电感厂大功率电感内部资料汇总
电感电容知识点总结

电感电容知识点总结电感的基本知识点总结电感是一种利用导体的线圈产生电磁感应的元件,它能够存储磁场能量,在交流电路中具有阻抗的作用。
电感的基本特性包括自感和互感,自感是指导体线圈中的电流产生的磁场感应自身的电动势,而互感是指两个线圈通过磁场感应产生相互之间的电动势。
电感的单位是亨利(H),一亨利等于一个安培的电流在一个导线中产生一个恒定磁场时,导线中的电流变化率为每秒钟一个秒特斯拉的感应电动势。
电感的计算公式包括自感和互感的计算公式。
自感的计算公式为:L = (μ0 * N^2 * A) / l其中,L为电感,μ0为真空中的磁导率(4π*10^-7 H/m),N为线圈中的匝数,A为线圈的面积,l为线圈的长度。
互感的计算公式为:M = (μ0 * N1 * N2 * A) / l其中,M为互感,N1和N2分别为两个线圈的匝数,A为两个线圈之间的交叉面积,l为两个线圈的中心间距。
电感在电路中的应用包括滤波器、振荡电路、变压器和感应电感电动势。
在交流电路中,电感可以通过调节线圈的匝数和面积来调节阻抗,实现对电路的控制和调节。
电容的基本知识点总结电容是一种能够储存电荷并产生电势差的元件,它由两个导体之间隔绝的绝缘介质组成。
电容的基本特性包括介电极性、电容值和电容的工作原理。
介电极性是指绝缘介质的极化效应产生的电场和电势差,它与绝缘介质的介电常数有关;电容值是指电容器所能储存的电荷量,单位是法拉(F);电容的工作原理是通过两个导体之间的绝缘介质储存电荷,产生电场和电势差。
电容的计算公式包括并联电容和串联电容的计算公式。
并联电容的计算公式为:C = C1 + C2 + … + Cn其中,C为并联电容的总电容值,C1、C2等为并联电容的单个电容值。
串联电容的计算公式为:1/C = 1/C1 + 1/C2 + … + 1/Cn其中,C为串联电容的总电容值,C1、C2等为串联电容的单个电容值。
电容在电路中的应用包括滤波器、耦合电容、隔直电容和时延电容。
GDCD功率电感 中文资料

Part Number 型号
Units 单位 Symbol 符号 GDCD4520-2R7MT GDCD4520-4R7MT GDCD4520-100MT GDCD4520-220MT GDCD4520-260MT GDCD4520-330MT GDCD4520-390MT GDCD4520-470MT GDCD4520-560MT GDCD4520-101MT GDCD4520-151MT
规格如有变更,不在另行通知。 在您订购前,烦请致电咨询确认。 电话:0755—33180885 传真:0755—33180992 网址:
GDCD3521-6R8MT GDCD3521-8R2MT GDCD3521-100MT GDCD3521-120MT GDCD3521-150MT GDCD3521-180MT GDCD3521-220MT GDCD3521-270MT GDCD3521-330MT GDCD3521-390MT GDCD3521-470MT GDCD3521-560MT GDCD3521-680MT GDCD3521-820MT GDCD3521-101MT GDCD3521-121MT GDCD3521-151MT GDCD3521-181MT GDCD3521-221MT GDCD3521-271MT GDCD3521-331MT
1.09
1K,0.3V
0.286
0.95
1K,0.3V
0.322
0.88
1K,0.3V
0.398
0.82
1K,0.3V
0.520
0.76
1K,0.3V
0.660
0.63
1K,0.3V
0.760
0.62
