中考分式化简求值专项练习与答案

合集下载

中考分式化简求值专项练习与答案(可编辑修改word版)

中考分式化简求值专项练习与答案(可编辑修改word版)

,代入值得:-1
a2
12、化简得: 2 ,代入值得: 2 1
x2
2
14、化简得: a a2 ,代入值得: 7 2
第 7 页(共 7 页)
2
x
5
的整
1
数解.
第 2 页(共 7 页)
7、化简求值:
a2
6ab 9b2 a 2 2ab
5b 2 a 2b
a
2b
1 a
,其中
a,b
满足
ab4 ab2
8、先化简,再求值:
1 x
x2 x2
1 x
x
2
1
1
,其中
x 1
x
的值为方程 2x
5x
1 的解.
9、先化简,再求值: (x 1 3 ) x2 4x 4 ,其中 x 是方程 x 1 x 2 0 的解。
中考专题训练——分式化简求值
1、先化简,再求值:
x2 2x x2 1
x
1
2x 1 x 1
,其中
x
1 2
a2 2、先化简,再求值: (
5a
2
1)
a 2 4 ,其中a 2 3
a2
a2 4a 4
3、先化简,再求值: (1 1 ) x 2 2x 1 ,其中 x 3
x2
x2 4
第 1 页(共 7 页)
x 1
x 1
25
第 3 页(共 7 页)
10、先化简,再求值:
a2
a2 4 4a
4
a
2
2
a2 a
2a 2
,
其中
a
3
1 11、先化简,再求值: (
a2)

初中数学分式的化简求值专项训练题8(附答案详解)

初中数学分式的化简求值专项训练题8(附答案详解)

x x
2 2
1
4 x2
4
,其中
x
2 2.
8. 先化简( m2 4m -m-2)÷m2 2m 1 ,然后从-2<m≤2 中选一个合适的整数作
m2
m2
为 m 的值代入求值.
9.先化简,再求代数式的值:
1
1 m
2
m2 2m 1 m2 4
,其中
m=1.
10.先化简,再求值:(
x2 x
x 1
x﹣1)
x3 x2 x2 2x 1
,其中
x
是不等式组
x 1<0
3 x 1
x
7
的整数解.
11.阅读下列材料,解决问题: 在处理分数和分式问题时,有时由于分子比分母大,或者为了分子的次数告诉于分母的
次数,在实际运算时往往难度比较大,这时我们可以将假分数(分式)拆分成一个整数
(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们
m1 01
【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.
9. m 2 ,﹣ 1 m1 2
【解析】 【分析】 先根据分式混合运算的法则把原式进行化简,再把 m 的值代入进行计算即可. 【详解】
解:原式=
m m
1 2
.
(m
2)(m (m 1)2
2)
= m2 , m 1

x3
(3)已知一个六位整数 20xy17 能被 33 整除,求满足条件的 x,y 的值.
b a 2ab b2
12.先化简,再求值
a
a
a
,其中 a 3 1,b=1.
13.先化简,再求值:

分式的化简求值专项练习

分式的化简求值专项练习

分式的化简求值专项训练化简求值:1.先化简,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.2.先化简,再求值:,其中a=2013.3.先化简,再求值:,其中,a=1+,b=1﹣.4.先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.5.先化简,再求值:,其中,.6.先化简,再求值:(﹣)÷,其中m=﹣3,n=5.7.先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.8.先化简,再求值:,其中x是不等式3x+7>1的负整数解.9.先化简,再求值:a﹣2+,其中a=3.11.先化简,再求值:,其中a=.12.先化简,再求值:,其中x=﹣2.13.先化简,后求值:,其中a=3.14.先简化,再求值:,其中x=.15.先化简,再求值:,其中x=2.16.先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.17.先化简,再求值:,其中x=3.18.先化简,再求值:÷(a﹣),其中a、b满足式子|a﹣2|+(b﹣)2=0.19.先化简,再求值:(﹣)÷,其中x=4.20.先化简,再求值:,其中a=﹣1.参考答案与试题解析一.解答题(共20小题)1.(2013•巴中)先化简,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.×=52.(2013•普洱)先化简,再求值:,其中a=2013.•=﹣==.3.(2013•襄阳)先化简,再求值:,其中,a=1+,b=1﹣.÷÷×,,﹣=﹣4.(2013•自贡)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.×﹣=5.(2013•孝感)先化简,再求值:,其中,.6.(2013•连云港)先化简,再求值:(﹣)÷,其中m=﹣3,n=5.﹣)÷÷××==7.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.÷﹣×﹣,∵∴﹣﹣8.(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.﹣]×××代入中得:9.(2013•岳阳)先化简,再求值:a﹣2+,其中a=3.10.(2013•永州)先化简,再求值:(+)÷,其中x=2.+÷+•11.(2013•遂宁)先化简,再求值:,其中a=.•时,原式12.(2013•湘潭)先化简,再求值:,其中x=﹣2.÷﹣13.(2013•鄂州)先化简,后求值:,其中a=3.÷÷14.(2013•张家界)先简化,再求值:,其中x=.+1.15.(2013•宜宾)先化简,再求值:,其中x=2.16.(2013•乌鲁木齐)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.﹣÷×=17.(2013•宿迁)先化简,再求值:,其中x=3.•=18.(2013•齐齐哈尔)先化简,再求值:÷(a﹣),其中a、b满足式子|a﹣2|+(b﹣)2=0.÷﹣÷•)=2+19.(2013•广安)先化简,再求值:(﹣)÷,其中x=4.﹣)÷×,﹣﹣20.(2013•抚顺)先化简,再求值:,其中a=﹣1.==,=.©2010-2014 菁优网。

中考数学复习:分式化简求值(含答案)

中考数学复习:分式化简求值(含答案)

中考数学复习分式化简求值 11、〔2021 XXXX 〕分式可变形为〔〕1x1111 A.B.C.D.x11x1xx12、〔2021 XX ,第6题,4分〕化简2 x1 + -1 -x1x 的结果是〔〕 1xA.x1B.x1C.x1D.x13、〔2021 ?XXXX,第16题3分〕计算:a a2 + -4 2+ a2a=________. 4、(2021年XX)化简a12 (1) 2a2a1a1 的结果是________. 5、分式乘除运算:〔1〕6a 8y 2 2y ·2 3a ;〔2〕 a2 + a -2 1 · 2+a2a ;〔3〕3x 2 y ÷ 6 y x 2;〔4〕 a a1 - 2-+ 4a4 ÷ 2 a1 - a 2 - 4;〔5〕 ab - ab + · 4 a -a a 2 - 2 b ab 2;〔6〕2 4x -426、计算:〔1〕 a + abb-b + bcc;〔2〕3 a+a15 - 5a;〔3〕2 x - 1+〔4〕2 x5 - x2 --x x2 --1 + x 2x - ;〔5〕1 x -3 -1 x +3〔6〕a2a 2- 4〔7〕先化简〔1+1 x - 1〕÷xx 2- 1,再选择一个恰当的x 值代入并求值. 7、〔2021 ?XXXX,第17题6分〕计算:﹣.8、(2021 河·南,第16题8分)先化简,再求值:a 22 -2abb+ 2a -2b11 ÷〔-〕,其中a51,b51.ba12 9、〔2021 ?XX莱芜,第18题6分〕先化简,再求值:〕x--÷〔2x--÷x2+4x-x+2,其中x=-4+3.11〔-÷10、〔2021 ?XX威海,第19题7分〕先化简,再求值:〕x1x1+-42+x2-x1,其中x=﹣2+.11、先化简,再求值:?+,其中x是从﹣1、0、1、2中选取的一个适宜的数.12、〔2021 XXXX〕先化简,再求值:a2-a2b22ab-b〔a-,其中a=2+3,b=2-3.÷〕a2a〔113、化简:-+〕a÷a1+a-12++a2a1.mn2mn+-14、化简:22mnmnnm+--15、化简:m-n2(m-n)-2mn+n2m-n2+nm-n16、〔2021XX中考,第17题,5分〕化简:2abba2b -.ababab17、〔2021XX中考,第17题,5分〕先化简、再求值:22x2xx1x1,其中1x.2中考数学复习分式化简求值【答案】a-21、【答案】选D.2、【答案】选A3、【答案】a4、【答案】 a115、【答案】〔1〕y2a;〔2〕a(1a-2)=12-a2a;〔3〕12x;〔4〕2a+2()(a+a-21)2;〔6〕〔5〕a(a-b)=a-ab2x-y(2x+y)2c-ax613-;〔2〕;〔3〕;〔4〕x+2;〔5〕;〔6〕6、【答案】〔1〕x2-ac195x-〔7〕原式=x+1,x取不等于-1,0,1的其他值,求值正确即可.1a+2;7、【答案】解:原式=﹣==.〔a2b〕a b ababab8、【答案】解:原式=ab2(ab)=2ab=2〔51〕(51)51当a51,b51时,原式=2229、【答案】-x-4,-10、【答案】解:原式=﹣,当x=﹣2+时,原式=﹣=﹣=﹣.11、【答案】解:原式=,当x=0时,原式==﹣.12、【答案】13、【答案】a1+a1-14、【答案】m+nmn-15、【答案】1m-n16、【答案】解:原式=2aab.x 17、【答案】解:原式==x1 1 3。

