七上 期末达标测试卷
人教版(2024)英语七年级上册期末 达标测试卷 人教版(2024)英语七年级上册

人教版(2024)英语七年级上册期末达标测试卷第Ⅰ卷听力部分Ⅰ.听句子,选择与其意思相符的图片。
每个句子读两遍1.2.3.4.5.Ⅱ.听对话,选择正确答案。
每段对话读两遍听第一段对话, 回答第6至7小题。
6.What’s Jane’s sister’s name?A.Jenny.B.Alice.C.Mike.7.Who’s Frank?A.Jane’s father.B.Jane’s brother.C.Jane’s cousin.听第二段对话, 回答第8至10小题。
8.Can Jenny swim?A.She can swim.B.Yes, she can.C.No, she can’t.9.What club can Jenny join?A.The art club.B.The sports club.C.The music club.10.What does Bob like doing?A.He likes swimming.B.He likes singing.C.He likes playing chess.Ⅲ.听短文,选择最佳答案。
短文读两遍11.How old is Betty?A.12.B.13.C.15.12.What class is Betty in?A.Class Six.B.Class Seven.C.Class Eight.13.Who is Miss Li?A.Betty’s mother.B.Betty’s Chinese teacher.C.Betty’s English teacher.14.Where are the bags?A.On the desks.B.On the chairs.C.In the desks.15.What colour is the picture?A.It’s red.B.It’s blue.C.It’s yellow.第Ⅱ卷笔试部分Ⅳ.单项选择16.—Why do you like Dale?—Because he helps me when I need him.A.neverB.seldomC.sometimesually17.It is said that an ancient Chinese Shennong was the first to tea as a drink.A.discoverB.collectC.spendD.choose18.To live a low-carbon(低碳) life, we must remember the lights when we leave the room.A.to turn offB.turning offC.not to turn offD.turns off19.How long does it take you to finish The Old Man and the Sea?A.to readB.readingC.readD.reads20.—Betty, I am not good English. Can you help me English, please?—Sure.A.at; withB.at; atC.with; with C.with; at21.Mary wanted to find a job different the old one. But in fact her new job is similar the old one.A.from; asB.from; toC.in; asD.in; to22.—Can your sister play the piano?—. It’s too difficult for her.A.Yes, she doesB.Yes, she canC.No, she doesn’tD.No, she can’t23.Everyone was when they heard the news.A.exciting; excitingB.excited; excitingC.exciting; excitedD.excited; excited24.— is your brother?—Seven years old.A.How oldB.How muchC.How manyD.How25.— do you usually get up?—At about 7:00 in the morning.A.WhatB.What timeC.How manyD.HowⅤ.完形填空Nancy is my cousin. This is her 26. It is very tidy. On her desk, you can see some 27 books. History is her favourite subject because she thinksit’s 28. She likes sports too. And 29 is her favourite. She has four tennis balls under her bed. 30 class, she often 31 it with her classmates. 32 is on her sofa? It’s her dog. The 33 of the dog is Lily. It’s her good friend. That is Nancy’s blue skirt. It’s on her bed. Her mother 34 it for her birthday. It’s very nice. On her table, you can see a hamburger and an apple. They are Nancy’s 35. Do you like her room?26.A.store B.classroom C.library D.room27.A.history B.English C.maths D.geography28.A.boring eful C.busy D.free29.A.tennis B.ping-pong C.soccer D.volleyball30.A.In B.For C.After D.At31.A.looks B.sees C.buys D.plays32.A.How B.What C.Where D.Who B.number C.colour D.card34.A.buys B.sells C.needs D.looks35.A.fruit B.lunch C.clothes D.favouriteⅥ.阅读理解There are three sisters and one brother. They are Emma, Ruth, Linda, and John. Their grandmother’s birthday is coming.“Next Sunday is Grandma’s birthday. What can we do?” asks Emma, 15 years old.“I want to get a new sweater for her, ” says John.“Oh, you can’t, because you have no money(钱)!” says Linda. “Let us sing a song for her.”“But we can’t sing well, ” says Ruth, “and Grandma is good at singing.”“Yes, but I think it’s a good idea. What do you think about it, Emma?”Linda asks.“Yes, we can sing a song. But that’s not enough(足够的), ” says Emma.“I can make a birthday card, ” says John.“I can tell her a story, ” says Ruth.“I can draw a picture. I like drawing, ” says Linda.“Great! I can play chess with her. Let us make her happy, ” says Emma.36.How many children are there in the story?A.Two.B.Three.C.Four.D.Five.37.When is Grandma’s birthday?A.This Saturday.B.This Sunday.C.Next Saturday.D.Next Sunday.38.Who likes drawing?A.Linda.B.John.C.Emma.D.Ruth.39.Which of the following is TRUE?A.Emma is 14.B.Ruth can make a birthday card.C.Grandma can get a new sweater at her birthday.D.These children want to make Grandma happy.40.The best title for this story is .A.Happy GrandmaB.Grandma’s BirthdayC.A Great DayD.A New SweaterⅦ.选词填空用方框内所给单词的适当形式填空。
初中七年级数学(上册)期末达标试卷及答案

初中七年级数学(上册)期末达标试卷及答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.超市出售的某种品牌的面粉袋上, 标有质量为(25±0.2)kg的字样, 从中任意拿出两袋, 它们的质量最多相差-()A. 0.2 kgB. 0.3 kgC. 0.4 kgD. 50.4 kg2.如图, 过△ABC的顶点A, 作BC边上的高, 以下作法正确的是()A. B.C. D.3.关于x的方程无解, 则m的值为()A. ﹣5B. ﹣8C. ﹣2D. 54.已知点P(2a+4, 3a-6)在第四象限, 那么a的取值范围是()A. -2<a<3B. a<-2C. a>3D. -2<a<25.如图, 四边形ABCD内接于⊙O, 点I是△ABC的内心, ∠AIC=124°, 点E 在AD的延长线上, 则∠CDE的度数为()A. 56°B. 62°C. 68°D. 78°6.观察下列图形, 是中心对称图形的是( )A. B. C. D.7.明月从家里骑车去游乐场, 若速度为每小时10km, 则可早到8分钟, 若速度为每小时8km, 则就会迟到5分钟, 设她家到游乐场的路程为xkm, 根据题意可列出方程为()A. B.C. D.8.(- )2的平方根是x, 64的立方根是y, 则x+y的值为()A. 3B. 7C. 3或7D. 1或79.如图, 在△ABC 中, AB =AC, D 是BC 的中点, AC 的垂直平分线交AC, AD, AB 于点E, O, F, 则图中全等三角形的对数是( )A. 1对B. 2对C. 3对D. 4对10. 已知实数a 、b 、c 满足 .则代数式ab+ac 的值是( ).A. -2B. -1C. 1D. 2二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若a, b 互为相反数, 则a2﹣b2=________.2.将“对顶角相等”改写为“如果...那么...”的形式, 可写为__________.3. 分解因式: x3y ﹣2x2y+xy=________.4. 在不透明的口袋中有若干个完全一样的红色小球, 现放入10个仅颜色与红球不同的白色小球, 均匀混合后, 有放回的随机摸取30次, 有10次摸到白色小球, 据此估计该口袋中原有红色小球个数为________.5.如图, 线段 被点 , 分成 三部分, , 分别是 , 的中点, 若 , 则 ________ .6. 如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法, 其理由是__________.三、解答题(本大题共6小题, 共72分)1. 解下列方程:(1) 13(2)5x x --=- (2) 213136x x ---=-2. 已知关于x 的方程 有整数解, 求满足条件的所有整数k 的值.3. 如图, 已知点A(-2, 3), B(4, 3), C(-1, -3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上, 当三角形ABP的面积为6时, 请直接写出点P的坐标.4. 如图, ∠1=∠ACB, ∠2=∠3, 求证: ∠BDC+∠DGF=180°.5. 某校七年级共有500名学生, 在“世界读书日”前夕, 开展了“阅读助我成长”的读书活动. 为了解该年级学生在此次活动中课外阅读情况, 童威随机抽取m名学生, 调查他们课外阅读书籍的数量, 将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/学生人本数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?6. 小林在某商店购买商品A.B共三次, 只有一次购买时, 商品A.B同时打折, 其余两次均按标价购买, 三次购买商品A.B的数量和费用如下表: 购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140 第二次购物 3 7 1110(1)小林以折扣价购买商品A.B是第次购物;(2)求出商品A.B的标价;(3)若商品A、B的折扣相同, 问商店是打几折出售这两种商品的?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、A3、A4、D5、C6、D7、C8、D9、D10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1、02.如果两个角互为对顶角, 那么这两个角相等3.xy(x﹣1)24、205、146.同位角相等, 两直线平行.三、解答题(本大题共6小题, 共72分)1.(1);(2).2、k=26, 10, 8, -8.3、(1)3;(2)18;(3)(0, 5)或(0, 1).4、略5.(1)m的值是50, a的值是10, b的值是20;(2)1150本.6、(1)三;(2)商品A的标价为90元, 商品B的标价为120元;(3)6折.。
七年级上册期末试卷达标检测(Word版 含解析)