电感厂大功率电感内部资料汇总

磁性材料在应用中,会有不同的工作状态。
如双极性变压器工作于磁滞回线的一三象限,电流互感器工作于初始磁化曲线位置,互感器会靠近准饱和区,升降压电感和直流输出滤波电感等功率电感一般处于偏置状态,工作于第一象限,如下图:图中黄色面积覆盖的区域就是功率电感实际工作的区域,通常称B0(或者H0)为工作点,黄色区域面积反映磁芯的磁滞损耗。
ΔB为交流磁感应强度,和频率f一起决定了磁芯的损耗密度,进一步影响产品温升。
B0+ΔB/2应该小于0.8Bs(准饱和)。
设计时,高频看温升,低频看饱和。
磁性材料Bs随着温度的增加而衰减,常见的功率铁氧体PC40在25℃时饱和磁通密度Bs为0.51T,而100℃为0.44T。
实际中不同应用环境下,工作点B0设计在0.2T~0.34T。
5.功率电感的典型参数。
功率电感最常看到的指标为L、DCR、Isat,Irms,Ir(Isat和Irms取最小值)。
电感量L,为静态测试指标,即无偏置电流时候的电感量。
与其相对应的就是动感和一个电阻串联,其中等效电阻Rs既包含了线圈的直流电阻,也包含了测试频率下磁芯损耗等效的电阻,作为是电感阻抗Z的一部分。
品质因素Q,为单位周期电感最大储能(感抗XL)和耗能(等效串联电阻RS)之比,可反映测试频率下小交流磁感应强度的损耗,与磁芯损耗密度Pcv不同,后者表示大交流磁感应强度的损耗。
在功率传输电路中,与实际情况相差较大,所以一般功率电感不提及品质因素Q。
分布电容Cr,是一个系统属性,与线圈绕组与绕组,层与层,匝与匝,线圈与磁芯,线圈与辅助材料等共同决定的电容。
理想电感要求分布电容越小越好,自谐振频率SRF更高,在高频下依然保持足够大的阻抗Z。
设计时尽量减少层数和减少匝数,减少层与层之间的接触面积,选用中柱长的磁芯,分段绕制,增加屏蔽层等。
对于大电流电感使用的扁平线绕组,螺旋形单层结构,分布电容小,此类电感的自谐振频率较高。
7.扁平线的优势在磁性器件中承担电流传输的绕组,包括不同牌号和温度等级的漆包线,锡包线,铜包铝,铝线,绞合线,丝包线,铜箔和扁平线等。
电感知识点总结归纳

电感知识点总结归纳电感是电路中常见的元件之一,它是利用电流在线圈周围产生的磁场来存储能量的器件。
在电路中,电感可以起到隔直通交的作用,也可以用来调节频率,滤波等功能。
下面对电感的基本知识点进行总结归纳。
一、电感的基本概念1. 电感的定义电感是指当通过一个线圈的电流变化时,线圈周围会产生一个磁场,这个磁场会导致线圈内产生电动势,从而存储电能的元件。
2. 电感的单位电感的单位是亨利(H),符号是L。
1H等于1秒内通过1安培的电流,产生1伏的电动势。
3. 电感的符号在电路图中,电感通常用一个卷绕线圈的图形表示,符号如下:4. 电感的公式电感的大小与线圈的结构和材料有关,一般的电感公式为:L = N^2 * μ0 * A / l其中,L为电感的大小,N为线圈的匝数,μ0是真空中的磁导率,A是线圈的截面积,l 是线圈的长度。
二、电感的特性1. 自感和互感当电流在一个线圈中流过时,线圈内部就会产生一个磁场,这个磁场会导致线圈内部产生电动势,称之为自感。
而当两个线圈靠近时,一个线圈的电流变化也会引起另一个线圈内部产生电动势,这种现象称之为互感。
2. 电感的能量存储电感存储的能量可以用下面的公式表示:W = 1/2 * L * I^2其中,W为存储的能量,L为电感的大小,I为通过电感的电流。
3. 电感的频率特性电感在电路中还有一个重要的特性就是对于交流电的特性。
在交流电路中,电感会通过对交流电的阻抗来改变电路中电流的大小和相位。
三、电感在电路中的应用1. 隔直通交电感在电路中最常见的用途就是起到隔直通交的作用。