初中数学分式的化简求值专项训练题7(附答案详解)

初中数学分式的化简求值专项训练题7(附答案详解)

解:原式= +
=
=
当 x=0 时,原式= 1 . 2
= 1 , x2
4. 2 ,1. x2
【解析】
【分析】
先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.
【详解】
原式=((xx 11))((xx
1)(x 1)•
1)(x x2
1)
2
(x 1)(x 1)
=(x 1)(x 1)•
∴当 x 6 时,原式 6 2 1 6 2 2
【点睛】 本题考查了分式的化简求值及一元二次方程的解法,解题的关键是掌握相应的运算法则,注 意 x 的值要使得原代数式有意义.
11. 1 , 2 x2 2
【解析】 【分析】 先按分式混合运算的相关运算法则将原式化简,再代入 x 的值按二次根式的除法法则计算即 可. 【详解】
原式除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以
这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将 x 的值代入进行二次根式化
简.
【详解】
解:原式
=
x
x
12
x
1 x2 x2 1
1
x
x
12
x x 1 x 1x 1
x
x
12
x 1x 1 x x 1
1 x 1
.
当 x 2 1时,原式
21.先化简,再求值:
x3 x2 1
x2
x
2x 1 3
1 x 1
+1
,其中
x=﹣6.
22.先化简,再求值:
÷ ,其中 x=2sin30°+2 cos45°.
23.如果 a2+2a-1=0,求代数式 (a 4 ) a2 的值. a a2