七年级上册期末试卷达标检测(Word 版 含解析)一、选择题1.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=- 2.有理数-53的倒数是( ) A .53 B .53- C .35 D .353.如图,图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE=18°,则图2中∠AEF 的度数为( )A .120°B .108°C .126°D .114° 4.钟面上8:45时,时针与分针形成的角度为( ) A .7.5°B .15°C .30°D .45° 5.在55⨯方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( ) (1)(2)A .先向下移动1格,再向左移动1格;B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格:D .先向下移动2格,再向左移动2格 6.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( )A .116元B .145元C .150元D .160元7.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .8.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是( )A .+B .-C .×D .÷9.图中几何体的主视图是( )A .B .C .D .10.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( )A .赚了B .亏了C .不赚也不亏D .无法确定11.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A .108°B .120°C .136°D .144°12.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+ =100 C .()31001003x x --= D .10031003x x --= 13.小明同学用手中一副三角尺想摆成α∠与β∠互余,下面摆放方式中符合要求的是( ).A .B .C .D .14.把方程213148x x --=-去分母后,正确的结果是( ) A .2x -1=1-(3-x ) B .2(2x -1)=1-(3-x )C .2(2x -1)=8-3+xD .2(2x -1)=8-3-x15.若x 3=是方程3x a 0-=的解,则a 的值是( )A .9B .6C .9-D .6- 二、填空题16.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .17.计算:3-|-5|=____________.18.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.19.已知:如图,直线AB 、CD 相交于点O ,∠COE =90°,∠BOD ∶∠BOC =1∶5,过点O 作OF ⊥AB ,则∠EOF 的度数为__.20.今年冬季某天测得的最高气温是9℃,最低气温是1-℃,则当日温差是________℃21.若232a b -=,则2622020b a -+=_______.22.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.23.已知222x y -+的值是 5,则 22x y -的值为________.24.请写出一个系数是-2,次数是3的单项式:________________.25.216x -的系数是________ 三、解答题 26.先化简,再求值:2211312()()2323x x y x y --+-+ ,其中x=5,y=-3 . 27.小丽早上会选择乘坐公共汽车上学,时间紧张的时候,她也会选择“滴滴打车”的方式上学.两种不同乘车方式的价格如下表所示:已知小丽12月份早晨上学乘车共计22次,乘车费共计100元,求小丽12月份早上上学乘坐公共汽车的次数和“滴滴打车”的次数各是多少?乘车方式公共汽车 “滴滴打车” 价格(元次) 2 1028.如图,直线a 上有M 、N 两点,12cm MN =,点O 是线段MN 上的一点,3OM ON =.(1)填空:OM =______cm ,ON =______cm ;(2)若点C 是线段OM 上一点,且满足MC CO CN =+,求CO 的长;(3)若动点P 、Q 分别从M 、N 两点同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s .设运动时间为s t ,当点P 与点Q 重合时,P 、Q 两点停止运动. ①当t 为何值时,24cm OP OQ -=?②当点P 经过点O 时,动点D 从点O 出发,以4cm /s 的速度也向右运动,当点D 追上点Q 后立即返回,以4cm /s 的速度向点P 运动,遇到点P 后再立即返回,以4cm /s 的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点D 也停止运动.求出在此过程中点D 运动的总路程是多少?29.如图,已知点A 、B 、C 是数轴上三点,O 为原点,点A 表示的数为-12,点B 表示的数为8,点C 为线段AB 的中点.(1)数轴上点C 表示的数是 ;(2)点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P 、Q 相遇时,两点都停止运动,设运动时间为t (t >0)秒.①当t 为何值时,点O 恰好是PQ 的中点;②当t 为何值时,点P 、Q 、C 三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)30.如图,直线AB 、CD 相交于点O ,BOD ∠与∠BOE 互为余角,18BOE ∠=︒.求AOC ∠的度数.31.如图,直线AB 与CD 相交于点O ,OE 是COB ∠的平分线,OE OF ⊥,.(1)图中∠BOE 的补角是(2)若∠COF =2∠COE ,求∠BOE 的度数;(3) 试判断OF 是否平分∠AOC ,并说明理由;请说明理由.32.先化简,再求值:()()22225343a b ab ab a b ---+,其中a=-2,b=12; 33.我们经常运用“方程”的思想方法解决问题. 已知∠1是∠2的余角,∠2是∠3的补角,若∠1+∠3=130°,求∠2的度数.可以进行如下的解题:(请完成以下解题过程)解:设∠2的度数为x ,则∠1= °,∠3= °.根据“ ”可列方程为: .解方程,得x = .故:∠2的度数为 °.四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
七年级上册期末试卷达标检测(Word版 含解析)

七年级上册期末试卷达标检测(Word 版 含解析)一、选择题1.下列计算正确的是( )A .325a b ab +=B .532y y -=C .277a a a +=D .22232x y yx x y -=2.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤3.-5的相反数是( )A .15B .±5C .5D .-154.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( )A .36.1728910⨯亿元B .261.728910⨯亿元C .56.1728910⨯亿元D .46.1728910⨯亿元5.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+=D .x x 5204204+=+- 6.有一列数121000,,,a a a ,其中任意三个相邻数的和是4,其中21009004,1,2a a x a x =-=-=,可得 x 的值为( ) A .0B .1C .2D .3 7.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面,每名一级技工比二级技工一天多粉刷10m 2墙面,设每个房间需要粉刷的墙面面积为xm 2,则下列的方程正确的是( )A .3505(10)40810--+=x x B .3505(10)40810+--=x x C .850104035+-=x x +10 D .850104035-+=x x +10 8.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A .B .C .D .9.多项式343553m n m n -+的项数和次数分别为( )A .2,7B .3,8C .2,8D .3,710.若,,则多项式与的值分别为( ) A .6,26 B .-6,26 C .-6,-26 D .6,-2611.2020的相反数是( )A .2020B .﹣2020C .12020 D .﹣1202012.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养13.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .球体D .棱锥14.对于下列说法,正确的是( )A .过一点有且只有一条直线与已知直线平行B .不相交的两条直线叫做平行线C .相等的角是对顶角D .将一根木条固定在墙上,只需打两个钉子就可以了,这种做法的依据是两点确定一条直线15.下列运用等式的性质,变形正确的是( )A .若x=y ,则x ﹣5=y+5B .若a=b ,则ac=bcC .若a b c c =,则2a=3bD .若x=y ,则x y a a= 二、填空题16.在-4,0,π,1.010010001,-227,1.3•这6个数中,无理数有______个. 17.如图,已知∠AOB=75°,∠COD=35°,∠COD 在∠AOB 的内部绕着点O 旋转(OC 与OA 不重合,OD 与OB 不重合),若OE 为∠AOC 的角平分线.则2∠BOE -∠BOD 的值为______.18.若60A ∠=︒,且A ∠与B 互补,则B ∠=_______________度.19.下图是计算机某计算程序,若开始输入2x =-,则最后输出的结果是____________.20.已知1a b -=,则代数式()226a b -+的值是___________.21.若∠1= 42°36’,则∠1 的余角等于___________°.22.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是-16、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A ’落在点B 的右边,并且A ’B =3,则C 点表示的数是_______.23.用两钉子就能将一根细木条固定在墙上,其数学原理是______.24.已知22m n -=-,则524m n -+的值是_______.25.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________.三、解答题26.将正整数1至2019按照一定规律排成下表:记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4.(1)直接写出a 35= ,a 54= ;(2)①若a ij =2019,那么i = ,j = ,②用i ,j 表示a ij = ; (3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2026.若能, 求出这5个数中的最小数,若不能请说明理由.27.计算:(1)35116()824⨯+- (2) 3242(2)(3)3--÷⨯- 28.解方程:(1)5236x x +=+(2)4320.20.5x x +--= 29.计算: (1)()157-724912⎛⎫+⨯- ⎪⎝⎭(2)1377-1-244812⎛⎫⎛⎫÷+ ⎪ ⎪⎝⎭⎝⎭30.先化简,再求值:()()222227a b ab 4a b 2a b 3ab +---,其中a 、b 的值满足2a 1(2b 1)0-++=31.如图①,在平整的地面上,用若干个完全相同的棱长为10 cm 的小正方体堆成一个几何体.(1)现已给出这个几何体的俯视图(如图②),请你画出这个几何体的主视图与左视图;(2)若现在你手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变. ①在图①所示的几何体中最多可以再添加几个小正方体?②在图①所示的几何体中最多可以拿走几个小正方体?③在②的情况下,把这个几何体放置在墙角,如图③所示是此时这个几何体放置的俯视图,若给这个几何体表面喷上红漆,则需要喷漆的面积最少是多少?32.先化简,再求值:()()2222 4333a b ab ab a b ---+.其中 1a =-、 2b =-.33.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.四、压轴题34.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.35.如图,数轴上A ,B 两点对应的数分别为4-,-1(1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =36.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数;(3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.37.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 .(2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 .(拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).38.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.39.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.40.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.41.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?42.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.43.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE ,(1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示);(3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据合并同类项的法则进行运算依次判断.【详解】解:A.两项不是同类项不能合并,错误;B. 532y y y -=,错误;C. 78a a a +=,错误;D.正确.故选D.【点睛】本题考查了合并同类项,系数相加字母部分不变是解题关键.2.C解析:C【解析】【分析】根据数轴上点的距离判断即可.【详解】由图可得: 0a b +<;0b a ->;a b ->;a b <-;0a b >>;∴②③⑤正确故选C.【点睛】本题考查数轴相关知识,关键在于熟悉数轴的定义与性质.3.C解析:C【解析】解:﹣5的相反数是5.故选C .4.A解析:A【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】6172.89亿=6.17289×103亿.故选A .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.D解析:D【解析】【分析】由题意可得顺水中的速度为(20+4)km/h ,逆水中的速度为(20﹣4)km/h ,根据“从甲码头顺流航行到乙码头,再返回甲码头共用5h ”可得顺水行驶x 千米的时间+逆水行驶x 千米的时间=5h ,根据等量关系代入相应数据列出方程即可.【详解】若设甲、乙两码头的距离为xkm ,由题意得:204204x x +=+-5. 故选D .【点睛】本题考查了由实际问题抽象出一元一次方程,关键是正确理解题意,抓住题目中的关键语句,列出方程.6.D解析:D【解析】【分析】由任意三个相邻数之和都是4,可知a 1、a 4、a 7、…a 3n+1相等,a 2、a 5、a 8、…a 3n+2相等,a 3、a 6、a 9、…a 3n 相等可以得出a 100=a 3×33+1= a 1,a 900=a 3×300= a 3,求出x 问题得以解决.【详解】解:由任意三个相邻数之和都是37可知:a 1+a 2+a 3=4a 2+a 3+a 4=4a 3+a 4+a 5=4…可以推出:a 1=a 4=a 7=…=a 3n+1,a 2=a 5=a 8=…=a 3n+2,a 3=a 6=a 9=…=a 3n ,∴a 3n +a 3n+1+a 3n+2=4∵a 100=a 3×33+1= a 1,a 900=a 3×300= a 3,21009004,1,2a a x a x =-=-=∴a 2+ a 100+ a 900= a 2+ a 1+ a 3=4即-4+x-1+2x=4解得:x=3故选:D.【点睛】本题考查规律型中的数字的变化,解题的关键是找出数的变化规律“a 1=a 4=a 7=…=a 3n+1,a 2=a 5=a 8=…=a 3n+2,a 3=a 6=a 9=…=a 3n (n 为自然数)”.本题属于基础题,难度不大,解题关键是根据数列中数的变化找出变化规律.7.D解析:D【解析】 由题意易得:每名一级技工每天可粉刷的面积为:8503x -m 2,每名二级技工每天可粉刷的面积为:10405x +m 2,根据每名一级技工比二级技工一天多粉刷10m 2,可得方程: 85010401035x x -+=+. 