在直流电路中,电感可以阻止电流急剧变化,起到平滑电流的作用;在交流电路中,电感可以通过对交流电的阻抗影响来改变电路中电流的大小和相位。
2. 电感的滤波作用电感在电路中还可以用来进行滤波,通过对交流电的阻抗影响,可以滤除特定频率的交流信号,起到滤波的作用。
3. 电感的频率调节和谐振电感在电路中还可以用来进行频率调节和谐振。
立绕大功率电感

立绕大功率电感一、什么是大功率电感?大功率电感是一种能够承受高电流和高功率的电感器件。
它通常用于电力电子设备、交流变频器、直流变换器等高功率应用中,以实现能量转换和传输。
二、大功率电感的特点1. 承受高电流和高功率:大功率电感的设计和制造要求能够承受高达几十安培的大电流和数千瓦甚至更高的功率。
2. 低损耗:为了降低能量转换过程中的损耗,大功率电感通常采用低损耗材料制造,如铜线、铁芯等。
3. 高可靠性:由于大功率电感通常工作在恶劣环境下,如高温、潮湿等,因此其可靠性要求非常高。
4. 尺寸小:尽管承受着巨大的电流和功率,但由于其体积小巧,因此可以方便地集成到各种设备中。
三、立绕式大功率电感立绕式大功率电感是一种新型的设计方式,它采用立体绕线技术,在同样体积下提供更好的性能和更高的可靠性。
1. 原理立绕式大功率电感采用三维绕线技术,将导线沿立方体的三个方向进行绕线,形成一个紧密的、无缝连接的电感器件。
这种设计方式可以在同样体积下提供更高的电感值和更低的直流电阻。
2. 优点(1)高效:立绕式大功率电感采用低损耗材料制造,具有较低的损耗和较高的效率。
(2)小尺寸:立绕式大功率电感采用三维绕线技术,可以在同样体积下提供更高的电感值和更低的直流电阻。
(3)高可靠性:由于其紧密无缝连接的设计,立绕式大功率电感具有较高的可靠性和抗震能力。
(4)适应性强:立绕式大功率电感适用于各种高功率应用,如交流变频器、直流变换器等。
四、应用领域大功率电感广泛应用于各种高功率设备中,如:1. 交流变频器:交流变频器是一种能够将直流电转换成交流电,并通过调节输出频率来控制电机转速的设备。
大功率电感通常用于交流变频器中,以实现能量转换和传输。
2. 直流变换器:直流变换器是一种能够将直流电转换成交流电,并通过调节输出频率来控制电机转速的设备。
大功率电感通常用于直流变换器中,以实现能量转换和传输。
3. 电力电子设备:大功率电感也广泛应用于各种电力电子设备中,如逆变器、整流器、稳压器等。
大功率铁硅铝磁环电感

大功率铁硅铝磁环电感
铁硅铝磁环电感是一种电子元件,它是由铁、硅和铝的磁性材料制成的环状结构,内部绕有导线。
由于这种电感具有高电感性能和优异的高频性能,因此被广泛应用于高频电子电路、通讯设备、医疗设备等领域。
铁硅铝磁环电感的核心材料是铁硅铝磁性材料,在加工制作过程中,其薄片经过精心的设计和组装,形成了一个环状结构。
金属导线穿过环的中心,形成了一个线圈。
当电流进入线圈时,会在铁硅铝磁性材料中形成一个磁场。
这个磁场将储存电荷并产生电感性能。
铁硅铝磁环电感具有很高的电感和低的损耗,对于高频信号的传输和滤波作用非常显著。
此外,铁硅铝磁环电感的额定电流和负载容量较大,可以同时承载多个电源,提高了电子电路的稳定性和稳定性。
铁硅铝磁环电感主要应用于高频电子电路,例如无线传输、RFID技术、通讯设备等。
在这些应用中,电感器的频率是很高的,在高频条件下,铁硅铝磁环电感不仅可以维持高电感性能,还能够有效的抑制干扰信号,减小电路的电磁辐射和噪声等问题。
除了在高频电子电路中的应用外,铁硅铝磁环电感还可以被应用于一些精密设备,例如医疗电子设备和汽车电子设备。
此类设备要求精度高、敏感度高,而铁硅铝磁环电感正好可以提供这样的特性。
总的来说,铁硅铝磁环电感是一种高性能电子元器件。
