中线是对称轴(底边的高、顶角的角的角平分线都是对称轴)(2)等腰三角形两个底角相等,简称等边对等角。
(3)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)两内角相等的三角形叫做等腰三角形(2)两个边相等的三角形叫做等腰三角形二、等边三角形1. 定义三条边都相等的三角形叫做等边三角形。
2. 性质(1)等边三角形有三条对称轴,中线是对称轴(2)等边三角形三个角相等,每个角都为60º(3)等边三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形叫做等边三角形(3)有一个内角是60º的等腰三角形是等边三角形。
三、直角三角形1. 定义有一个角是直角的三角形叫做直角三角形2. 性质(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30º角所对的直角边等于斜边的一半(4)勾股定理:a2+b2=c2(a、b为直角边,c为斜边)3. 判定(1)有一个角是直角的三角形,或者两个锐角和为90º的三角形为直角三角形。
(2)一边的中线等于这条边的一半,这个三角形是直角三角形。
(3)勾股定理逆定理:如果有a2+b2=c2(a、b、c为三角形的三个边),则三角行为直角三角形四、基础题型1. 例题1如图,边长为4的等边ΔABC中,D、E分别为AB、BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为?解:连接DE,因为:EF⊥AC,∠C=60º所以∠FEC=30º,因为:ΔABC为等边三角形,DE为中位线所以有:2. 考察知识点(1)等边三角形及内角为60º(2)三角形中位线(3)直角三角形30度内角所对直角边等于斜边的一半(4)直角三角形勾股定理3. 解题思路和技巧DG是非常孤立的,既不是中位线,也不平行某一边,即不是三角形的某一边,也不是规则四边形的边,很难下手,因此必须画辅助线把DG融入某个三角形内,因为D、E分别是所在边的中点,连接起来是三角形的中位线,因此连接DE,尝试解题。
九年级数学等腰三角形的性质和判定

乔显德
一
第一次发现阁楼上有老鼠是因为供菩萨的猕猴桃儿被咬了一个,且掏去了大概五分之一的洞;第二次是发现供品中的点心袋子被撕裂得极不规则;第三次是我刚晾晒的南瓜子一夜之间,被消耗了近 一半,且留下白白的瓜子壳儿。
至于捉虫,少年之我是热衷的一件事。后来,因工作,因进城,因年龄,渐行渐远,已没了捉虫的喜好,却多了些听捉虫、吃虫的爱好。欣闻着朋友捉虫也是一种乐趣,品咂着朋友捉的虫也是一种 享受。近些年来,老家几个要好的朋友每年都会给我送来几斤品尝,我把它放到油锅里一炸,满屋飘香,再一一品尝,唇齿留香,这是虫的鲜美到了极致。品着美味,我不羁的思维追溯到童少时光的捉 虫里……
足球论坛 老家里有人捉了虫高价卖到城乡里的饭店、酒楼,成了人们追寻着的一道名菜;有人专门在老家设点收购,每斤高达120多元,还常常买不到。前些日子老家发小来访,说今年的虫少了,捉到的少
了,即使高价也买不到了。说了两层意思,说了因捉虫的越来越多,影响虫的繁衍生息,因而越来越少了。还说了虫的价格越来越高了,假若还用原来的价格已买不到了。
2021年九年级数学上学期等腰三角形 直角三角形

2021年九年级数学上学期等腰三角形 直角三角形一、同步辅导:等腰三角形、直角三角形1、等腰三角形是一种特殊的三角形,等边三角形又是特殊的等腰三角形.它们除其有一般三角形的边、内角、外角的性质之外,还有许多特殊性.2、等腰三角形和等边三角形的性质和判定。
性质 判 定等腰三角形1.由定义可得:等腰三角形两个腰相等。
2.定理:等腰三角形的两个底角相等。
(同一三角形中,等边对等角)3.定理推论:等腰三角形的顶角平分线,底边上的中线,底边上的高线互相重合。
4.对称性,等腰三角形是轴对称图形,有一条对称轴。
(底边的中垂线)1.用定义:有两条边相等的三角形是等腰三角形。
2.定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