故选D.8.B解析:B【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A 、设最小的数是x .x+x+7+x+7+1=19∴x=43,故本选项错误; B 、设最小的数是x .x+x+6+x+7=19,∴x=2,故本选项正确.C 、设最小的数是x .x+x+1+x+7=19,∴x=113,故本选项错误. D 、设最小的数是x .x+x+1+x+8=19, ∴x=103,故本选项错误. 故选:B. 【点睛】 本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.9.B解析:B【解析】【分析】根据多项式项数和次数的定义即可求解.【详解】多项式343553m n m n -+的项数为3,次数为8,故选B.【点睛】此题主要考查多项式,解题的关键是熟知多项式项数和次数的定义.10.D解析:D【解析】【分析】分别把与转化成(a 2+2ab )+(b 2+2ab)和(a 2+2ab )-(b 2+2ab)的形式,代入-10和16即可得答案. 【详解】∵,, ∴=(a 2+2ab )+(b 2+2ab)=-10+16=6, a 2-b 2=(a 2+2ab )-(b 2+2ab)=-10-16=-26,故选D.【点睛】本题考查整式的加减,熟练掌握运算法则是解题关键. 11.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.12.D解析:D【解析】【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D.【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.13.B解析:B【解析】试题分析:由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选B.考点:由三视图判断几何体.14.D解析:D【解析】【分析】分别利用平行公理、平行线的定义、对顶角的定义以及两点确定一条直线对各选项进行判断.【详解】解:A.过直线外一点有且只有一条直线与已知直线平行,故此选项错误;B.在同一平面内,不相交的两条直线叫做平行线,故此选项错误;C.相等的角不一定是对顶角,故此选项错误;D.用两根钉子固定一根木条,体现数学事实是两点确定一条直线,故本选项正确;故选:D.【点睛】本题考查平行公理、平行线的定义,对顶角的定义以及两点确定一条直线.熟练掌握相关定义是解决此题的关键.15.B解析:B【解析】分析:根据等式的基本性质对各选项进行逐一分析即可.A. 不符合等式的基本性质,故本选项错误;B. 不论c为何值,等式成立,故本选项正确;C. ∵a bc c=,∴a b=,故本选项错误;D. 当0a=时,等式不成立,故本选项错误.故选B.点睛:本题考查了等式的性质,等式的性质是:等式的两边都加上或减去同一个数(或式子),结果仍相等;等式两边乘以同一个数或除以一个不为0的数,结果仍相等.二、填空题16.1【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:解析:1【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:π,是无理数,共1个故答案为:1.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.17.110°【解析】【分析】由角平分线的定义可知∠AOC=2∠AOE,由角的和差可知∠BOE=∠AO B-∠AOE,代入2∠BOE-∠BOD整理即可.【详解】∵OE为∠AOC的角平分线,∴∠A解析:110°【解析】【分析】由角平分线的定义可知∠AOC=2∠AOE,由角的和差可知∠BOE=∠AOB-∠AOE,代入2∠BOE-∠BOD整理即可.【详解】∵OE为∠AOC的角平分线,∴∠AOC=2∠AOE,∵∠BOE=∠AOB-∠AOE,∴2∠BOE-∠BOD=2(∠AOB-∠AOE) -∠BOD=2∠AOB-2∠AOE -∠BOD=2∠AOB-∠AOC -∠BOD=2∠AOB-(∠AOC +∠BOD)=2∠AOB-(∠AOB -∠COD)=∠AOB+∠COD=75°+35°=110°.故答案为:110°.【点睛】本题考查了角平分线的有关计算,以及角的和差,结合图形找出不同角之间的数量关系是解答本题的关键.18.120【解析】【分析】根据补角的定义可知∠A+∠B=180°,据此进行计算即可.【详解】∵∠A与∠B互补,∴∠A+∠B=180°,∴∠B=180°-∠A=180°-60°=120°,解析:120【解析】【分析】根据补角的定义可知∠A+∠B=180°,据此进行计算即可.【详解】∵∠A与∠B互补,∴∠A+∠B=180°,∴∠B=180°-∠A=180°-60°=120°,故答案为120.【点睛】本题考查的是补角的定义,能够知道互补的两个角相加等于180°是解题的关键. 19.【解析】【分析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再解析:17【解析】【分析】把−2按照如图中的程序计算后,若<−5则结束,若不是则把此时的结果再进行计算,直到结果<−5为止.【详解】解:根据题意可知,(−2)×4−(−3)=−8+3=−5,所以再把−5代入计算:(−5)×4−(−3)=−20+3=−17<−5,即−17为最后结果.故本题答案为:−17【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.20.【解析】【分析】将代数式化为2(a−b)−6,然后代入(a−b)的值即可得出答案.【详解】=2(a−b )−6,∵a−b =1,∴原式=2×1−6=−4.故填:-4.【点睛】此题考查解析:4-【解析】【分析】将代数式()226a b -+化为2(a−b )−6,然后代入(a−b )的值即可得出答案.【详解】()226a b -+=2(a−b )−6,∵a−b =1,∴原式=2×1−6=−4.故填:-4.【点睛】此题考查了代数式求值的知识,属于基础题,解答本题的关键是整体代入思想的运用. 21.47°24′.【解析】【分析】根据余角的定义计算90°-42°36′即可.【详解】∠1的余角=90°-42°36′=47°24′.故答案为:47°24′.【点睛】本题考查了余角与补角解析:47°24′.【解析】【分析】根据余角的定义计算90°-42°36′即可.【详解】∠1的余角=90°-42°36′=47°24′.故答案为:47°24′.【点睛】本题考查了余角与补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.【解析】【分析】将数轴向右对折后,则AC=A´B+BC,设点C表示的数为x,根据等量关系列方程解答即可.【详解】设点C表示的数为x,根据题意可得,,解得x=-2.【点睛】本题考查解析:-2【解析】【分析】将数轴向右对折后,则AC=A´B+BC,设点C表示的数为x,根据等量关系列方程解答即可.【详解】设点C表示的数为x,根据题意可得,--=+-,解得x=-2.(16)39x x【点睛】本题考查一元一次方程的应用,解题的关键是根据数轴表示的距离得到AC=A´B+BC. 23.两点确定一条直线.【解析】【详解】解:两枚钉子就能将一根木条固定在墙上,原因是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本题考查两点确定一条直线.解析:两点确定一条直线.【解析】【详解】解:两枚钉子就能将一根木条固定在墙上,原因是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本题考查两点确定一条直线.24.9【解析】【分析】根据整体代入法即可求解.∵∴=5-2()=5+4=9故答案为:9.【点睛】此题主要考查代数式求值,解题的关键是熟知整体法.解析:9【解析】【分析】根据整体代入法即可求解.【详解】∵22m n -=-∴524m n -+=5-2(2m n -)=5+4=9故答案为:9.【点睛】此题主要考查代数式求值,解题的关键是熟知整体法.25.-4 ,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x ﹣1=2x+a 中算出a 即可.【详解】由方程4x+3=7,解得x=1;将x=-1代入5x ﹣1=2x+a,解得a解析:-4 ,【解析】【分析】先解出4x +3=7方程的值,将相反数算出来再代入5x ﹣1=2x +a 中算出a 即可.【详解】由方程4x +3=7,解得x =1;将x =-1代入5x ﹣1=2x +a ,解得a =-4.【点睛】本题考查方程的解及相反数的概念,关键在于掌握相关知识点.三、解答题26.(1)23,40;(2)①225,3;②9(i ﹣1)+j ;或者9 i ﹣9+j ;(3)不能等于2026,见解析.【分析】(1)根据表格直接得出即可.(2)①根据每行由小到大排列8个数,用2019除以8,根据除数与余数即可求值.②根据表格数据排列规律即可.(3)设5个数最小的为x,用含x 的代数式分别表示出其他4个数,根据求和等式列出方程,解出即可.【详解】解:(1)a 35=23,a 54=40;(2) ①∵2019÷9=224…3,∴2019是第225行的第3个数,∴i =225,j =3.故答案为225,3;②根据题意,可得a ij =9(i ﹣1)+j .故答案为9(i ﹣1)+j ;或者9i -9+j(3)设这5个数中的最小数为x ,则其余4个数可表示为x +4,x +10,x +12, x +20, 根据题意,得x +x +4+x +10+x +12+x +20=2026,解得x =396.∵396÷9=44,∴396是第44行的第9个数,而此时x +4=400是第45行的第4个数,与396不在同一行,∴将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和不能等于2026.【点睛】本题为新定义的类型题,读懂题意根据规定计算是解题关键.27.(1)42;(2)56.【解析】【分析】(1)直接利用乘法分配律进行计算,即可得到答案;(2)先计算乘方,然后计算乘除法,最后计算加减法,即可得到答案.【详解】解:(1)35116()824⨯+- =6404+-=42;(2)3242(2)(3)3--÷⨯- =32(8)94--⨯⨯ =254+=56.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数混合运算的运算法则.以及利用乘法分配律进行计算.28.(1)2x =;(2)8x =-;【解析】【分析】(1)方程移项合并,将x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.【详解】解:(1)移项合并得:2x =4,解得:x =2;(2)方程变形得:10401030225x x +--= 变形得:5x +20−2x +6=2,移项合并得:3x =−24,解得:x =−8.【点睛】 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解,熟悉一元一次方程的求解步骤是解题关键.29.(1)-20;(2)−135 【解析】【分析】(1)原式先运用乘法分配律去括号,再计算乘除运算,最后算加减运算即可得到结果; (2)原式先计算括号内的运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)()157-724912⎛⎫+⨯-⎪⎝⎭ =()()()15772-72724912⨯-⨯-+⨯- =-18+40-42=-20;(2)1377-1-244812⎛⎫⎛⎫÷+ ⎪ ⎪⎝⎭⎝⎭ =1422114--24242424⎛⎫⎛⎫÷+ ⎪ ⎪⎝⎭⎝⎭=135-2424⎛⎫÷ ⎪⎝⎭=−135 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.30.12【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:由题意得,a 10-=,2b 10+=,解得,a 1=,1b 2=-, 原式222227a b ab 4a b 2a b 3ab =+--+22a b 4ab =+211141()22⎛⎫=⨯-+⨯⨯- ⎪⎝⎭12=. 故答案为:12. 【点睛】 此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.31.(1)见解析;(2)①2个;②2个;③需要喷漆的面积最少是1900cm 2.【解析】【分析】(1)根据物体形状即可画出左视图有三列与以及主视图三列;(2)①可在最左侧前端放两个,②可在最左侧最后面或最前面拿走两个,③分别从正面、右面、上面、左面求表面积即可.【详解】(1) 如图所示(2)①可在最左侧前端放两个;②可在最左侧最后面或最前面拿走两个两个;③根据每一个面的面积是10×10=100,∴需要喷漆的面积最少是:19×100=1900(cm 2).【点睛】此题主要考查了由实物画三视图,以及利用主视图和俯视图判断几何体的形状,主要培养同学们的空间想象能力,想象不出来可以亲手实验.32.223a b ab -; 2-【解析】【分析】原式去括号合并得到最简结果,将a ,b 值代入计算即可求值.【详解】解:()()2222 4333a b ab ab a b ---+2222 12439a b ab ab a b =-+-22 3a b ab =-,当 1a =-、 2b =-时,原式()()()()()()22 31212=642=-⨯---⨯----=-.【点睛】本题考查了整式的加减化简求值,掌握去括号和合并同类项法则是解答此题的关键. 33.45︒【解析】试题分析:设这个角的度数为x ,则其补角为(180)x -,其余角为(90)x -,再利用题中的已知条件“一个角的补角与它的余角的度数之比是3:1”可得:3(90)180x x -=-,解方程就可求得这个角的度数.试题解析:设这个角的度数为x ,由题意可得:3(90)180x x -=-,解得x 45=,∴这个角的度数为:45°.点睛:在解这类问题时,通常要设“一个角本身、它的补角、它的余角”中某一个为“未知数”,然后利用“互补两个角的和为180°,互余两个角的和为90°”把另外两个表达出来,再利用题中已知的数量关系列出方程就可求解.四、压轴题34.(1)125°;(2)ON 平分∠AOC ,理由详见解析;(3)∠BOM=∠NOC+40°,理由详见解析【解析】【分析】(1)根据∠MOC=∠MON+∠BOC 计算即可;(2)由角平分线定义得到角相等的等量关系,再根据等角的余角相等即可得出结论; (3)根据题干已知条件将一个角的度数转换为两个角的度数之和,列出等式即可得出结论.【详解】解: (1) ∵∠MON=90° , ∠BOC=35°,∴∠MOC=∠MON+∠BOC= 90°+35°=125°.(2)ON 平分∠AOC .理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM 平分∠BOC ,∴∠BOM=∠MOC .∴∠AON=∠NOC .∴ON 平分∠AOC .(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC .∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB =90°-(50°-∠NOC )=∠NOC +40°.【点睛】本题主要考查了角的运算、余角以及角平分线的定义,解题的关键是灵活运用题中等量关系进行角度的运算.35.(1)3;(2)12或74-;(3)13秒或79秒 【解析】【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可.【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1,∴线段AB 的长度为:-1-(-4)=3;(2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--,解得:x=12或x=74-,∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB ,则有:47312t t t t -+-=-+-,则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+,解得:t=13或t=79, ∴13秒或79秒后,OA=3OB . 