中考化简求值题专项练习及答案

中考化简求值题专项练习及答案

专项辅导(4)化简求值题及答案化简求值题在中考数学中占有十分重要的地位,纵观近几年河南省的中考数学试题,都出现了此类题目,所占分值为8分,可见此类题目的重要性!在难度上化简求值题并不难,侧重于对基础知识的考查.进行适当的练习能够对此类题目更好的掌握,在考试中不至于失分! (2008.河南)1.先化简,再求值:,112112aa a a a a ÷+---+其中21-=a .(2009.河南)2.先化简,2211112-÷⎪⎭⎫ ⎝⎛+--x x x x 然后从1,1,2-中选取一个合适的数作为x 的值代入求值.(2010.河南)3.已知,2,42,212+=-=-=x x C x B x A 将它们组合成 ()C B A ÷-或C B A ÷-的形式,请你从中任选一种进行计算,先化简,再求值,其中.3=x(2011.河南)4.先化简,14411122-+-÷⎪⎭⎫⎝⎛--x x x x 然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.(2012.河南)5.先化简,424422⎪⎭⎫⎝⎛-÷-+-x x x x x x 然后从5-<x <5的范围内选取一个合适的整数作为x 的值代入求值.以下题目选取的是九年级上册数学中的化简求值题.请认真完成!6.先化简,再求值:,221122yxy x y y x y x ++÷⎪⎪⎭⎫ ⎝⎛+--其中y x ,的值分别为.23,23-=+=y x7.先化简,再求值:,121112++÷⎪⎭⎫ ⎝⎛+-a a a a 其中.23=a8.先化简,再求值:,1121112-÷⎪⎭⎫⎝⎛+-+-+x x x x x x 其中2=x .9.先化简,再求值:,244442232⎪⎪⎭⎫⎝⎛+-⋅⎪⎪⎭⎫ ⎝⎛++-x y x xyy xy x y y x 其中y x ,的值分别为.1212⎪⎩⎪⎨⎧+=-=y x10.(2009.安顺)先化简,再求值:),2(42442+⋅-+-x x x x 其中.5=x11.(2009.威海)先化简,再求值:()()(),3222a b a b a b a -+-++其中.23,32-=--=b a12.先化简,再求值:,2422⎪⎭⎫ ⎝⎛--+÷-x x x x 其中.12-=x (乐山市中考题)13.先化简,1112aa a a -÷--然后再选取一个合适的值作为a 的值代入求值.14.已知,12,12+=-=y x 求xyy x +的值.15.先化简,再求值:(a -2144a a 4-a 22-+-) ÷2aa 22-,其中a 是方程x 2+3x+1=0的根.16.(平顶山中考模拟)先化简,再求值:,211222yx y y x y x -÷⎪⎪⎭⎫ ⎝⎛+--其中,2,22010=+=y x 小明做这道题时,把22010+=x 抄成,22001+=x 计算结果仍正确,请你通过计算说明原因.17.(2005河南)已知,12+=x 求.112--+x x x18.(2003河南)已知,2231,2231+=-=y x 求4-+xyy x 的值.19.以后还有总的训练. 2012.11.15以下为补充题目:20.(2013.河南) 先化简,再求值:()()()()14121222+--+++x x x x x ,其中2-=x .21.(2014.河南)先化简,再求值:⎪⎪⎭⎫⎝⎛++÷--x x x x x 121222,其中12-=x .22.(2015.河南)先化简,再求值:)11(22222a b b a b ab a -÷-+-,其中15+=a , 15-=b .23.(2013.许昌一模)先化简,再求值:25624322+-+-÷+-a a a a a ,然后选择一个你喜欢的数代入求值.24.(2015.郑州外国语三模)先化简,再求值:1211222+-+÷⎪⎭⎫ ⎝⎛--a a a a a a ,其中 022=-+a a .25.(2015.郑州外国语月考)先化简,再求值:x x x 1112-÷⎪⎭⎫ ⎝⎛+,其中︒︒+-=45cos 260tan 327x .26.(2015.郑州市九年级一模)先化简11129613222+++-++÷-+x x x x x x x ,再取恰当的x 的值代入求值.27.(2015.郑州市九年级二模)先化简⎪⎭⎫ ⎝⎛-+÷-111122x x x ,再从32<<-x 中选一个合适的整数代入求值.28.(2015.平顶山一模)先化简,再求代数式2222223y x y x y x y x -+--+的值,其中 2,245cos 2=+=︒y x .29.(2014.新乡二模)先化简,再求值:⎪⎭⎫⎝⎛-÷⎪⎭⎫⎝⎛-+-+--142244122a a a a a a a ,其中a 是一元二次方程0742=--x x 的一个根.30.(2015.洛阳一模)先化简,再求值:⎪⎭⎫ ⎝⎛++-÷⎪⎭⎫ ⎝⎛++23221a a a a ,其中a 满足022=--a a .31.(2014.贺州)先化简,再求值:()11222+++÷+a a a ab b a ,其中13+=a ,13-=b .32.(2014.泰州)先化简,再求值:1212312+-+-÷⎪⎭⎫ ⎝⎛+-x xx x x x ,其中x 满足012=--x x .33.(2015.湖南岳阳)先化简,再求值:4421122+++÷⎪⎭⎫ ⎝⎛+-x x x x x ,其中2=x .34.(2014.苏州)先化简,再求值:⎪⎭⎫ ⎝⎛-+÷-11112x x x ,其中12-=x .35.(2015.山东德州)先化简,再求值:⎪⎪⎭⎫⎝⎛--÷-a b ab a a b a 2222,其中32,32-=+=b a .36.(2014.凉山州)先化简,再求值:⎪⎭⎫ ⎝⎛--+÷--2526332a a a a a ,其中a 满足0132=-+a a37.(2014.宁夏)先化简,再求值:b a b a b a b b a a-+÷⎪⎭⎫ ⎝⎛+--22,其中31-=a , 31+=b .38.(2013.遵义)已知实数a 满足01522=-+a a ,求代数式÷-+-+12112a a a ()()12212+-++a a a a 的值.39.(2014.泉州)先化简,再求值:()()422-++a a a ,其中3=a .40.(2013.曲靖改)先化简,再求值:1121222222+÷⎪⎪⎭⎫ ⎝⎛+----+x xx x x x x x x ,其中 21+=x .2015.10.6专项辅导(4)化简求值题参考答案●1.