它的优异性能和多样化的应用使其成为了许多高技术领域中必不可少的重要组成部分。
电感的主要参数资料

电感的主要参数1)μi(导磁率)(Permeability)---这是铁芯的一个重要参数,对于一个带铁芯的电感,铁芯的导磁率越高,电感值会越高。
2)L(电感值)(Inductance)---L=(4πμiN2A/l)*10-9 (H),N-线圈圈数,A-磁路截面积,l-磁路平均长度。
电感值与铁芯的μi值成正比,与线圈圈数的平方成正比,与测试频率有关(电感值随测试频率的变化关系常用电感的频率曲线来表示),与环境温度有关,客户通常对电感值的要求是在某一特定频率下合于某一范围。
电感值通常是不用计算得出的(因为就算你算得吐血也未必算得准,磁环的可以算得大概准确),而是用仪器测出的。
目录上通常是标示L值的公差范围。
3) Q(品质因素)---客户通常对Q值的要求是越高越好,Q=2πfLe/Re (Re是有效电阻,是消耗能量的部份,有效电阻由DCR、表面效应、铁损所贡献)(Le是真实电感扣除分布电容影响后的值),电子工程施希望所选定的频率讯号通过,而且更希望所通过的讯号损失越少越好,故他们希望Q值越高越好。
Q值也是随测试频率而变化的,(Q值随测试频率的变化关系常用Q值的频率曲线来表示)。
目录上通常以其最小值为标注。
4)DCR(直流电阻)(Direct Current Resistance)---电感在直流电流下测量得之电阻,客户通常对DCR值的要求是越小越好。
目录上通常以其最大值为标注。
5) SRF(自共振频率)(Self-Resonant Frequency)---电感的真实电感与电感的分布电容产生共振时的频率,客户通常对SRF值的要求是越大越好。
目录上通常以其最小值为标注。
自共振频时电感的表现就像电阻,即(真实)电感值的感抗(2πfL)与分布电容的容抗(-1/2πfCd )相互抵消,即2πfL-1/2πfCd=0,所以自共振频率f=1/2π√LCd。
自共振频时电感的Le(有效电感值)为0,所以此时的Q值为0。
电感基本知识.

不同类型的电感器它的具体电路符号也有所不同,电感器 电路符号还能形象的表示电感器的结构特点。 例如:电感上画条实线,表示有低频铁芯
电感上画条虚线, 表示有高频铁芯
电感上画实线断开,表示铁芯有间隙 实线在加箭头,表示电感器可调,是微调电感器 空心线圈没有磁芯,通常线圈绕的匝数越少,电感越小,主要用于 高频电路中,例如:短波收音电路中、调频收音电路中等。 空心线圈每圈之间的隔隙大小与电感量有关,间隙大电感量小,反 之则大。所以在需要微调空心线圈电感量时,可以调整调整线圈之间 的间隙大小。为了防止线圈之间间隙变化,使用电路中调试完成后要 用石蜡加以封密固定,这样还可以防止线圈受潮。
V开关管在控制电路的控制下工作在开关状态。
电感式DC/DC变换器工作原理
+ +
电感降压式DC/DC变换器原理框图
图中,VIN为输入电压,VOUT为输出电压,L为储能电感,VD为续 流二极管,C为滤波电容,R1、R2为分压电阻,经分压后产生误差反 馈信号FB,用以稳定输出电压和调输出电压的高低。电源开关管V既可 采用N沟道绝缘栅场效应管(MOSFET),也可采用P沟道场效应管, 当然也可用NPN型晶体管或PNP型晶体管,实际应用中,一般采用P沟 道场效应管居多。
电感滤波电路