即同一三角形中,等角对等边。
等边三角形 1.由定义可得:三边相等。
2.定理推论,等边三角形的各角都相等且每个角都等于60°。
3.对称性:等边三角形是轴对称图形,有三条对称轴,即三条边的垂直平分线。
4.具有等腰三角形的所有性质。
1.由定义:三边都相等的三角形是等边三角形。
2.定理推论:三个角都相等的三角形是等边三角形。
3.定理推论:有一个角等于60°的等腰三角形是等边三角形。
直角三角形 1.直角三角形中两个锐角互余。
2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
3.勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即a 2+b 2=c 2 4.直角三角形全等的判定方法除了常用的以外,还有HL. 1.由定义:有一个角为直角的三角形叫做直角三角形。
2.勾股定理逆定理:如果三角形的三边长a,b,c 有下面关系:a 2+b 2=c 2那么这个三角形是直角三角形。
二、例题精讲:说明:等腰三角形具有两条腰相等以及两个底角相等的性质,这些性质不仅可以用于证明,而且也常常用于计算线段或角的大小.例1.等腰三角形顶角的外角与一个底角的外角和等于245°,求它的顶角的度数. 分析: 这是关于等腰三角形角的计算.可考虑应用设未知数列方程的方法计算.解: (一)设这个等腰三角形的顶角为x°,根据"同一三角形中等边对等角",则它的一个底角为,这个顶角的外角为,底角的外角为[180-.由题意可得: (180-x)+[180-(180-x)]=245 ∴180-x+180-90+x=245∴-x=245-270∴x=50答:这个三角形顶角为50°.解: (二)设顶角为x°,底角为y°,顶角外角为(180-x)°,底角外角为(180-y)°. 由三角形内角和定理可得:x+2y=180由题意可得: (180-x)+(180-y)=245, ∴x+y=115,∴ 解方程组得答:这个三角形顶角为50°.例2.等腰三角形中的一个内角为50°,求另外两个角的度数.分析:等腰三角形的顶角可以是锐角,也可以是直角或钝角,等腰三角形的底角必为锐角.因此这个50°的角既可以是顶角又可以是底角,所以要分类进行讨论. 解:若顶角为50°时,由等腰三角形的两个底角相等和三角形内角和定理可得一底角为:=65°.∴三角形另外两个角都为65°, 若底角为50°,则另一底角也为50°,由内角和又可求另一角为180°-(2×50°)=80°。
初三数学最新课件-等腰三角形的性质和判定 精品

1. 证明:两角及其中一角的对边 对应相等的两个三角形全等.
2. 证明:等边三角形的每个角都 等于60°.
3. 证明:线段垂直平分线上的 点到线段两端(点)距离相等.
小结与反思
本节课从基本事实出发又 证明了哪些定理?
拓展练习:
1.如图,AB>AC,AD是角平分线, E是AB上的一点,AE=AC, EF∥BC 交AC于F,
三、本章重点: 合乎逻辑的思考和有条理的表达.
第一章 图形与证明(二)
四、特别关注: 多种证明思路及对结论的拓展和延伸.
知识回顾
证明 用推理的方法证实真命题的
过程叫做证明.
定理 经过证明的真命题称为定理.
知识回顾
证明与图形有关的命题,一般步 骤有哪些? (1)根据命题,画出图形;
(2)根据命题,结合图形,写出 已知、求证;
(3)写出证明过程 .
知识回顾
1.同位角相等,两直线平行. 2.两直线平行,同位角相等. 3.两边和它们夹角对应相等的两个三角形 全等. 4.两角和它们夹边对应相等的两个三角形 全等. 5.三边对应相等的两个三角形全等. 6.等式的性质. 7.不等式的性质.
知识回顾
在八(下)的第十一章中,我们依据上 述的基本事实,证明了哪些定理?你 能一一列出来吗?
第一章 图形与证明(二)
一、本章任务: 从五个“基本事实”出发,证明前四
册曾探索获得的有关三角形、四边形的一 个个结论的正确性,感受公理化方法.
第一章 图形与证明(二)
二、本章要求: 注重直观探索与抽象证明的有机结合,
理解合情推理和演绎推理都是获得数学结 论的重要途径,体会证明的必要性.