解:aa a a a a 112112÷+---+ ()()()()()()()2222222211111111111--=---=----+=⨯---+=a a aa a a a a a a a aa a当21-=a 时 原式()21211---=()21212-=--=●2.解:2211112-÷⎪⎭⎫ ⎝⎛+--x x x x ()()()()()()()()()x x x x x x xx x x x x x 41121121121111=-+⨯-+=-+⨯-+--+=当2=x 时 原式2224==.注意:这里1±≠x .●3.解:()C B A ÷-()()()()2122222222242212-=+⨯-+=+⨯-+-+=+÷⎪⎭⎫ ⎝⎛---=x x x x x x xx x x x x x x x当3=x 时 原式1231=-=或解:C B A ÷-()()()()xx x x x x x x x x x x x xx x 1222221222221242212=--=---=+⨯-+--=+÷---=当3=x 时 原式31=注意:对于两种选择要注意运算顺序.●4.解:14411122-+-÷⎪⎭⎫ ⎝⎛--x x x x ()()()2211111--+⨯---=x x x x x()()()21211122-+=--+⨯--=x x x x x x x当0=x 时 原式212010-=-+=或当2-=x 时 原式412212=--+-=注意:为保证本题中所有分式都有意义,x 只能取0或2-.●5.解:⎪⎭⎫⎝⎛-÷-+-x x x x x x 424422()()()()()()212222422222+=-+⨯--=-÷--=x x x xx x x x x x x x∵x x 且,55<<-为整数 ∴若使分式有意义,x 只能取1-和1 当1-=x 时 原式1211=+-=(或当1=x 时 原式31211=+=) ●6.解:222211y xy x yy x y x ++÷⎪⎪⎭⎫ ⎝⎛+--()()()yx y x y yx y x y y y x y x y x y x y x -+=+⨯-=+⨯-++-+=2222当23,23-=+=y x 时 原式23232323+-+-++=26232232===●7.解:121112++÷⎪⎭⎫ ⎝⎛+-a a a a ()()111111122+=+⨯+=+⨯+-+=a a a a a aa a a 当23=a 时 原式223123+=+=. ●8.解:1121112-÷⎪⎭⎫ ⎝⎛+-+-+x x x x x x ()()()()()xx x x x x x x x x x x x x 1111111111112222-⨯-=-⨯-+-+=-⨯⎪⎪⎭⎫ ⎝⎛-+-+=1-=x x 当2=x 时 原式()()()1212122122+-+=-=221222+=-+=●9.解:⎪⎪⎭⎫⎝⎛+-⋅⎪⎪⎭⎫ ⎝⎛++-x y x xyy xy x y y x 244442232 ()()()()()xyyx y x x y x y x y y x xyx xy y x y x y x y =-+⨯+-=--+⨯+-+=222222422222∵⎪⎩⎪⎨⎧+=-=1212y x ∴原式()()1212+-=1=●10.解:()242442+⋅-+-x x x x ()()()()()24222222222-=+-=+⨯--=x x x x x x当5=x 时原式()212452452=-=-=●11.解:()()()2232a b a b a b a -+-++aba b ab a b ab a =---+++=22222322当23,32-=--=b a 时原式()()3232+---=()()1343222=-=--=●12.解:⎪⎭⎫ ⎝⎛--+÷-x x x x 2422 ()()xx x x x x x x x x x x x x x x x x 1222224222242222=-⨯-=-÷-=-+-+÷-=⎪⎭⎫ ⎝⎛-++÷-=当12-=x 时 原式()()121212121+-+=-=12+=●13.解:aa a a -÷--2111 ()()()aa a a a a a aa a a =-⨯-=-÷-=-÷--=111111111122由题意可知:1>a 当4=a 时 原式24==●14.解: ∵12,12+=-=y x ∴221212=++-=+y x()()1121212=-=+-=xy∴xyy x x y y x 22+=+ ()()62811222222=-=⨯-=-+=xyxy y x ●15.解:a a a a a a 2221444222-÷⎪⎪⎭⎫ ⎝⎛--+--()()()()()()232223222122222122222a a a a a a a a a a a a a a a a a +=-⨯-+=-⨯⎪⎭⎫ ⎝⎛-+-+=-÷⎥⎦⎤⎢⎣⎡-+--+= ∵a 是方程0132=++x x 的根 ∴0132=++a a ∴132-=+a a 原式2121-=-=注意:对于此类题目,先不要急于解方程,应根据题目化简结果的特点,选择合适的处理方法,如本题可以考虑整体思想采用整体代入的方法.●16.解:222211y x y y x y x -÷⎪⎪⎭⎫ ⎝⎛+--()()()()y y y y y x y x y x y x y x y x 1212222=⨯=-+⨯-++-+=当2=y 时 原式2221==因为化简结果里面没有x ,所以本题的计算结果与x 的取值无关,从而小明在抄错x 值的情况下所得结果依然正确.●17.解:112--+x x x()()11111111222--=---=----+=x x x x x x x x x当12+=x 时 原式211121-=-+-=22-=●18.解:()()2232232232231-++=-=x22389223+=-+=2232231-=+=y∴6223223=-++=+y x ()()189223223=-=-+=xy∴xyxy y x x y y x 4422-+=-+ ()306361166622=-=⨯-=-+=xyxy y x●19.以后还有总的训练. 以下为补充题目: ●20.解:()()()()14121222+--+++x x x x x34414442222+=---+++=x x x x x x当2-=x 时 原式()532322=+=+-=●21.解: ⎪⎪⎭⎫⎝⎛++÷--x x x x x 121222 ()()()()221112111+⨯+=++÷--+=x x x x xxx x x x x11+=x 当12-=x 时 原式22211121==+-=●22.