在大电流的整流滤波电路中常常会用到容量很大的滤波电容,这 是因为负载内阻很小,若采用小容量的滤波电容其放电时间极短而起不 到滤波的作用。若采用大容量的电容虽然能起到滤波作用,但由于充放 电电流极大,同时会对整流二极管产生很大的冲击电流。因此在这种情 况下采用电感滤波是很好的办法。由于电感线圈的电感量要足够大,应 该采用有铁心的线圈,线径要足够粗以承载大电流。 电感滤波电路工作原理 当流过电感的电流变化时,电感线圈中产生的感生电动势将阻止 电流的变化。当通过电感线圈的电流增大时,电感线圈产生的自感电动 势与电流方向相反,阻止电流的增加,同时将一部分电能转化成磁场能 存储于电感之中;当通过电感线圈的电流减小时,自感电动势与电流方 向相同,阻止电流的减小,同时释放出存储的能量,以补偿电流的减小。 因此经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑, 而且整流二极管的导通角增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率电感之大电流电感随着电气技术的发展,对电源在高频率,高效率,环保,尺寸,安全,低温升,低噪音,抗干扰E等方面不断提出新的要求,在结构上提出“轻、薄、短、小”的要求,对关键器件提出了扁平化,轻量化,低功耗和高性能的要求,体现在磁性器件方面,尤其是非隔离DC-DC模块电源中,贴片化和扁平化(低高度)成为一种趋势。
CODACA从2001年成立至今,已专注生产电感14年,其产品系列不断推陈出新,顺应时代的发展,无论是技术积累还是品质和性价比,都奠定了CODACA这一电感品牌越来越具有影响力。
对于电源工程师以及磁性器件件工程师而言,高频化大功率电路对产品体积要求越来越严苛,功率密度要求越来越大,只有对功率电感有了更系统了解,尤其是大电流电感,才能设计和选型更优化的电感。
本文系统的对功率电感的相关知识进行阐述整理,主要包括功率电感的定义、选型因素、常用磁性材料、功率电感的工作点、典型电气参数、非典型参数、扁平线绕组的优势,常用拓扑结构和关于温升、饱和和噪音三个问题的建议。
1.功率电感的定义功率电感(Power Inductor),顾名思义,用在电路中传输功率的电感。
电感在电路中主要用来处理功率,信号和电磁兼容(EMC),其中负责功率传输的主要包括升压电感(boost),降压电感(buck),升降压电感(buck-boost),功率因素校正电感(PFC),正激电路输出侧的直流输出滤波电感(相当于buck)和逆变电路输出侧的逆变电感等,这些电感同时承担着储能和平滑滤波的作用;其中用于EMC的电感分为共模电感和差模电感,差模电感在电路中主要滤除差模干扰,无论传输电流是直流电还是交流电,都需要承担滤波和储能的作用,因此在本篇文章中,从能量储存的角度讲,也将差模电感归入功率电感范畴。
2.功率电感的选型因素:1)电感的电气特性,主要饱和特性,温升特性,频率特性等;2)电感的机械特性,主要尺寸限制,贴装方式,机械要求等;3)电感的使用环境,电气条件裕量,环境温湿度,酸碱度等;4)电感的性价比(品质,品牌,技术支持,服务,付款条件等);5)电感的新型研发,深度定制和快捷样品反馈以及批产能力;功率电感的选型因素很多,对于设计人员或者采购人员而言,在满足主要考量因素的情况下,尽可能的平衡其他因素。
比如成本为主要考虑因素,磁芯可选用廉价的铁粉心,但产品的尺寸和损耗可能会比较大,或者选用没有品质保证的供应商,但客户服务和技术支持会比较差些等;比如产品的温度特性有严格要求,可能需要成本昂贵的MPP磁芯或者羰基铁粉心等。
CODACA从2001年成立至今,已专业生产电感14年,无论是技术积累还是品质和性价比,都奠定了CODACA这一电感品牌越来越具有影响力。
3.功率电感常用磁性材料常用的软磁材料主要分为镍锌(NiZn)铁氧体和锰锌(MnZn)铁氧体,全系列金属磁粉心(High-Flux,MPP,Sendust,Fe-Si,Fe-Si-Cr,Fe-Si-Ni,IRON Powder,Nanodust等),非晶/纳米晶,叵末合金和硅钢等。