第一章 图形与证明(二)
A
E
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八讲 三角形(一)专项一 三角形的概念及重要线段 知识清单 1. 三角形的定义 由不在同一条直线上的三条线段 所围成的图形叫做三角形.2. 三角形的分类3. 三角形的三边关系三角形的任意两边之和 第三边,任意两边之差 第三边.三角形具有 性.4. 三角形中的重要线段考点例析例1 若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是 .(写出一个即可)分析:根据三角形的三边关系“第三边大于两边之差,小于两边之和”,求得第三边长的取值范围.归纳:三角形的三条边必须满足“任意..两边之和大于第三边”,一定不要忽略“任意”二字,在具体应用时,根据“判断两条较短的线段之和是否大于第三条较长线段”确定是否能构成三角形.按边分 三边都不相等的三角形 等腰三角形 等边三角形 底边和腰不相等的等腰三角形 按角分 锐角三角形直角三角形钝角三角形例2(2021·聊城)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D和E,AD与CE交于点O,连接BO并延长,交AC于点F.若AB=5,BC=4,AC=6,则CE∶AD∶BF的值为.分析:根据三角形三条高所在的直线交于一点,可得BF⊥AC,再根据等积法得到CE∶AD∶BF的值.归纳:正确理解三角形的三种重要线段——中线、角平分线和高的概念,并会画出这三种线段.其中,三角形的高不一定是在三角形的内部,钝角三角形的两条高在外部,直角三角形的高与两条直角边重合.跟踪训练1.下列长度的三条线段与长度为5的线段首尾依次相连能组成四边形的是()A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,22.(2021·衢州)如图,在△ABC中,AB=4,AC=5,BC=6,D,E,F分别是AB,BC,CA的中点,连接DE,EF,则四边形ADEF的周长为()A. 6B. 9C. 12D. 15第2题图第4题图3.三个数3,1-a,1-2a在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a的取值范围为.4.如图,在△ABC中,AB=AC=2,P是BC上任意一点,PE⊥AB于点E,PF⊥AC于点F.若S△ABC=1,则PE+PF= .专项二三角形中的角知识清单1. 三角形的内角和等于,三角形的外角和等于.2. 三角形的一个外角等于两个内角的和,三角形的一个外角任何一个与它不相邻的内角.考点例析例1 将一副三角尺按图1所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC=60°,∠EFD=90°,∠DEF=45°,AB∥DE,则∠AFD的度数是()A. 15°B. 30°C. 45°D. 60°图1分析:如图1,利用平行线的性质可求得∠1的度数,再利用三角形外角的性质可求∠AFD的度数.例2 如图2是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应(填“增加”或“减少”)°.图2分析:延长EF,交CD于点G,依据三角形的内角和定理可求∠ACB,根据对顶角相等可得∠DCE,再由三角形外角的性质得到∠DGF的度数,由∠EFD=110°进而可得∠D的度数.归纳:解决有关三角形角度问题时,要注意运用三角形内角和定理、三角形外角的性质定理.求三角形的内角平分线或外角平分线组成的角的度数时,常常运用三角形内角和定理及三角形的内角与外角的关系解决.特别注意在运用三角形外角的性质时,一定要牢记“不相邻”的条件.跟踪训练1.如图,已知直线l1,l2,l3两两相交,且l1⊥l3.若∠α=50°,则∠β的度数为()A. 120°B. 130°C. 140°D. 150°第1题图第2题图第3题图第4题图2.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB.若∠CDE=160°,则∠B的度数为()A. 40°B. 50°C. 60°D. 70°3.(2021·陕西)如图,点D,E分别在线段BC,AC上,连接AD,BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为()A. 60°B. 70°C. 75°D. 85°4.将一副三角尺如图所示放置,点D在边AC上,BC∥EF,则∠ADE的大小为°.5.如图,BE是△ABC的角平分线,在AB上取点D,使BD=DE.(1)求证:DE∥BC;(2)若∠A=65°,∠AED=45°,求∠EBC的度数.第5题图专项三全等三角形知识清单1. 定义:能够__________的两个三角形叫做全等三角形.2. 性质:全等三角形的对应角__________、对应边__________、对应线段(角平分线、高、中线、中位线)_________.3. 