【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.36.(1)80°,20°;(2)90°;(3)当030AOB <∠<时,45BOM CON ∠+∠=;当3090AOB <∠<,45CON BOM ∠-∠=,理由见解析【解析】【分析】(1)利用平角的定义、角平分线的定义和角的和差即可得出结论(2)设AOM COM x ∠=∠=,再根据已知12BOM COD ∠=∠得出∠BOM=90°-x , 再利用BOC BOM COM ∠=∠+∠即可得出结论(3)分030AOB <∠<,3090AOB <∠<两种情况加以讨论【详解】解:(1)∵∠AOB=40°,∠COD=60°∴∠BOC=180°-∠AOB -∠COD=80°,∠AOC=180°-∠COD =120°∵OM 平分∠AOC∴∠AOM=60°∴∠BOM=∠AOM-∠AOB =20°故答案为:80°,20°(2)∵OM 平分∠AOC∴设AOM COM x ∠=∠=,则1802COD x ∠=-∵12BOM COD ∠=∠ ∴()11802902BOM x x ∠=-=- ∴9090BOC BOM COM x x ∠=∠+∠=-+= (3)当030AOB <∠<时,即OB 在OM 下方时设AOB x ∠=∴90AOC x ∠=-∴1452AOM x ∠=-∴13454522BOM x x x ∠=--=- ∴119022DOA DOB x ∠==-. ∴13909022CON DOC DON x x x ∠=∠-∠=+-+= ∴45BOM CON ∠+∠=②当3090AOB <∠<,即OB 在OM 上方时设AOB x ∠=∴90AOC x ∠=-∴1452AOM x ∠=-∴3452BOM x ∠=- ∴1809090DOC x x ∠=-+=+,∵ON 平分BOD ∠,∴119022DON BOD x ∠=∠=-∴32CON x ∠= ∴45CON BOM ∠-∠=【点睛】本题考查角的相关计算,难度适中,涉及角平分线的定义和邻补角相加等于180°的知识点;同时,里面的小题从易到难,体现了分类讨论的数学思想.37.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t =±2;(3)d (P ,Q )的值为4或8.【解析】【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1-x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD=2即可得出|0-m|=2,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d (E ,H )=3,即可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),根据三角形的面积公式结合三角形OPQ 的面积为3即可求出x 的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB 的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD ∥y 轴,可设点D 的坐标为(1,m ),∵CD=2,∴|0﹣m|=2,解得:m=±2, ∴点D 的坐标为(1,2)或(1,﹣2).【拓展】:(1)d (E ,F )=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:5.(2)∵E (2,0),H (1,t ),d (E ,H )=3,∴|2﹣1|+|0﹣t |=3,解得:t =±2.(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),∵三角形OPQ 的面积为3, ∴12|x |×3=3,解得:x =±2. 当点Q 的坐标为(2,0)时,d (P ,Q )=|3﹣2|+|3﹣0|=4;当点Q 的坐标为(﹣2,0)时,d (P ,Q )=|3﹣(﹣2)|+|3﹣0|=8。
七年级上册期末试卷达标检测(Word版 含解析)

七年级上册期末试卷达标检测(Word 版 含解析)一、选择题1.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a += D .22232x y yx x y -= 2.如果a +b +c =0,且|a |>|b |>|c |,则下列式子可能成立的是( ) A .c >0,a <0B .c <0,b >0C .c >0,b <0D .b =03.下列运用等式性质进行变形:①如果a =b ,那么a ﹣c =b ﹣c ;②如果ac =bc ,那么a =b ;③由2x +3=4,得2x =4﹣3;④由7y =﹣8,得y =﹣,其中正确的有( ) A .1个B .2个C .3个D .4个4.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A .20B .25C .30D .355.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定6.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直; ④过一点有且只有一条直线与已知直线平行. 其中正确的说法有( ) A .1个B .2个C .3个D .4个7.化简:35xy xy -的结果是( ) A .2B .2-C .2xyD .2xy -8.下列立体图形中,俯视图是三角形的是( )A .B .C .D .9.如图所示的几何体的左视图是( )A .B .C .D .10.下列各式进行的变形中,不正确的是( ) A .若32a b =,则3222a b +=+ B .若32a b =,则3525a b -=- C .若32a b =,则23a b = D .若32a b =,则94a b =11.下列计算正确的是( ) A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab +=12.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x +2y =0.其中一元一次方程的个数是( ) A .2B .3C .4D .513.有理数a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A .ab >0B .|b|<|a|C .b <0<aD .a+b >0 14.对于代数式3m +的值,下列说法正确的是( )A .比3大B .比3小C .比m 大D .比m 小15.某商品在进价的基础上提价70元后出售,之后打七五折促销,获利30元,则商品进价为( )元. A .90B .100C .110D .120二、填空题16.一家商店因换季将某种服装打折出售,如果每件服装按标价的5折出售将亏20元, 而按标价的8折出售将赚40元,为保证不亏本,最多打__________折. 17.若单项式2a m b 4与-3ab 2n 是同类项,则m -n =__.18.已知∠α=25°15′,∠β=25.15°,则∠α_______∠β(填“>”,“<”或“=”). 19.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.20.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.21.如图,在三角形ABC 中,90B ∠=︒,6AB cm =,8BC cm =,点D 是AB 的中点,点P 从C 点出发,先以每秒2cm 的速度运动到B ,然后以每秒1cm 的速度从B 运动到A .当点P 运动时间t = _______秒时,三角形PCD 的面积为26cm .22.计算t 3t t --=________.23.请写出一个系数是-2,次数是3的单项式:________________.24.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________. 25.甲数x 的23与乙数y 的14差可以表示为_________ 三、解答题26.化简:(1)-3x +2y +5x -7y ; (2)2(x 2-2x )-(2x 2+3x ).27.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ; ②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离; (2)在(1)所画图中, ①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 . 28.如图,直线a 上有M 、N 两点,12cm MN =,点O 是线段MN 上的一点,3OM ON =.(1)填空:OM =______cm ,ON =______cm ;(2)若点C 是线段OM 上一点,且满足MC CO CN =+,求CO 的长;(3)若动点P 、Q 分别从M 、N 两点同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s .设运动时间为s t ,当点P 与点Q 重合时,P 、Q 两点停止运动.①当t 为何值时,24cm OP OQ -=?②当点P 经过点O 时,动点D 从点O 出发,以4cm /s 的速度也向右运动,当点D 追上点Q 后立即返回,以4cm /s 的速度向点P 运动,遇到点P 后再立即返回,以4cm /s 的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点D 也停止运动.求出在此过程中点D 运动的总路程是多少?29.先化简,再求值:(3a 2b -ab 2)-2(ab 2+3a 2b ),其中a =-12,b =2. 30.如图,点P 是∠AOB 的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是______(用“<”号连接).31.已知,OM 平分AOC ∠,ON 平分BOC ∠.(1)如图1,若OA OB ⊥,60BOC ∠=︒,求MON ∠的度数;(2)如图2,若80AOB ∠=︒,:2:7MON AOC ∠∠=,求AON ∠的度数.32.已知高铁的速度比动车的速度快50 km /h ,小路同学从苏州去北京游玩,本打算乘坐动车,需要6h 才能到达;由于得知开通了高铁,决定乘坐高铁,她发现乘坐高铁比乘坐动车节约72 min .求高铁的速度和苏州与北京之间的距离. 33.按要求画图:如图,在同一平面内有三点A 、B 、C . (1)画直线AB 和射线BC ;(2)连接线段AC ,取线段AC 的中点D ; (3)画出点D 到直线AB 的垂线段DE .四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.35.点A、B在数轴上分别表示数,a b,A、B两点之间的距离记为AB.我们可以得到=-:AB a b(1)数轴上表示2和5的两点之间的距离是;数轴上表示-2和-5两点之间的距离是;数轴上表示1和a的两点之间的距离是.(2)若点A、B在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C对应的数为c.+的值,请用含c的代数式表示;①求电子蚂蚁在点A的左侧运动时AC BCc c,c表示的数是多少?②求电子蚂蚁在运动的过程中恰好使得1511c c的最小值是.③在电子蚂蚁在运动的过程中,探索1536.如图一,点C在线段AB上,图中有三条线段AB、AC和BC,若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)-和40,点C是线段AB的巧点,求(2)如图二,点A和B在数轴上表示的数分别是20点C在数轴上表示的数。
七年级上册期末试卷达标检测卷(Word版 含解析)

七年级上册期末试卷达标检测卷(Word 版 含解析) 一、选择题 1.下列运算中,正确的是( ) A .325a b ab +=B .325235a a a +=C .22330a b ba -=D .541a a -= 2.有理数-53的倒数是( ) A .53 B .53- C .35 D .353.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( )A .1B .2C .1-D .2-4.在一个不透明的布袋中,装有一个简单几何体模型,甲乙两人在摸后各说出了它的一个特征,甲:它有曲面;乙:它有顶点。
该几何体模型可能是( )A .球B .三棱锥C .圆锥D .圆柱5.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面,每名一级技工比二级技工一天多粉刷10m 2墙面,设每个房间需要粉刷的墙面面积为xm 2,则下列的方程正确的是( )A .3505(10)40810--+=x x B .3505(10)40810+--=x x C .850104035+-=x x +10 D .850104035-+=x x +10 6.﹣3的相反数为( )A .﹣3B .﹣13C .13D .3 7.下列各数是无理数的是( )A .﹣2B .227C .0.010010001D .π 8.方程1502x --=的解为( ) A .4-B .6-C .8-D .10- 9.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为( )A .10B .11C .12D .1310.每瓶A 种饮料比每瓶B 种饮料少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A .()21313x x -+=B .()21313x x ++=C .()23113x x ++=D .()23113x x +-= 11.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A .27°40′B .57°40′C .58°20′D .62°20′12.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+ =100 C .()31001003x x --= D .10031003x x --= 13.下列计算正确的是( )A .2334a a a +=B .﹣2(a ﹣b)=﹣2a+bC .5a ﹣4a=1D .2222a b a b a b -=-14.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .二、填空题16.一个角的的余角为30°15′,则这个角的补角的度数为________.17.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ . 18.请你写出一个解为2的一元一次方程:_____________19.已知76A ∠=︒,则A ∠的余角的度数是_____________. 20.当温度每下降100℃时,某种金属丝缩短0.2mm .把这种15℃时15mm 长的金属丝冷却到零下5℃,那么这种金属丝在零下5℃时的长度是__________mm .21.如图,三个一样大小的小长方形沿“竖-横-竖”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的宽为______.22.如图,在三角形ABC 中,90B ∠=︒,6AB cm =,8BC cm =,点D 是AB 的中点,点P 从C 点出发,先以每秒2cm 的速度运动到B ,然后以每秒1cm 的速度从B 运动到A .当点P 运动时间t = _______秒时,三角形PCD 的面积为26cm .23.若要使图中的展开图按虚线折叠成正方体后,相对面上两个数之和为10,则x+y=_____.24.计算t 3t t --=________.25.若线段AB =8cm ,BC =3cm ,且A 、B 、C 三点在同一条直线上,则AC =______cm .三、解答题26.如图,已知BD 平分∠ABC ,点F 在AB 上,点G 在AC 上,连接FG 、FC ,FC 与BD 相交于点H ,如果∠GFH 与∠BHC 互补,那么∠1=∠2吗?请说明理由.27.解方程:(1)1﹣3(x ﹣2)=4; (2)213x +﹣516x -=1. 28.