解:)11(22222ab b a b ab a -÷-+- ()()2222ab b a abb a abb a b a b a =-⨯-=-÷--=当15+=a ,15-=b 时 原式()()21515-+=2215=-=●23.解:25624322+-+-÷+-a a a a a ()()()23252225223232+-=+-+=+--++⨯+-=a a a a a a a a a 当1=a 时 原式1213-=+-= 注意:本题,3,2-≠±≠a a .●24.解:1211222+-+÷⎪⎭⎫ ⎝⎛--a a a a a a ()()()()()()2221111111112aa a a a a a a a a a a a a a -=+-⨯-+=+-⨯-+-=∵022=-+a a ∴2,121-==a a ∵1,01≠≠-a a ∴2-=a ∴原式()432122-=---=●25.解:x x x 1112-÷⎪⎭⎫ ⎝⎛+()()11111-=-+⨯+=x x x xx x ∵︒︒+-=45cos 260tan 327x22223333=⨯+⨯-=∴原式()()121212121-++=-=12+=●26.解:11129613222+++-++÷-+x x x x x x x()()()()()()()()()()()323112313111311113111322+=+++=++++-=++++-=+++-⨯-++=x x x x x x x x x x x x x x x x x x∵01,03,01,012≠+≠+≠-≠-x x x x ∴3,1-≠±≠x x 当0=x 时原式32302=+=●27.解:⎪⎭⎫ ⎝⎛-+÷-111122x x x()()()()11111111122+=-⨯-+=-+-÷-+=x x x x x x x x x x x x∵0,01,012≠≠-≠-x x x ∴0,1≠±≠x x 且∴在32<<-x 中,x 可取的整数只有2当2=x 时 原式32122=+=●28.解:2222223y x yx y x y x -+--+()()yx y x y x y x y x y x y x -=-++=---+=122322 222222245cos 2+=+⨯=+=︒x当2,22=+=y x 时原式22212221==-+=●29.解:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+-+--142244122a a a a a a a ()()()()()()a a a a a a a a a aa a a a a -⨯--+--=-÷⎥⎦⎤⎢⎣⎡-+---=422214222122()()2221424-=-⨯--=a aa a a a∵a 是一元二次方程0742=--x x 的一个根 ∴0742=--a a11442=+-a a()1122=-a原式111=●30.解:⎪⎭⎫ ⎝⎛++-÷⎪⎭⎫ ⎝⎛++23221a a a a ()()()1111221234212222-+=-++⨯++=++-÷+++=a a a a a a a a a a a a022=--a a解之得:1,221-==a a∵1,01-≠≠+a a∴2=a 当2=a 时 原式31212=-+=●31.解:()11222+++÷+a a a ab b a()()aba a a ab =++⨯+=2111当13+=a ,13-=b 时 原式()()1313-+=()2132=-=●32.解:1212312+-+-÷⎪⎭⎫ ⎝⎛+-x x x x x x ()()111221112232+-=+--+⨯+-=+--+⨯+-+=x xx x x x x x x x x xx x x x x1122+=+-+=x x x x x x ∵012=--x x∴12+=x x 原式111=++=x x ●33.解:4421122+++÷⎪⎭⎫ ⎝⎛+-x x x x x ()()()()xx x x x x x x x x x x 212212121222+=++⨯++=++÷+-+=当2=x 时 原式21222+=+=●34.解:⎪⎭⎫ ⎝⎛-+÷-11112x x x()()1111111112+=-⨯-+=-+-÷-=x x x x x x x x x x 当12-=x 时 原式22211121==+-=●35.解:⎪⎪⎭⎫⎝⎛--÷-a b ab a a b a 2222 ()()()ba b a b a a a b a b a ab ab a a b a -+=-⨯-+=+-÷-=222222 当32,32-=+=b a 时 原式33232432323232==+-+-++=●36.解:⎪⎭⎫ ⎝⎛--+÷--2526332a a a a a()()()()()()aa a a a a a a a a a a a a a 33133133223325423322+=+=-+-⨯--=---÷--=∵0132=-+a a ∴132=+a a 原式31131=⨯=●37.解:b a b a b a b b a a -+÷⎪⎭⎫ ⎝⎛+--22 ()()()()()()ba b a b a b a b a b a b a ba b a b a b a b b a a +=+-⨯-++=+-⨯-+--+=1222222当31-=a ,31+=b 时- 21 -原式2131311=++-=●38.解:()()1221121122+-++÷-+-+a a a a a a a ()()()()()()()()222212111111121111211+=++-+=+--+=++-⨯-++-+=a a a a a a a a a a a a a a∵01522=-+a a ∴()1612=+a原式81162==●39.解:()()422-++a a a42444222+=-+++=a a a a a当3=a 时 原式()10464322=+=+⨯=●40.解:1121222222+÷⎪⎪⎭⎫ ⎝⎛+----+x x x x x x x x x ()()()()()1111111211111122-+=+⨯-=+⨯⎪⎭⎫ ⎝⎛---=+⨯⎥⎦⎤⎢⎣⎡----++=x x x x x x x x x x x xx x x x x x x x x 当21+=x 时 原式12222121121+=+=-+++=2015.10.6 星期二 15:36。