判定:(1)两边及其_________分别相等的两个三角形全等(SAS);(2)两角及其_________分别相等的两个三角形全等(ASA);(3)三边分别相等的两个三角形全等(SSS);(4)两角分别相等且_________相等的两个三角形全等(AAS).4. 直角三角形全等的判定:除上述的方法外,还有HL:__________和一条直角边分别相等的两个_________全等.5. 常见的全等模型平移型:旋转型:对称型:考点例析例1 如图1,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)图1分析:条件中给出了AC=AD,∠1=∠2,根据全等三角形的判定方法添加另外一个条件即可.归纳:在寻找三角形全等的条件时,要注意结合图形,挖掘图形中隐含的公共边、公共角、对顶角、平行线的内错角、中点、中线、角平分线等.在书写时,要注意把表示对应顶点的字母写在对应的位置上.例2 (2021·南充)如图2,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD 于点F.求证:AF=BE.图2分析:欲证AF=BE,可证△ACF≌△BAE,已经具备了AB=AC.根据∠BAC=90°,BE⊥AD,CF⊥AD可得∠BEA=∠AFC=90°,再根据同角的余角相等得∠F AC=∠B,由AAS证明三角形全等.证明:归纳:由于全等三角形的对应边相等,对应角相等,可以通过证三角形全等来证明线段相等或者角相等.一般思路是找出两线段或两角所在的两个三角形,然后寻找证这两个三角形全等所需的条件.跟踪训练1.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB 的平分线.这里构造全等三角形的依据是()A. SASB. ASAC. AASD. SSS第1题图第2题图2.如图,在四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.3.如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.第3题图4.如图,D,E分别是AB,AC的中点,BE,CD相交于点O,∠B=∠C,BD=CE.求证:(1)OD=OE;(2)△ABE≌△ACD.第4题图5.如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论.(只要求写出一种正确的选法)(1)你选的条件为、,结论为;(2)证明你的结论.第5题图专项四等腰三角形知识清单1.等腰三角形(1)等腰三角形的性质:等腰三角形的两个相等(简称为:等边对等角);等腰三角形底边上的、底边上的,顶角的互相重合(简称:等腰三角形的);等腰三角形是轴对称图形.(2)等腰三角形的判定:如果一个三角形有两个相等,那么这两个角所对的也相等(简称为:等角对等边).2.等边三角形(1)等边三角形的性质:等边三角形的内角都相等,且都等于°;等边三角形的三条都相等;等边三角形是轴对称图形,它有条对称轴.(2)等边三角形的判定:都相等的三角形是等边三角形;都相等的三角形是等边三角形;有一个角是60°的三角形是等边三角形.考点例析例1如图1,在△ABC中,AB=AC,∠B=70°,以点C为圆心,CA长为半径作弧,交直线BC于点P,连接AP,则∠BAP的度数是.图1分析:根据等腰三角形的性质可以得到△ABC 各内角的度数,然后根据题意,画出图形,分情况讨论求出∠BAP 的度数即可.例2 如图2,在△ABC 中,∠A =40°,∠ABC =80°,BE 平分∠ABC 交AC 于点E ,ED ⊥AB 于点D ,求证:AD =BD .图2分析:先判定△ABE 为等腰三角形,然后根据等腰三角形的“三线合一”证出AD =BD .证明:归纳:等腰三角形的性质及其推论是解决与等腰三角形有关的角度计算、判定两角相等以及两线垂直的主要途径. 跟踪训练1.在△ABC 中,∠BAC =90°,AB ≠AC .用无刻度的直尺和圆规在BC 边上找一点D ,使△ACD 为等腰三角形.下列作法不正确的是( )A B C D 2.已知a ,b 是等腰三角形的两边长,且a ,b 235a b -+(2a +3b -13)2=0,则此等腰三角形的周长为( )A. 8B. 6或8C. 7D. 7或83.如图,在4×4的正方形网格中有两个格点A ,B ,连接AB ,在网格中再找一个格点C ,使得△ABC 是等.腰直角...三角形,满足条件的格点C 的个数是( ) A. 2 B. 3 C. 4 D. 5第3题图4.如图,已知AB=DC,∠A=∠D,AC与DB相交于点O,求证:∠OBC=∠OCB.第4题图5.在①AD=AE,②∠ABE=∠ACD,③FB=FC这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.问题:如图,在△ABC中,∠ABC=∠ACB,点D在AB边上(不与点A,B重合),点E在AC边上(不与点A,C重合),连接BE,CD,BE与CD相交于点F.若,求证:BE=CD.注:如果选择多个条件分别作答,按第一个解答计分.第5题图专项五三角形中的数学思想1. 