如图①,在平整的地面上,用若干个完全相同的棱长为10 cm 的小正方体堆成一个几何体.(1)现已给出这个几何体的俯视图(如图②),请你画出这个几何体的主视图与左视图;(2)若现在你手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变. ①在图①所示的几何体中最多可以再添加几个小正方体?②在图①所示的几何体中最多可以拿走几个小正方体?③在②的情况下,把这个几何体放置在墙角,如图③所示是此时这个几何体放置的俯视图,若给这个几何体表面喷上红漆,则需要喷漆的面积最少是多少?29.如图,点 O 在直线 AB 上, O C 、 O D 是两条射线, O C OD ⊥,射线OE 平分 BOC ∠.(1)若 150DOE ∠=︒,求AOC ∠的度数. (2)若DOE α∠=,则 AOC ∠= .(请用含α的代数式表示)30.计算:(1)()360.655---+-+(2)()()202031113122⎛⎫---÷⨯-- ⎪⎝⎭31.先化简,再求值:22225(3)4(3)a b ab ab a b ---+,其中a 、b 满足21(1)2a -与12b +互为相反数. 32.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+.33.计算:(1)431(2)4-+-÷ (2)115)321248-⨯-+( 四、压轴题34.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB .(1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.35.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解.(1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?36.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.37.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.38.如图∠AOB =120°,把三角板60°的角的顶点放在O 处.转动三角板(其中OC 边始终在∠AOB 内部),OE 始终平分∠AOD .(1)(特殊发现)如图1,若OC边与OA边重合时,求出∠COE与∠BOD的度数.(2)(类比探究)如图2,当三角板绕O点旋转的过程中(其中OC边始终在∠AOB内部),∠COE与∠BOD的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC边始终在∠AOB内部),若OP平分∠COB,请画出图形,直接写出∠EOP的度数(无须证明).39.如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=_______;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=_________;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.40.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).41.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数42.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.43.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE ,(1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示);(3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据同类项与合并同类项的知识进行选择排除即可.【详解】A .3a 与2b 不是同类项不能合并,所以A 错误;B.32a 与23a 字母指数不同,不是同类项,所以B 错误;C.23a b 与23ba 所含字母相同且相同字母的指数相同,是同类项可以合并,计算正确;D.54a a a -=所以D 错误;故答案为C.【点睛】本题考查的是整式的运算,能够熟练掌握同类项与合并同类项的知识点是解题的关键.2.D解析:D【解析】【分析】根据倒数的定义,即乘积是1的两数互为倒数可得答案.【详解】解:-53的倒数是-35, 故选:D .【点睛】 本题考查了倒数的定义,熟练掌握倒数的求法是解题的关键.3.C解析:C【解析】【分析】根据题意将解代入方程解出a 即可.【详解】将x =-a 代入方程得:-a -3a =4,解得:a =-1.故选C.【点睛】本题考查一元一次方程的解题方法,熟练掌握解题方法是关键.4.C解析:C【解析】【分析】根据每个几何体的特点可得答案.【详解】解:A. 球,只有曲面,不符合题意;B. 三棱锥,面是4个平面,还有4个顶点,不符合题意;C. 圆锥,是一个曲面,一个顶点,符合题意;D. 圆柱,是一个曲面,两个平面,没有顶点,不符合题意.故选:C.【点睛】本题考查认识立体图形,解题关键是熟记常见几何体的特征.解析:D【解析】 由题意易得:每名一级技工每天可粉刷的面积为:8503x -m 2,每名二级技工每天可粉刷的面积为:10405x +m 2,根据每名一级技工比二级技工一天多粉刷10m 2,可得方程: 85010401035x x -+=+. 故选D.6.D解析:D【解析】【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【详解】解:﹣3的相反数是3.故选:D .【点睛】此题考查求一个数的相反数,解题关键在于掌握相反数的概念.7.D解析:D【解析】试题分析:A .是整数,是有理数,选项错误;B .是分数,是有理数,选项错误;C .是有限小数,是有理数,选项错误;D .是无理数,选项正确.故选D .考点:无理数.8.D解析:D【解析】【分析】根据一元一次方程的解法即可求解.【详解】1502x --= 152x -=故选D.【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知方程的解法.9.C解析:C【解析】【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.【详解】由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n 的最小值是:7+5=12,故选C.【点睛】此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.C解析:C【解析】【分析】设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,由买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,列方程即可得到答案.【详解】解:设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,所以:()23113x x ++=,故选C .【点睛】本题考查的是一元一次方程的应用,掌握利用相等关系列一元一次方程是解题的关键.11.B解析:B【解析】【分析】先由∠1=27°40′,求出∠CAE 的度数,再根据∠CAE +∠2=90°即可求出∠2的度数.【详解】∵∠1=27°40′,∴∠CAE =60°-27°40′=32°20′,∴∠2=90°-32°20′= 57°40′.故选B.【点睛】本题考查了角的和差及数形结合的数学思想,认真读图,找出其中的数量关系是解答本题的关键.12.B解析:B【解析】【分析】设大和尚有x人,则小和尚有(100﹣x)人,根据3×大和尚人数+小和尚人数÷3=100,即可得出关于x的一元一次方程,此题得解.【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x1003x-+=100.故选B.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.13.D解析:D【解析】【分析】利用多项式合并同类项的原则,对选项依次进行同类型合并即可判断.【详解】解:A、a 与 3a2不是同类项,不能合并,故此选项错误;B、﹣2(a﹣b)=﹣2a+2b,故此选项错误;C、5a﹣4a=a,故此选项错误;D、a2b﹣2a2b=﹣a2b,故此选项正确;故选:D.【点睛】本题考查多项式的合并同类项,熟练掌握多项式合并同类项的方法是解题关键.14.C解析:C【解析】【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.15.D解析:D【解析】【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【详解】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图一共三列,左边一列1个正方体,右边一列1个正方体,中间一列有3个正方体,故选D.【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题16.120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故解析:120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故答案为: 120°15′.【点睛】本题考查余角、补角的定义,关键在于熟记定义.17.0【解析】【分析】根据题意,有,则,然后利用整体代入法进行求解,即可得到答案.【详解】解:根据题意,有,∴,∴;故答案为:0.【点睛】本题考查了求代数式的值,解题的关键是得到,熟解析:0【解析】【分析】根据题意,有24a b -=,则122a b -=,然后利用整体代入法进行求解,即可得到答案. 【详解】解:根据题意,有24a b -=,∴122a b-=,∴1122()22022a b a b-+=--=-=;故答案为:0.【点睛】本题考查了求代数式的值,解题的关键是得到122a b-=,熟练运用整体代入法进行解题.18.x-2=0.(答案不唯一)【解析】【分析】根据题意写出任一解为2的一元一次方程即可.【详解】由题意:x-2=0,满足题意;故答案为:x-2=0;【点睛】本题考查列一元一次方程,关键在解析:x-2=0.(答案不唯一)【解析】【分析】根据题意写出任一解为2的一元一次方程即可.【详解】由题意:x-2=0,满足题意;故答案为:x-2=0;【点睛】本题考查列一元一次方程,关键在于记住基础知识.19.【解析】【分析】根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.进行计算即可求解.【详解】解:∵∠A=76°,∴∠A的余角是90°−76°解析:14︒【解析】【分析】根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.进行计算即可求解.【详解】解:∵∠A=76°,∴∠A的余角是90°−76°=14°;故答案为:14°.【点睛】本题考查的是余角的定义,解决本题的关键是熟记余角的定义.20.96【解析】【分析】由题意得到,温度下降1℃,金属丝缩短0.002mm,然后计算15℃冷却到零下5℃,温度下降15+5=20℃,从而求出金属丝长度即可.【详解】解:由题意可得:0.2÷10解析:96【解析】【分析】由题意得到,温度下降1℃,金属丝缩短0.002mm,然后计算15℃冷却到零下5℃,温度下降15+5=20℃,从而求出金属丝长度即可.【详解】解:由题意可得:0.2÷100=0.00215-0.002×(15+5)=15-0.002×20=15-0.04=14.96mm故答案为:14.96【点睛】本题考查有理数的混合运算,解题关键是读懂题意.21.2【解析】【分析】设小长方形的长为x,宽为y,根据大长方形的长及宽,可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】设小长方形的长为x,宽为y,根据题意得:,解得:,∴解析:2【分析】设小长方形的长为x ,宽为y ,根据大长方形的长及宽,可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设小长方形的长为x ,宽为y ,根据题意得:21028x y x y ⎧⎨⎩+=+=, 解得:42x y ⎧⎨⎩==, ∴宽为2.故答案为:2.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.2或5.5或8.5【解析】【分析】分为两种情况讨论:当点P 在BC 上时,当点P 在AB 上时,根据三角形的面积公式建立方程求出其解即可.【详解】∵,,点是的中点∴BD=3cm,如图,点P 在B解析:2或5.5或8.5【解析】【分析】分为两种情况讨论:当点P 在BC 上时,当点P 在AB 上时,根据三角形的面积公式建立方程求出其解即可.【详解】∵6AB cm =,8BC cm =,点D 是AB 的中点∴BD=3cm,如图,点P 在BC 上时,CP=2t ,∵三角形PCD 的面积为26cm . ∴12CP×BD=6,即12×2t×3=6当P运动到B时,时间为8÷2=4s 如图,当点P在AB上时,BP1=t-4,DP1= BP1-BD=t-4-3=t-7∵三角形PCD的面积为26cm.∴12DP1×BC=6,即12×(t-7)×8=6解得t=8.5s同理BP2=t-4,DP2= BD- BP2=3-(t-4)=7-t ∵三角形PCD的面积为26cm.∴12DP1×BC=6,即12×(7-t)×8=6解得t=5.5s综上,当点P运动时间t 2或5.5或8.5秒时,三角形PCD的面积为26cm.故答案为:2或5.5或8.5.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.23.16【解析】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对,又因相对面上两个数之和为10,可得x=9,y=7,所以x+y=16.【解析】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x ”相对,面“3”与面“y ”相对,又因相对面上两个数之和为10,可得x =9,y =7,所以x +y =16.24.-3t【解析】【分析】根据合并同类项法则合并同类项即可.【详解】解:故答案为:-3t .【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键. 解析:-3t【解析】【分析】根据合并同类项法则合并同类项即可.【详解】解:()t 31313t t t t --=--=-故答案为:-3t .【点睛】此题考查的是合并同类项,掌握合并同类项法则是解决此题的关键.25.5或11.【解析】试题分析:分为两种情况:①如图1,AC =AB +BC =8+3=11;②如图2,AC =AB ﹣BC =8﹣3=5;故答案为5或11.点睛:本题考查了线段的和差运算,根据题意解析:5或11.【解析】试题分析:分为两种情况:①如图1,AC =AB +BC =8+3=11;②如图2,AC=AB﹣BC=8﹣3=5;故答案为5或11.点睛:本题考查了线段的和差运算,根据题意分两种情况画出图形是解决此题的关键.三、解答题26.∠1=∠2;见解析.【解析】【分析】根据题意算出∠GFH+∠FHD=180°,利用同旁内角互补两直线平行,证明FG∥BD,再由角平分线性质判断即可.【详解】解:12∠=∠,理由如下:∵∠BHC=∠FHD,∠GFH+∠BHC=180°,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠2=∠ABD,∴∠1=∠2;【点睛】本题考查了平行线的判定与性质和角平分线的有关计算,关键在于掌握相关基础知识. 27.(1)x=1,(2)x=﹣3【解析】试题分析:(1)按照去括号,移项,合并同类项,系数化为1求解;(2)按照去分母,去括号,移项,合并同类项,实数化为1的步骤解答.解:(1)1﹣3(x﹣2)=4,1-3x+6=4,-3x=4-6-1,-3x=-3,x=1.