本文就CODACA普通贴片功率电感、一体成型电感和组装式大电流电感所用材料重点进行介绍。
镍锌(NiZn)铁氧体,有着极高的电阻率,等同于绝缘体,其磁导率10~2000,饱和磁通密度0.25T~0.44T,应用频率0.1~100MHz,低磁导率可达GHz,主要用来做磁棒,螺纹磁心,环形磁芯,工字磁芯,多孔磁珠,贴片功率电感用工字磁芯以及屏蔽外壳等。
普通贴片功率电感的磁导率多为NX-400,NX-500,插件工字电感,棒形电感多采用NX-100,NX-400,NX-700,NX-1000。
贴片功率电感系列主要有SP, CWPA,SPRH,SPRB, SPM.SPE,SPD, SPDR,SPC,SPF等。
此类电感的应用频率高,功耗小,工艺成熟,是目前市场最常见的小功率电感。
除此之外,还有采用低温共烧工艺(LTCC)、印刷工艺制作的铁氧体叠层电感CFI以及磁珠CFB。
锰锌(MnZn)铁氧体,主要分为高导铁氧体,功率铁氧体和电信用温度稳定性铁氧体,磁导率800~18000,饱和磁通密度Bs 0.4T~0.54T,居里温度Tc 120℃~280℃,应用频率10KHz~4MHz,电阻率比NiZn小,且材料具有“硬”饱和特性(电感量随着电流增大有陡然衰减现象),故在设计时需谨慎考量。
一般将磁导率大于5000称为高导铁氧体,磁导率最高可达18000,主要用来制作宽带变压器,驱动变压器,电流互感器和共模电感等。
高导铁氧体最常用于共模电感,吸收和反射电路中共模干扰,主要滤除30MHz以内的传导干扰。
功率铁氧体的磁导率2000~2500(PC95 3300),饱和磁通密度Bs均大于0.48T,主要用来制作开关电源高频变压器,输出电感,谐振电感等。
TDK的牌号主要包括PC30,PC40,PC44,PC45,PC46,PC47,PC90, PC95,在100KHz/200mT下,PC47的损耗低于250mW/cm3,而PC95在全温度范围内(25℃~120℃)损耗密度低于350 mW/cm3,在90℃低至280 mW/cm3,市面常见PC40(410 mW/cm3)和PC44(300 mW/cm3)。
国内横店东磁和天通等磁芯厂商经多年发展,性能优异。
功率铁氧体制作成功率电感时,主要通过在磁路中开气隙储存能量。
由于气隙处存在杂散磁场,当应用频率过高或者交流磁感应强度太大,首先会引起较大的电磁干扰,其次气隙处可能产生噪音,第三杂散磁场会使得附近绕组产生涡流损耗,形成热点,长时间工作绝缘受损,最终电感短路失效。
基于以上三点,所以磁芯需要合理分配气隙位置和气隙深度。
在高频下其自身材料损耗密度远小于金属磁粉心,且磁芯形状多样,常见型号EC,EE,ER,EP,PQ,RM,EQ等,配合我司成熟的扁平线绕线工艺,是大电流功率电感的主要方案,可生产成扁平线大电流电感。
目前我司电感CSCM,CSCE,CSCF等系列产品,包括用于D类数字功放领域的CPD,CSD系列,均是MnZn 功率铁氧体作为功率电感材料的具体应用。
铁粉心,属于磁粉心家族的成员,采用粉末冶金工艺,将磁性材料颗粒和绝缘树脂按一定比例粘合后高压压制成型,饱和磁通密度高达为1.0~1.5T,是铁氧体Bs 的2~3倍,天然具有分布式气隙,因此具有较高的储能能力。
不像铁氧体和纳米晶等需要单独开气隙,因此EMC效果好。
铁粉心主要分为氢还原铁粉心和羰基铁粉心。
氢还原铁粉,一般称为铁粉心,磁导率Ui从10~100,价格相对低廉,按照美国微金属(MICROMETAL)牌号,常见有-2,-26,-52,-18,-18,-40。
-2(10)材为红青环,损耗最低,-14(14)为黑红环,与-2材相比,磁导率略大,损耗相似。
-18(55)常用来替代昂贵的-8(35),-40(60)为最为便宜的材料。