初中数学分式的化简求值专项训练题(精选历年60道中考题附答案详解)

初中数学分式的化简求值专项训练题(精选历年60道中考题附答案详解)

初中数学分式的化简求值专项训练题(精选历年60道中考题附答案详解)初中数学分式的化简求值专项训练题(精选历年60道中考题附答案详解)1.化简求值:22244(4)2x x x x x+--÷+,其中2x = 2.先化简、再求值:352242a a a a -??÷-- ?--??,其中a3. 3.()1化简:21111x x x ??÷+ ?--??然后选择你喜欢且符合题意的⼀个x 的值代⼊求值. ()2分解因式:22344xy x y y --4.先化简再求值:211122x x x -??÷- ?++??,其中x =135.先化简(2341x x +-﹣21x -)÷2221x x x +-+,再从﹣2,﹣1,0,1,2中选⼀个你认为合适的数作为x 的值代⼊求值.6.2316133962x x x x x x --??÷-- ?+--+??7.先化简再求值:(2221244x x x x x x ---+++)÷42x x -+,其中x =(﹣1)0. 8.先化简,再求值:22214244a a a a a a a a +--??-÷--+,其中3a =. 9.先化简,再求值: 2295(2)242y y y y y -÷----,其中y =. 10.先化简,再求值:(2241x x x -+-+2-x)÷2441x x x++-,其中x-2. 11.化简求值:22111m m m m +-??-÷,其中m12.(1)计算:22214()244x x x x x x x x+---÷--+;(2)解分式⽅程:1121x x x -=+-. 13.(1)化简2422x x x+-- (2)先化简,再求值221111x x x ??÷+ ?--??,其中x 为整数且满⾜不等式组11622x x --??+≥?>.14.先化简,再求值:(11x +﹣1)÷21x x -,其中x =2 15.(1)化简:2112x x x x x ??++÷- ??;(2)化简分式:2221121x x x x x x x x -??-÷ ?---+??,并从13x -≤≤中选⼀个你认为适合的整数x 代⼈求值.16.先化简,再求值:211()1211x x x x x x ++÷--+-,其中x=3. 17.先化简,再求值:(522a a -++a ﹣2)÷22a a a -+,其中a =2+1. 18.如图,作业本上有这样⼀道填空题,其中有⼀部分被墨⽔污染了,若该题化简的结果为1x 3 +.(1)求被墨⽔污染的部分;(2)原分式的值能等于17吗?为什么? 19.先化简,再求值:2211()3369x x x x x x --÷---+,其中x 满⾜240x +=. 20.先化简再求值2221111a a a a a --??÷-- ?-+??,其中a 是⽅程x 2-x =2017的解. 21.化简求值:22a 2ab b 2a 2b-+÷-(11b a -),其中a 2=1,b 2=1. 22.(1)解⽅程:21124x x x -=-- (2)先化简,再求值:22112()2a a b a b a ab b+÷+--+,其中269a a -+与|1|b -互为相反数. 23.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中2.。