(2)213x+﹣516x-=1,2(2x+1)-(5x-1)=6, 4x+2-5x+1=6,4x-5x=6-1-2,-x=3,x=-3点睛:去括号时一是不要漏乘括号内的项,二是括号前是“-”,去掉括号后括号内各项的符号都要改变;两边都乘个分母的最小公倍数去分母时一是不要漏乘没有分母的项,二是去掉分母后把分子加上括号.28.(1)见解析;(2)①2个;②2个;③需要喷漆的面积最少是1900cm2.【解析】【分析】(1)根据物体形状即可画出左视图有三列与以及主视图三列;(2)①可在最左侧前端放两个,②可在最左侧最后面或最前面拿走两个,③分别从正面、右面、上面、左面求表面积即可.【详解】(1)如图所示(2)①可在最左侧前端放两个;②可在最左侧最后面或最前面拿走两个两个;③根据每一个面的面积是10×10=100,∴需要喷漆的面积最少是:19×100=1900(cm2).【点睛】此题主要考查了由实物画三视图,以及利用主视图和俯视图判断几何体的形状,主要培养同学们的空间想象能力,想象不出来可以亲手实验.︒-.29.(1)60︒;(2)3602α【解析】【分析】(1)根据垂直定义得∠DOC=90°,利用线段和差关系求∠COE的度数,再根据角平分线的定义求出∠BOC的度数,最后利用平角定义求解;(2)根据垂直定义得∠DOC=90°,利用线段和差关系将∠COE用α表示,再根据角平分线的定义将∠BOC用α表示,最后利用平角定义求解.【详解】解:(1)∵OC⊥OD,∴∠DOC=90°∵∠DOE=150°,∴∠COE=∠DOE-∠DOC=150°-90°=60°,∵OE 平分∠BOC,∴∠BOC=2∠COE=2×60°=120°,∴∠AOC=180°-∠BOC=180°-120°=60°;(2)∵OC ⊥OD,∴∠DOC=90°∵∠DOE=α,∴∠COE=∠DOE-∠DOC=α-90°,∵OE 平分∠BOC,∴∠BOC=2∠COE=2×(α-90°)= 2α-180°,∴∠AOC=180°-∠BOC=180°-(2α-180°)=360°-2α.【点睛】本题考查垂直定义和角平分线的定义及角的和差关系,掌握定义,理清角之间的关系是解答此题的关键.30.(1)-11;(2)12-【解析】【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)原式60.650.6=---+ 11=-.(2)原式()1111823=-⨯-- 312=- 12=-. 【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.31.223a b ab -;1-62 【解析】【分析】对代数式进行去括号,合并同类项,将代数式化为最简式,然后利用互为相反数的定义求出a,b 的值,把a, b 的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】解:原式=2222155+4-12a b ab ab a b -=223a b ab -∵a 、b 满足21(1)2a -与12b +互为相反数. ∴21(1)2a -+12b +=0 ∴1102102a b ⎧-=⎪⎪⎨⎪+=⎪⎩ ∴=21=-2a b ⎧⎪⎨⎪⎩∴原式=221132-2-22⎛⎫⎛⎫⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭ =1134-224⎛⎫⨯⨯-⨯ ⎪⎝⎭ =1-62-=1-62【点睛】本题考查整式加减,在进行整式的化简求值时要先化简再求值以简化计算.32.(1)-2a ;(2)297mn m -.【解析】【分析】按照整式的的计算规律进行计算即可.【详解】(1)解:原式=5a -7a=-2a .(2)解:原式=227324mn m mn m -+-=297mn m -.【点睛】本题考查整式的计算,关键在于掌握计算法则.33.(1)3-;(2)15-【解析】【分析】(1)根据有理数的运算顺序和运算法则计算即可;(2)根据乘法分配律和各个运算法则计算即可.【详解】解:(1)()34124-+-÷=()184-+-÷=()12-+-=3- (2)115321248-⨯-+⎛⎫ ⎪⎝⎭=()()()2421152424381-⨯--⨯+-⨯ =8310-+-=15-【点睛】 此题考查的是有理数的混合运算,掌握有理数的运算顺序和运算法则是解决此题的关键.四、压轴题34.(1)3.(2)存在.x 的值为3.(3)不变,为2.【解析】【分析】(1)根据非负数的性质和数轴上两点间距离即可求解;(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;(3)先确定运动t 秒后,A 、B 、C 三点对应的数,再根据数轴上两点间的距离公式列方程即可求解.【详解】解:(1)∵点A 、B 是数轴上的两个点,它们分别表示的数是2-和1∴A,B 两点之间的距离是1-(-2)=3.故答案为3.(2)存在.理由如下:①若P 点在A 、B 之间,x+2+1-x=7,此方程不成立;②若P 点在B 点右侧,x+2+x-1=7,解得x=3.答:存在.x 的值为3.(3)BC AB -的值不随运动时间t (秒)的变化而改变,为定值,是2.理由如下: 运动t 秒后,A 点表示的数为-2-t,B 点表示的数为1+2t,C 点表示的数为6+5t.所以AB=1+2t-(-2-t)=3+3t.BC=6+5t-(1+2t)=5+3t.所以BC-AB=5+3t-3-3t=2.【点睛】本题考查了一元一次方程、数轴、非负数、两点之间的距离,解决本题的关键是数轴上动点的运动情况.35.(1)2;(2)1cm ;(3)910秒或116秒 【解析】【分析】(1)将x =﹣3代入原方程即可求解;(2)根据题意作出示意图,点C 为线段AB 上靠近A 点的三等分点,根据线段的和与差关系即可求解;(3)求出D 和B 表示的数,然后设经过x 秒后有PD =2QD ,用x 表示P 和Q 表示的数,然后分两种情况①当点D 在PQ 之间时,②当点Q 在PD 之间时讨论即可求解.【详解】(1)把x =﹣3代入方程(k +3)x +2=3x ﹣2k 得:﹣3(k +3)+2=﹣9﹣2k ,解得:k =2;故k =2;(2)当C 在线段AB 上时,如图,当k =2时,BC =2AC ,AB =6cm ,∴AC =2cm ,BC =4cm ,∵D 为AC 的中点,∴CD =12AC =1cm . 即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6,∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时,∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910 ②当点Q 在PD 之间时,∵PD =2QD ,∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116. 答:当时间为910或116秒时,有PD =2QD . 【点睛】本题考查了方程的解,线段的和与差,数轴上的动点问题,一元一次方程与几何问题,分情况讨论是本题的关键.36.(1)30°;(2)BOC ∠+∠BOE =90°;(3)为定值2,理由见解析【解析】【分析】(1)根据差余角的定义,结合角平分线的性质可得∠BOE 的度数;(2)根据差余角的定义得到BOC ∠和AOE ∠的关系,(3)分当OE 在OC 左侧时,当OE 在OC 右侧时,根据差余角的定义得到COE ∠和AOC ∠的关系,再结合余角和补角的概念求出AOC BOC COE∠-∠∠的值. 【详解】 解:(1)如图,∵COE ∠是AOC ∠的差余角∴AOC ∠-COE ∠=90°,即AOC ∠=COE ∠+90°,又∵OE 是BOC ∠的角平分线,∴∠BOE =COE ∠,则COE ∠+90°+COE ∠+COE ∠=180°,解得COE ∠=30°;(2)∵BOC ∠是AOE ∠的差余角,∴AOE ∠-BOC ∠=90°,∵AOE ∠=AOC ∠+COE ∠,BOC ∠=∠BOE +COE ∠,∴AOC ∠-∠BOE =90°,∵AOC ∠=180°-BOC ∠, ∴180°-BOC ∠-∠BOE =90°,∴BOC ∠+∠BOE =90°;(3)当OE 在OC 左侧时,∵COE ∠是AOC ∠的差余角,∴AOC ∠-COE ∠=90°,∴∠AOE =∠BOE=90°, 则AOC BOC COE ∠-∠∠ =90COE BOC COE∠+︒-∠∠ =COE COE COE∠+∠∠ =2;。
七年级上册期末试卷达标检测卷(Word版 含解析)

七年级上册期末试卷达标检测卷(Word 版 含解析)一、选择题1.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( )A .1B .2C .1-D .2-2.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 的周长为15cm ,则四边形ABFD 的周长等于( )A .17 cmB .18 cmC .19 cmD .20 cm 3.下列单项式中,与2a b 是同类项的是( ) A .22a bB .22a bC .2abD .3ab 4.如果整式x n ﹣3﹣5x 2+2是关于x 的三次三项式,那么n 等于( ) A .3B .4C .5D .6 5.下列各组代数式中,不是同类项的是( ) A .2与-5B .-0.5xy 2与3x 2yC .-3t 与200tD .ab 2与-8b 2a 6.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定7.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .B .4C .或4D .2或48.计算233235x y y x -的正确结果是( )A .232x yB .322x yC .322x y -D .232x y -9.我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯10.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( )A .①②B .①③C .②④D .③④11.如图正方体纸盒,展开后可以得到( )A .B .C .D .12.下列说法错误的是( )A .对顶角相等B .两点之间所有连线中,线段最短C .等角的补角相等D .不相交的两条直线叫做平行线 13.下列计算正确的是( )A .325a b ab +=B .532y y -=C .277a a a +=D .22232x y yx x y -= 14.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D .15.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个,设计划做x 个“中国结”,可列方程( )A .9764x x --=B .96x -=74x +C .x 9x+764+=D .x 9x 764+-= 二、填空题16.2019上半年溧水实现GDP 为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP 为_________元.17.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________.18.已知76A ∠=︒,则A ∠的余角的度数是_____________.19.把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62°,则∠DEF =_____°.20.比较大小:-12____23-(填“>”,“<”或“=”) 21.已知∠α=28°,则∠α的余角等于___. 22.若王老师在一次数学过关测试中,以80分为过关线,记下了4名同学的成绩:+8,0,-8,+13,则这4名同学实际成绩最高的是__________分.23.有下列三个生活、生产现象:①用两个钉子就可以把木条固定在干墙上;②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线.其中可用“两点之间,线段最短”来解释的现象有_____(填序号).24.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________.25.若a 、b 为实数,且()2320a b ++-=,则b a 的值是_________ 三、解答题26.计算:(1)715|4|---(2)42112(3)6⎛⎫--⨯-÷- ⎪⎝⎭27.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .28.点A 、O 、B 、C 从左向右依次在数轴上的位置如图所示,点O 在原点,点A 、B 、C 表示的数分别是a 、b 、c .(1)若a=﹣2,b=4,c=8,D 为AB 中点,F 为BC 中点,求DF 的长.(2)若点A 到原点的距离为3,B 为AC 的中点.①用b 的代数式表示c ;②数轴上B 、C 两点之间有一动点M ,点M 表示的数为x ,无论点M 运动到何处,代数式 |x ﹣c|﹣5|x ﹣a|+bx+cx 的值都不变,求b 的值.29.如图,A ,B 两地相距450千米,两地之间有一个加油站O ,且AO =270千米,一辆轿车从A 地出发,以每小时90千米的速度开往B 地,一辆客车从B 地出发,以每小时60千米的速度开往A 地,两车同时出发,设出发时间为t 小时.(1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O 多远?(3)经过几小时,两车相距50千米?30.先化简,再求值:2(3a 2b ﹣2ab 2)﹣3(﹣ab 2+3a 2b ),其中|a ﹣1|+(b+2)2=0.31.如图,在数轴上,点A 表示10-,点B 表示11,点C 表示18.动点P 从点A 出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q 从点C 出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t 秒.(1)当t 为何值时,P 、Q 两点相遇?相遇点M 所对应的数是多少?(2)在点Q 出发后到达点B 之前,求t 为何值时,点P 到点O 的距离与点Q 到点B 的距离相等;(3)在点P 向右运动的过程中,N 是AP 的中点,在点P 到达点C 之前,求2CN PC -的值.32.如图,点C 是AB 上一点,点D 是AC 的中点,若12AB =,7BD =,求CB 的长.33.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
七年级上册期末试卷达标检测卷(Word版 含解析)