最为常见得为黄白环-26(75)材质,性价比最好,适用于尺寸要求要求不严格,温升比较大的场合,可用-52材(75)绿蓝环替代进行优化。
这类铁粉心具有老化问题,所以使用温度要求不宜过高,一般要求低于100度。
这类铁粉心常用来压制成环形磁芯,也可压制成EE 型和EC型。
CODACA扁平线大电流电感CSB,CSCM,CSCD,CSCG等系列是由自发研制的磁粉心生产的。
另一类铁粉心为羰基铁粉心(Carbonyl Iron powder),频率从10KHz 高达500MHz,磁导率1~35,主要用于射频领域,与普通铁粉心相比,应用频率高,损耗小且温度系数小。
其中-4(9)材质为蓝白环,常用与谐振电感,用在LLC等谐振电路中,较为常见,其中-2(10), -6(8.5),-7(9),-8(35)材可用于压制一体成型电感。
CODACA一体成型电感采用德国巴斯夫BASF羰基铁原粉,饱和电流大,高频损耗密度小,性能优异。
铁硅铬(FeSiCr),磁粉心家族的成员,Bs高达1.5T,损耗大比羰基铁大,也可用来制作一体成型电感,性价比高。
铁硅磁粉心(Mega Flux),饱和磁通密度高达1.6T,和硅钢材质类似,与High Flux 相比饱和特性相似,损耗略高,但损耗又低于铁粉心,没有热老化问题,在大电流领域备受欢迎。
在风能、太阳能和动车,UPS等领域,多采用块状磁粉心拼接成大功率电抗器;在通信领域多用EQ型扁平线圈绕组形成大电流电感,相同体积饱和特性远高于铁氧体材料大电流电感。
另外铁硅镍(Neu Flux)磁粉心,损耗是铁硅的一半,是High Flux的低成本替代方案。
这两种材料都具有极优异的饱和特性和温度稳定性,是大功率电路中电抗器的理想选择。
以下材料使用不多,抛砖引玉,仅作简要介绍。
金属磁粉心(MPP, High Flux,SENDUST,Nanodust等)中,MPP损耗最小,温度稳定性最高;High Flux的饱和电流大,损耗居中;SENDUST损耗小,性价比高;Nanodust纳米晶磁粉心,新兴材料,损耗低,可替代非晶磁粉心的克服噪音问题。
非晶纳米晶(钴基非晶,铁基非晶,铁基纳米晶等),叵末合金和硅钢,多以带材卷绕成环形和U型,后两者也可冲压成EI片,三者均属于金属类磁性材料,共同特征为涡流损耗大,故应用频率不高;叵末合金磁导率高,用于音频变压器,音频电感和电流互感器等;非晶纳米晶在50KHz以下优于锰锌功率铁氧体,在100KHz以上涡流损耗急剧增大,性能逐渐劣与铁氧体。
硅钢多用于1KHz一下,主要为工频(50Hz)领域,作为电力变压器和电抗器等。
4.功率电感在工作点问题铁磁性材料随着外部磁场强度的增加,磁感应强度逐渐增加,磁场强度增加到一定值以后,磁感应强度趋于稳定,随着磁场强度减小为零,磁感应强度不按原来路径减小,且在磁场强度H=0时,仍保留一定的剩余磁感应强度Br。
这种磁场强度H 和磁感应强度B不同步的,且B落后H变化的现象,叫做磁滞现象。
从上述信息可知道,铁磁性材料具有饱和现象和磁滞现象。
磁性材料在应用中,会有不同的工作状态。
如双极性变压器工作于磁滞回线的一三象限,电流互感器工作于初始磁化曲线位置,互感器会靠近准饱和区,升降压电感和直流输出滤波电感等功率电感一般处于偏置状态,工作于第一象限,如下图:图中黄色面积覆盖的区域就是功率电感实际工作的区域,通常称B0(或者H0)为工作点,黄色区域面积反映磁芯的磁滞损耗。
ΔB为交流磁感应强度,和频率f一起决定了磁芯的损耗密度,进一步影响产品温升。
B0+ΔB/2应该小于0.8Bs(准饱和)。
设计时,高频看温升,低频看饱和。
磁性材料Bs随着温度的增加而衰减,常见的功率铁氧体PC40在25℃时饱和磁通密度Bs 为0.51T,而100℃为0.44T 。