转化思想将所要研究和解决的问题转化为另一个较容易解决的问题或已经解决的问题,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂”问题转化为“简单”问题.例1如图,在△ABC中,∠ABC的平分线交AC于点D,过点D作DE∥BC,交AB于点E.(1)求证:BE=DE;(2)若∠A=80°,∠C=40°,求∠BDE的度数.分析:(1)欲判定BE=DE,可转化为判定∠EBD=∠BDE;(2)先根据三角形内角和,求∠A BC的度数,再利用角平分线的性质求∠E BD的度数,进而求得∠BDE的度数.解:2. 分类讨论思想在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分析,然后综合得解,这就是分类讨论思想.分类讨论时要注意不重复、不遗漏.等腰三角形是一种特殊而又十分重要的三角形,在求解有关等腰三角形的问题时,当腰和底不明确或顶角和底角不明确时,一定要注意对等腰三角形进行分类讨论.例2 过等腰三角形顶角顶点的一条直线,将该等腰三角形分成的两个三角形均为等腰三角形,则原等腰三角形的底角度数为.分析:首先根据题意画出符合题意的所有图形,然后利用等腰三角形的性质求解即可得答案.跟踪训练1.如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B= °.第1题图第2题图2.如图,在矩形ABCD中,AB=3,AD=4,E,F分别是边BC,CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE= 时,△AEC′是以AE为腰的等腰三角形.3.如图,BD∥AC,BD=BC,且BE=AC.求证:∠D=∠ABC.第3题图参考答案专项一三角形的概念及重要线段例1 2(答案不唯一1<a<7即可)例2 12∶15∶101. D2. B3. -3<a<-24. 1专项二三角形中的角例1 A例2 减少101. C2. D3. B4. 755.(1)证明:因为BE是△ABC的角平分线,所以∠ABE=∠EBC.因为DB=DE,所以∠ABE=∠DEB.所以∠DEB=∠EBC.所以DE∥BC.(2)解:因为∠A=65°,∠AED=45°,所以∠BDE=∠A+∠AED=65°+45°=110°.因为∠ABE=∠DEB,所以∠EBC=∠ABE=12(180°-∠BDE)=12×(180°-110°)=35°. 专项三全等三角形例1 ∠B=∠E或∠C=∠D或AB=AE(写一个即可)例2 因为∠BAC=90°,所以∠BAE+∠F AC=90°.因为BE⊥AD,CF⊥AD,所以∠BEA=∠AFC=90°.所以∠BAE+∠B=90°.所以∠F AC=∠B.又AC=BA,所以△ACF≌△BAE.所以AF=BE.1. D2. AB=AD或∠ACB=∠ACD或∠D=∠B(写一个即可)3. 证明:因为AD=BE,所以AD+BD=BE+BD,即AB=DE.因为AC∥DF,所以∠A=∠EDF.又AC=DF,所以△ABC≌△DEF.所以BC=EF.4. 证明:(1)在△BOD和△COE中,∠BOD=∠COE,∠B=∠C,BD=CE,所以△BOD≌△COE(AAS). 所以OD=OE.(2)因为D,E分别是AB,AC的中点,所以AD=BD=12AB,AE=CE=12AC.因为BD=CE,所以AE=AD,AB=AC.又∠B AE=∠C AD,所以△ABE≌△ACD.5. 解:(1)①③②(或②③①)(2)证明:在△AOC和△BOD中,∠A=∠B,∠AOC=∠BOD,OC=OD,所以△AOC≌△BOD(AAS).所以AC=BD.专项四等腰三角形例1 15°或75°例2 因为BE平分∠ABC,所以∠ABE=12∠ABC=12×80°=40°.因为∠A=40°,所以∠A=∠ABE.所以AE=BE.所以△ABE为等腰三角形.因为ED⊥AB,所以AD=BD.1. A2. D3. B4. 证明:在△AOB和△DOC中,因为∠A=∠D,∠AOB=∠DOC,AB=DC,所以△AOB≌△DOC.所以OB=OC.所以∠OBC=∠OCB.5. 解:选择条件①,证明:因为∠ABC=∠ACB,所以AB=AC.又∠A=∠A,AE=AD,所以△ABE≌△ACD.所以BE=CD.选择条件②,证明:因为∠ABC=∠ACB,所以AB=AC.又∠A=∠A,∠ABE=∠ACD,所以△ABE≌△ACD.所以BE=CD.选择条件③,证明:因为∠ABC=∠ACB,所以AB=AC.因为FB=FC,所以∠FBC=∠FCB.所以∠ABC-∠FBC=∠ACB-∠FCB,即∠ABE=∠ACD.又∠A=∠A,所以△ABE≌△ACD.所以BE=CD.(写出其中一种情况即可)专项五三角形中的数学思想例1 (1)因为BD平分∠ABC,所以∠EBD=∠CBD.因为DE∥BC,所以∠BDE=∠CBD.所以∠EBD=∠BDE.所以BE=DE.(2)因为∠A=80°,∠C=40°,所以∠ABC=180°-∠A-∠C=60°.因为BD平分∠ABC,所以∠EBD=12∠ABC=30°.由(1)知∠BDE=∠EBD=30°.例2 36°或45°1. 542. 78或433. 证明:因为BD∥AC,所以∠DBE=∠C.又BD=C B,BE=CA,所以△BDE≌△CBA.所以∠D=∠ABC.。