七年级上册期末试卷达标检测卷(Word 版 含解析)一、选择题1.下列图形中1∠和2∠互为余角的是( )A .B .C .D .2.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒3.下列运用等式性质进行变形:①如果a =b ,那么a ﹣c =b ﹣c ;②如果ac =bc ,那么a =b ;③由2x +3=4,得2x =4﹣3;④由7y =﹣8,得y =﹣,其中正确的有( ) A .1个B .2个C .3个D .4个 4.下列说法错误的是( )A .同角的补角相等B .对顶角相等C .锐角的2倍是钝角D .过直线外一点有且只有一条直线与已知直线平行 5.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A .20B .25C .30D .356.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是( )A .高B .铁C .开D .通7.已知点A 、B 、C 、D 在同一条直线上,线段8AB =,C 是AB 的中点, 1.5DB =.则线段CD 的长为( )A .2.5B .3.5C .2.5或5.5D .3.5或5.58.在一列数:123n a a a a ⋯,,,中,12=7=1a a ,, 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这个数中的第2018个数是()A .1B .3C .7D .9 9.下列计算正确的是( ) A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab += 10.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4B .4C .﹣8D .8 11.如果向北走2 m ,记作+2 m ,那么-5 m 表示( )A .向东走5 mB .向南走5 mC .向西走5 mD .向北走5 m 12.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -13.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个,设计划做x 个“中国结”,可列方程( )A .9764x x --=B .96x -=74x +C .x 9x+764+=D .x 9x 764+-= 14.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6B .3(x -1)-2(2x +3)=1C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=315.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是( )A .B .C .D .二、填空题16.若3a b -=,则代数式221b a -+的值等于________.17.已知1x =是方程253ax a -=+的解,则a =__.18.正方体切去一块,可得到如图几何体,这个几何体有______条棱.19.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______.20.如图是一个数值转换机.若输出的结果为10,则输入a 的值为______.21.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是______. 22.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.23.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.24.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .25.有下列三个生活、生产现象:①用两个钉子就可以把木条固定在干墙上;②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线.其中可用“两点之间,线段最短”来解释的现象有_____(填序号).三、解答题26.如图,直线AB,CD 相交于点O,OE 平分∠AOD,OF ⊥OC .(1)图中∠AOF 的余角是_____________ (把符合条件的角都填上);(2)如果∠1=28° ,求∠2和∠3的度数.27.解下列方程:(1)2(2)6x --= .(2)121123x x -+=-. 28.小红周日花了76元买了四种食品,如下表格记录了她的支出,其中部分金额被油渍污染.若鲜奶和酸奶一共买了10盒,鲜奶4元/盒,酸奶5元/盒,则小红当天买了几盒鲜奶?29.在如图所示的方格纸上作图并标上相应的字母.(1)过点P 画线段AB 的平行线a ;(2)过点P 画线段AB 的垂线,垂足为H ;(3)点A 到线段PH 的距离即线段 的长.30.有以下运算程序,如图所示:比如,输入数对(2,1),输出W=2.(1)若输入数对(1,﹣2),则输出W=;(2)分别输入数对(m,﹣n)和(﹣n,m),输出的结果分别是W1,W2,试比较W1,W2的大小,并说明理由;(3)设a=|x﹣2|,b=|x﹣3|,若输入数对(a,b)之后,输出W=26,求a+b的值.31.在平整的地面上,由若干个完全相同的棱长为10 cm的小正方体堆成一个几何体,如图①所示.(1)请你在方格纸中分别画出这个几何体的主视..图和左视..图;(2)若现在手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变,Ⅰ.在图①所示几何体上最多可以添加个小正方体;Ⅱ.在图①所示几何体上最多可以拿走个小正方体;Ⅲ.在题Ⅱ的情况下,把这个几何体放置在墙角,使得几何体的左面和后面靠墙,其俯视图如图②所示,若给该几何体露在外面的面喷上红漆,则需要喷漆的面积最少是多少平方厘米?32.先化简,再求值:已知a2+2(a2﹣4b)﹣(a2﹣5b),其中a=﹣3,b=13.33.如图,A、B、C是正方形网格中的三个格点.(1)①画射线AC;②画线段BC;③过点B画AC的平行线BD;④在射线AC上取一点E,画线段BE,使其长度表示点B到AC的距离;(2)在(1)所画图中,①BD与BE的位置关系为;②线段BE与BC的大小关系为BE BC(填“>”、“<”或“=”),理由是.四、压轴题34.点A、B在数轴上分别表示数,a b,A、B两点之间的距离记为AB.我们可以得到AB a b=-:(1)数轴上表示2和5的两点之间的距离是;数轴上表示-2和-5两点之间的距离是;数轴上表示1和a的两点之间的距离是.(2)若点A、B在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C对应的数为c.①求电子蚂蚁在点A的左侧运动时AC BC+的值,请用含c的代数式表示;②求电子蚂蚁在运动的过程中恰好使得1511c c,c表示的数是多少?③在电子蚂蚁在运动的过程中,探索15c c的最小值是.35.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______;(2)用合理的方法进行简便计算:1111 924233202033⎛⎫-++---+⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|.36.如图,数轴上点A,B表示的有理数分别为6-,3,点P是射线AB上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.37.已知线段AB=m(m为常数),点C为直线AB上一点,点P、Q分别在线段BC、AC 上,且满足CQ=2AQ,CP=2BP.(1)如图,若AB=6,当点C恰好在线段AB中点时,则PQ=;(2)若点C为直线AB上任一点,则PQ长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C在点A左侧,同时点P在线段AB上(不与端点重合),请判断2AP+CQ﹣2PQ 与1的大小关系,并说明理由.38.如图,点A,B,C在数轴上表示的数分别是-3,3和1.动点P,Q两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少;(2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.39.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?40.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.41.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.42.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?43.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据余角、补角的定义计算.【详解】根据余角的定义,两角之和为90°,这两个角互余.D中∠1和∠2之和为90°,互为余角.故选D.【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.2.C解析:C【解析】【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.3.B解析:B【解析】【分析】直接录用等式的基本性质分析得出答案.【详解】解:①如果a=b,那么a-c=b-c,正确;②如果ac=bc,那么a=b(c≠0),故此选项错误;③由2x+3=4,得2x=4-3,正确;④由7y=-8,得y=-,故此选项错误;故选:B.【点睛】此题主要考查了等式的基本性质,正确把握性质2是解题关键.4.C解析:C【解析】【分析】根据补角的定义、对顶角的定义、锐角的钝角的定义以及平行公理对每一项进行解答判断即可.【详解】根据补角的定义:两角之和等于180°,同角或等角的补角相等,A正确;对顶角定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,对顶角度数的大小相等,B正确;锐角的范围0°<锐角<90°,90°<钝角<180°,锐角的2倍不一定是钝角,C错误.平行公理:经过直线外一点,有且只有一条直线与已知直线平行.D正确.故答案选C.【点睛】本题考查了补角、对顶角、锐角钝角的定义及平行公理,熟练掌握它们的定义是解决本题的关键.5.C解析:C【解析】可设折痕对应的刻度为xcm,根据折叠的性质和三段长度由短到长的比为1:2:3,长为60cm的卷尺,列出方程求解即可.解:设折痕对应的刻度为xcm,依题意有绳子被剪为10cm,20cm,30cm的三段,①x=202+10=20,②x=302+10=25,③x=302+20=35,④x=102+20=25,⑤x=102+30=35,⑥x=202+30=40.综上所述,折痕对应的刻度可能为20、25、35、40.故选C.“点睛”本题考查了一元一次方程的应用和图形的简拼,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分类思想的运用. 6.D解析:D【解析】【分析】根据正方体的表面展开图中,相对面之间一定相隔一个正方形的特点选出答案即可.【详解】因为正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以“安”字的对面是是“通”字,故答案选D.【点睛】本题考查的是正方体的展开图,熟知正方体的表面展开图的特点是解题的关键.7.C解析:C【解析】【分析】当点D在线段AB的延长线上时,当点D在线段AB上时,由线段的和差和线段中点的定义即可得到结论.【详解】如图1,∵C是线段AB的中点,若AB=8,∴BC=12AB=4,∵BD=1.5,∴CD=5.5;如图2,∵C是线段AB的中点,若AB=8,∴BC=12AB=4,∵BD =1.5,∴CD =2.5,综上所述,线段CD 的长为2.5或5.5.故选C.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键.8.A解析:A【解析】【详解】a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,a 9=7,…不难发现此组数据为6个一循环,2018÷6=336…2,所以第2018个数是1.故选A.【点睛】本题考查了规律型——数字的变化类,此类问题关键在于找出数据循环的规律.9.B解析:B【解析】【分析】根据合并同类项的法则和同类项的定义分别对每一项进行计算即可.【详解】A 、7a +a =8a ,故本选项错误;B 、22232x y yx x y -=,故本选项正确;C 、5y−3y =2y ,故本选项错误;D 、3a +2b ,不是同类项,不能合并,故本选项错误;故选:B .【点睛】此题考查了合并同类项,熟练掌握合并同类项的法则和同类项的定义是本题的关键.10.B解析:B【解析】根据方程的解,把x=1代入2x+m-6=0可得2+m-6=0,解得m=4.故选B.11.B解析:B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】由题意知:向北走为“+”,则向南走为“﹣”,所以﹣5m 表示向南走5m.故选:B.【点睛】本题考查了具有相反意义的量.解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.C解析:C【解析】【分析】代入化简后的算式,求出算式的值是多少即可.【详解】解:由数轴可知:0,||||b a b a <<<∴0,20a b b a +>-<∴原式=()()2a b a b +--=-2a b a b ++=-2a b +故选:C【点睛】此题主要考查了整式的加减-化简求值问题,要熟练掌握,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简, 再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.13.D解析:D【解析】【分析】根据题意,利用人数不变列方程即可.【详解】解:由题意可知:9764x x +-=, 故选D .【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.14.A解析:A【解析】【分析】去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.【详解】方程左右两边同时乘以6得:3(x −1)−2(2x +3)=6.故选:A【点睛】考查一元一次方程的解法,熟练掌握分式的基本性质是解题的关键.15.C解析:C【解析】此题可以把图形当作一个三角形和一个矩形进行旋转,从而得到正确的图形为选项C .二、填空题16.-5【解析】【分析】将原式变形,然后整体代入求值即可.【详解】解:当时,原式=故答案为:-5.【点睛】本题考查代数式求值,利用整体代入思想求解是本题的解题关键.解析:-5【解析】【分析】将原式变形,然后整体代入求值即可.【详解】解:2212()1b a a b -+=--+当3a b -=时,原式=2315-⨯+=-故答案为:-5.本题考查代数式求值,利用整体代入思想求解是本题的解题关键.17.8【解析】【分析】根据题意将x=1代入方程即可求出a的值.【详解】将x=1代入方程得:2a-5=a+3,解得:a=8.故答案为:8.【点睛】此题考查了一元一次方程的解,方程的解即为解析:8【解析】【分析】根据题意将x=1代入方程即可求出a的值.【详解】将x=1代入方程得:2a-5=a+3,解得:a=8.故答案为:8.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.解析:12【解析】【分析】通过观察图形即可得到答案.如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.19.两点确定一条直线.【解析】【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线.故答案解析:两点确定一条直线.【解析】【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线.故答案为:两点确定一条直线.【点睛】此题主要考查了直线的性质,熟记直线的性质是解题的关键.20.【解析】【分析】根据题意列出关于a的方程,利用平方根定义求出a的值即可.【详解】解:根据题意得:0.5(a2+4)=10,整理得:a2=16,解得:a=±4,故答案为:±4.【点睛解析:4【分析】根据题意列出关于a 的方程,利用平方根定义求出a 的值即可.【详解】解:根据题意得:0.5(a 2+4)=10,整理得:a 2=16,解得:a=±4,故答案为:±4.【点睛】此题考查了开平方运算,熟练掌握运算法则是解本题的关键.21.8【解析】【分析】根据题意得出单项式与是同类项,从而得出两单项式所含的字母a 、b 的指数分别相同,从而列出关于m 、n 的方程,再解方程即可求出答案.【详解】解:∵单项式与的和仍是单项式∴单项解析:8【解析】【分析】根据题意得出单项式12m a b -与212n a b 是同类项,从而得出两单项式所含的字母a 、b 的指数分别相同,从而列出关于m 、n 的方程,再解方程即可求出答案. 【详解】解:∵单项式12m a b -与212n a b 的和仍是单项式 ∴单项式12m a b -与212n a b 是同类项 ∴m-1=22=n ⎧⎨⎩∴m=3n=2⎧⎨⎩∴3=2=8m n故答案为:8.【点睛】本题考查了同类项的定义,所含字母相同,并且相同字母的指数也相同,解题的关键是灵活运用定义.22.25×108【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原解析:25×108【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:225000000=82.2510⨯故答案为:82.2510⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.23.