分式的化简求值练习题带答案

分式的化简求值练习题带答案

分式的化简求值练习题带答案精心整理分式的化简乘方:()n nn n n a a a a a a a a b b b b b b b b ?=?=?64748L L L 1424314243个个n 个=(n 为正整数)整数指数幂运算性质:⑴m n m n a a a +?=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数)中考要求负整指数幂:一般地,当n 是正整数时,1n n a a-=(0a ≠),即n a -(0a ≠)是n a 的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a b ccc+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc bdbdbdbd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.【例1【例2【题型】解答【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷=-=--++-【答案】4-【例3】先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-?-÷=?= ?----??-当1a =-时,原式112123a a -===---【例4【例5【题型】解答【关键词】2010年,湖北省十堰市中考试题【解析】原式()()()111121x x x x x +-=+-+-+ 当x 时,原式224=【答案】4【例6】先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题训练——分式化简求值
1、先化简,再求值:⎪⎭⎫ ⎝⎛+---÷--11211222x x x x x x ,其中2
1=x
2、先化简,再求值:324
44)1225(222+=++-÷+++-a a a a a a a ,其中
3、先化简,再求值:4
12)211(22-++÷+-x x x x ,其中3-=x
4、先化简,再求值:(x 2+4x -4)÷ x 2-4 x 2+2x
,其中x =-1
5、先化简,再求值:22122 121x x x x x
x x x ---⎛⎫-÷ ⎪+++⎝⎭,其中x 满足012=--x x .
6、先化简,再求值:1221214322+-+÷⎪⎭⎫ ⎝⎛---+x x x x x x ,其中x 是不等式组⎩
⎨⎧<+>+15204x x 的整数解.
7、化简求值:a
b a b a b ab a b ab a 12252962
222-⎪⎪⎭⎫ ⎝⎛---÷-+-,其中a ,b 满足{
42=+=-b a b a
8、先化简,再求值:1
1121122++⎪⎪⎭⎫ ⎝⎛---+÷x x x x x x ,其中x 的值为方程152-=x x 的解.
9、先化简,再求值:2344(1)11x x x x x ++--÷++,其中x 是方程12025
x x ---=的解。

10、先化简,再求值:,2222444222-+÷⎪⎪⎭
⎫ ⎝⎛--+--a a a a a a a 其中3-=a
11、先化简,再求值:11)1211(
2+÷---+a a a a ,其中13+=a .
12、先化简,再求值:
2244(1),442x x x x
-÷--+-其中222-=x
13、先化简,再求值:x
x x x x x --÷--+224)1151(,其中43-=x .
14、先化简,再求值:222221(),11a a a a a a a -+-÷-+- 其中a 是方程2702
x x --=的解.
15、先化简,再求值:222222,1121
a a a a a a a ---÷+--+ 其中tan 60;a =
答案解析:
1、化简得:
11
x -,代入值得:-2 2、化简得:2a - 3、化简得:21
x x -+,代入值得:52 4、化简得:2x -,代入值得:-3 5、化简得:21x x +,代入值得:1 6、化简得:11
x x -+,代入值得:2 7、化简得:23b a -+,代入值得:-13 8、化简得:221x x -,代入值得:-34
9、化简得:22x x -+,代入值得:-57 10、化简得:12a +,代入值得:-1
11、化简得:11a -,代入值得:3 12、化简得:22
x -,代入值得:12--
13、化简得:4x + 14、化简得:2a a -,代入值得:72
-
15、化简得:
1a ,代入值得:3。

相关文档
最新文档