【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵,,∴∠AOC=∠AOD -∠COD=135°-75°=60°,∵OB 平分∠AOC,∴∠BOC=.故答案解析:【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵135AOD ∠=︒,75COD ∠=︒,∴∠AOC=∠AOD-∠COD=135°-75°=60°,∵OB 平分∠AOC,∴∠BOC=1302AOC ∠=︒.故答案为:30.【点睛】本题考查角度的计算,关键在于结合图形进行计算.24.12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP解析:12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP=13AB时,三条绳子长度一样均为8,此时绳子原长度为24cm;当AP=23AB时,AP的2倍段最长为8cm,则AP=4,∴PB=2,此时绳子原长度为12cm.∴绳子原长为12或24.故答案为:12或24.【点睛】本题考查了线段的度量,根据题意得出线段之间的和差及倍分关系是解答此题的关键. 25.②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,解析:②.【解析】【分析】本题分别根据两点确定一条直线;两点之间,线段最短进行解答即可.【详解】解:①用两个钉子就可以把木条固定在干墙上,根据两点确定一条直线;②把弯曲的公路改直能缩短路程,根据两点之间,线段最短;③植树时只要定出两颗树的位置,就能确定同一行所在的直线根据两点确定一条直线; 故答案为②.考点:线段的性质:两点之间线段最短.三、解答题26.(1)∠AOD, ∠BOC;(2)∠2=56°, ∠3=34°.【解析】【分析】(1)由垂线的定义和角的互余关系即可得出结果;(2)由角平分线的定义求出∠AOD ,由对顶角相等得出∠2的度数,再由角的互余关系即可求出∠3的度数.【详解】解:(1)∵OF ⊥OC ,∴∠COF=∠DOF=90°,∴∠AOF+∠BOC=90°,∠AOF+∠AOD=90°,∴∠AOF 的余角是∠BOC 、∠AOD ;故答案为:∠BOC 、∠AOD ;(2)∵OE 平分∠AOD ,∴∠AOD=2∠1=56°,∴∠2=∠AOD=56°,∴∠3=90°-56°=34°.【点睛】本题考查了角平分线的定义、对顶角相等的性质、互为余角关系;熟练掌握对顶角相等得性质和角平分线的定义是解决问题的关键.27.(1)x=-1;(2)x =1【解析】【分析】(1)先去括号,然后移项合并,即可得到答案;(2)先去分母,然后去括号,移项合并,即可得到答案.【详解】解:(1)∵2(2)6x --=,∴-2x +4=6,∴-2x =2,∴x =-1;(2)∵121123x x -+=-, ∴3x -3=6-2(2x +1),∴7x =7,∴x=1;【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的方法.28.小红当天买了4盒鲜奶.【解析】【分析】根据“买鲜奶的钱+买酸奶的钱=买奶的总钱数”这一等量关系,设小红当天买了x盒鲜奶,列出一元一次方程,解决即可.【详解】设小红当天买了x盒鲜奶.4x+5(10 ̶x)=76-30x=4答:小红当天买了4盒鲜奶.【点睛】本题考查了一元一次方程的应用问题,解决本题的关键是找出各数据之间存在的等量关系. 29.(1)见解析;(2)见解析;(3)AH【解析】【分析】(1)根据平行线的性质与网格结构的特点作出即可;(2)根据网格结构作出垂线与AB相交于点D即可;(3)根据点到直线的距离的定义解答;【详解】(1)如图所示:(2)如图所示:(3)如图所示:【点睛】本题考查了网格结构中平行线与垂线的作法,熟练掌握网格结构是解题的关键.30.(1)1;(2)W1=W2,理由详见解析;(3)51.【解析】【分析】(1)把a =1,b =﹣2输入运算程序,计算即可; (2)按照计算程序分别求出W 1,W 2的值再进行比较.(3)分四种情况:当3x ≥时,当532x ≤<时,当522x <<时,当2x ≤时,分情况讨论x 在不同的取值范围内输出值为26,求出符合条件的x 的值,再计算a +b 的值. 【详解】解:(1)输入数对(1,﹣2),即a =1,b =﹣2, W =[|a ﹣b |+(a +b )]×12=1 故答案为1.(2)当a =m ,b =﹣n 时,W 1=[|a ﹣b |+(a +b )]×12=12[|m +n |+(m ﹣n )] 当a =﹣n ,b =m 时,W 2=[|a ﹣b |+(a +b )]×12=[|﹣n ﹣m |+(m ﹣n )]×12=12[|m +n |+(m ﹣n )] 即W 1=W 2(3)设a =|x ﹣2|,b =|x ﹣3|,若输入数对(a ,b )之后,输出W .1[()]2W a b a b =-++当3x ≥时,0,0,0a b a b >>-> ∴1()2262W a b a b a x =-++==-= 解得28x =282283262551a b ∴+=-+-=+=当532x ≤<时,0,0,0a b a b ><-> ∴1()2262W a b a b a x =-++==-= 解得28x =(不符合题意,舍去) 当522x <<时,0,0,0a b a b <<-< ∴1()3262W b a a b b x =-++==-= 解得23x =-(不符合题意,舍去) 当2x ≤时,0,0,0a b a b <<-< ∴1()3262W b a a b b x =-++==-= 解得23x =-232233252651a b ∴+=--+--=+=综上所述,a +b 的值为51. 【点睛】本题主要考查绝对值的性质,整式的加减,解一元一次方程,掌握绝对值的性质,一元一次方程的解法,去括号,合并同类项的法则是解题的关键.31.(1)见解析;(2)Ⅰ.2个小正方体;Ⅱ.2个小正方体;Ⅲ.1900平方厘米. 【解析】 【分析】(1)根据几何体可知主视图为3列,第一列是三个小正方形,第二列是1个小正方形,第三列是2个小正方形;左视图是三列,第一列是3个正方形,第二列是3个正方形,第三列是1个正方形;(2)I.可在正面第一列的最前面添加2个小正方体, 故答案为:2II.可以拿走最左侧第2排两个,也可以拿走最左侧3排两个, 故答案为:2III. 若拿走最左侧第2排两个,能喷漆的面有19个,若拿走最左侧第3排两个,能喷漆的面有21个,根据面积公式计算即可. 【详解】 (1)画图(2)Ⅰ. 可在正面第一列的最前面添加2个小正方体;Ⅱ. 可以拿走最左侧第2排两个,也可以拿走最左侧3排两个; 2个小正方体;Ⅲ.若拿走最左侧第2排两个,喷涂面积为219101900⨯=平方厘米; 若拿走最左侧第3排两个,喷涂面积为221102100⨯=平方厘米; 综上所述,需要喷漆的面积最少是1900平方厘米. 【点睛】此题考查几何体的三视图,能正确观察几何体得到不同方位的视图是解题的关键,根据三视图对应添加或是减少时注意保证某些视图的正确性,需具有很好的空间想象能力. 32.2a 2﹣3b ,17. 【解析】 【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末达标测试卷
一、选择题(每题3分,共30分)
1.下列各数中,小于-3.5的数是( )
A.-4 B.-3 C.-2 D.-1
2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67 500 t.将67 500用科学记数法表示为( )
A.6.75×104B.67.5×103C.0.675×105D.6.75×103 3.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是( )
A.点A与点D B.点A与点C
C.点B与点D D.点B与点C
4.下面调查中,适合采用普查的是( )
A.对全国中学生心理健康现状的调查B.对某市食品合格情况的调查C.对天水电视台《人文天水》收视率的调查D.对你所在班级同学身高情况的调查
5.如图所示的几何体从正面看到的图形是( )
6.图中的平面展开图是下面名称的几何体的展开图,则立体图形的名称与平面
展开图不相
..符.的是( )
7.下列计算正确的是( )
A .3-5=2
B .3a +2b =5ab
C .4-|-3|=1
D .3x 2y -2xy 2=xy 8.某超市进了一批商品,每件进价为a 元,若每件要想获利25%,则每件商品
的零售价应定为( )
A .25%a 元
B .(1-25%)a 元
C .(1+25%)a 元
D .a
1+25%
元 9.为了解本校九年级学生的体能情况,随机抽查了其中30名学生,测试1 mi n
仰卧起坐的次数,并将其绘制成如图所示的频数直方图.那么仰卧起坐次数在25~30的人数占抽查总人数的百分比是( )
A .40%
B .30%
C .20%
D .10%
10.如图是一个数值运算的程序,若输出的y 值为3,则输入的x 值为( )
A .3.5
B .-3.5
C .7
D .-7
二、填空题(每题3分,共30分)
11.-12
πab 的系数为________,次数为________. 12.林林的爸爸只用了两枚钉子就把一根木条固定在墙上,用到的数学原理是
_______________________________________________________.
13.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检测.在这个问题中,总体是__________________________________,样本是__________________________________________.
14.如图,在直角三角形ABC中,∠ACB=90°,以边BC所在的直线为轴旋转一周所得到的几何体是________.
15.若4x2m y n+1与-3x4y3的和是单项式,则m+n=________.
16.如图,∠AOB是直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于________.
17.已知线段AB=12 cm,点C在线段AB上,且AC=1
3
BC,M为BC的中点,
则AM的长为__________.
18.如图,这是一个正方体的展开图,如果将它折叠成一个正方体后相对面上的数相等,则xy的值为_____________________________________________.
19.小明和小丽同时从甲村出发到乙村,小丽的速度为4 km/h,小明的速度为5 km/h,小丽比小明晚到15 mi n,则甲、乙两村的距离是________.
20.高杨同学用木棒和硬币拼成如图所示的“列车”形状,第1个图需要4根木棒、2枚硬币,第2个图需要7根木棒、4枚硬币,照这样的方式摆下去,第n个图需要__________根木棒、__________枚硬币.
三、解答题(21,23题每题8分,22,25题每题7分,其余每题10分,共60分)
21.计算:
(1)-22
+|5-8|+24÷(-3)×13; (2)-24×⎝ ⎛⎭⎪⎫-56+38-1112.
22.先化简,再求值:2(ab 2-a 2b )-(-2a 2b -ab 2+1),其中a =4,
b =12.
23.解下列方程:
(1)32x -64=16x +32; (2)1-x 3-x =3-x +
2
4.
24.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项.现随机抽查了m名学生,并将其结果绘制成如图所示的条形统计图和扇形统计图.解答下列问题:
(1)m=________;
(2)请补全条形统计图;
(3)在图②中,“乒乓球”所对应的扇形圆心角的度数为________;
(4)已知该校共有1 200名学生,请你估计该校有________名学生最喜爱足球活动.25.如图,由点O引出6条射线OA,OB,OC,OD,OE,OF,且∠AOB=90°,OF平分∠BOC,OE平分∠AOD.若∠EOF=170°,求∠COD的度数.
26.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲木工组每天修桌凳16套,乙木工组每天修桌凳比甲木工组多8套,甲木工组单独修完这些桌凳比乙木工组单独修完这些桌凳多用20天,学校每天付甲木工组80元修理费,付乙木工组120元修理费.
(1)问该中学库存多少套桌凳?
(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元的生
活补助费,现有三种修理方案:①由甲木工组单独修理;②由乙木工组单独修理;③甲、乙两木工组合作同时修理.
你认为哪种方案省时又省钱?为什么?
27.已知多项式-m3n2-2中,含字母的项的系数为a,多项式的次数为b,常数项为c,且a,b,c分别是点A,B,C在数轴上表示的数.
(1)求a,b,c的值,并在数轴上标出A,B,C.
(2)若甲、乙、丙三个动点分别从A,B,C三点同时出发并沿数轴负方向运动,
它们的速度分别是每秒1
2
个单位长度、每秒2个单位长度、每秒
1
4
个单位长
度.当乙追上丙时,乙是否追上了甲?为什么?
(3)在数轴上是否存在一点P,使P到A,B,C的距离之和等于10?若存在,请
直接写出点P表示的数;若不存在,请说明理由.
答案
一、1.A 2.A 3.A 4.D 5.C 6.A 7.C 8.C 9.A 10.D
二、11.-12
π;2 12.两点确定一条直线
13.该中学七年级学生的视力情况;抽取的25名学生的视力情况
14.圆锥 15.4 16.65° 17.7.5 cm
18.4或-4 19.5 km 20.(3n +1);2n
三、21.解:(1)原式=-4+3+24×⎝ ⎛⎭⎪⎫-13×13=-4+3+⎝ ⎛⎭
⎪⎫-83=-1-83=-113; (2)原式=-24×⎝ ⎛⎭
⎪⎫-56-24×38+24×1312=20-9+26=37. 22.解:原式=2ab 2-2a 2b +2a 2b +ab 2-1=3ab 2-1.
当a =4,b =12时,3ab 2-1=3×4×⎝ ⎛⎭
⎪⎫122-1=3-1=2. 23.解:(1)移项、合并同类项,得16x =96.
系数化为1,得x =6.
(2)去分母,得4(1-x )-12x =36-3(x +2).
去括号,得4-4x -12x =36-3x -6.
移项,得-4x -12x +3x =36-6-4.
合并同类项,得-13x =26.
系数化为1,得x =-2.
24.解:(1)150
(2)补全条形统计图如图所示.
(3)36°
(4)240
25.解:因为∠AOB =90°,∠EOF =170°,
所以∠BOF +∠AOE =360°-∠AOB -∠EOF =360°-90°-170°=100°. 因为OF 平分∠BOC ,OE 平分∠AOD ,
所以∠BOC +∠AOD =2∠BOF +2∠AOE =2(∠BOF +∠AOE )=2×100°=200°.
所以∠COD =360°-∠AOB -(∠BOC +∠AOD )=360°-90°-200°=70°.
26.解:(1)设该中学库存x 套桌凳,则甲木工组单独修完需要x
16天,乙木工组单独修完需要x 16+8
天. 由题意,得x 16-x 16+8=20. 解得x =960. 答:该中学库存960套桌凳.
(2)方案③省时又省钱.理由如下:
设①②③三种修理方案的费用分别为y 1元、y 2元、y 3元,
则y 1=(80+10)×96016
=5 400(元), y 2=(120+10)×96016+8
=5 200(元),
y3=(80+120+10)×960
16+16+8
=5 040(元).因为5 040<5 200<5 400,且易知方案③最省时,所以方案③省时又省钱.
27.解:(1)由题意知a=-1,b=5,c=-2.如图所示.
(2)乙追上了甲.
设乙追上丙时用了x s.
依题意,得2x-1
4
x=5-(-2),
解得x=4.
此时乙、丙在与-3对应的点处相遇,而甲走了2个单位长度,恰在-3对应的点处,
所以三者在与-3对应的点处相遇,即乙追上丙时,也追上了甲.
(3)存在.点P表示的数为-8
3
或2.。