2020年广西贵港市中考数学模拟试题

合集下载

广西壮族自治区贵港市广西2020年数学中考一模试卷及参考答案

广西壮族自治区贵港市广西2020年数学中考一模试卷及参考答案

广西壮族自治区贵港市广西2020年数学中考一模试卷一、选择题1. 下列各数中,属于无理数的是()2. 如图,分别交于点,且,若,则的度数为()A .B .C .D .3. 在平面直角坐标系中,若一个正比例函数的图象经过两点,则一定满足的关系式为()A .B .C .D .4. 下列计算正确的是()A .B .C .D .5. 如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A . 主视图B . 左视图C . 俯视图D . 主视图和俯视图6. 据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A . 25和30B . 25和29C . 28和30D . 28和297. 下列命题中是真命题的是()8. 如图所示的是两个三角形是位似图形,它们的位似中心是()9. 如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A . 30°B . 35°C . 40°D . 50°10. 若一元二次方程的两个根分别为,则的值为()11. 如图,点D是的边BC上一点,,如果的面积为15,那么的面积为()12. 如图,在矩形中,是边的中点,与垂直,交于点,连接,则下列结论错误的是()二、填空题13. -7的绝对值是________.14. 一个整数966…0用科学记数法表示为,则原数中“0”的个数为________.15. 不等式组的解集是________.16. 甲,乙两地共有四路公交车往返,现在小明和小伟先后从甲地前往乙地(假设他们两人坐上四路公交车的可能性是相同的),则他们乘坐同一路公交车的概率是________.17. 如图,在中,,将以点为旋转中心,顺时针旋转,得到,点经过的路径为点经过的路径为,则图中阴影部分的面积为________.18. 如图,二次函数的图象与x轴交于A,B两点,与y轴交于点C,且,对称轴为直线,则下列结论:①②③关于的方程无实根;④;⑤ .其中正确结论有________个.三、解答题19.(1)计算:(2)先化简,再求值:其中 .20. 如图,在中,D是AB边上的一点.请用尺规作图法,在内,作出,使,点D与点B对应,DE交AC于点E.(保留作图痕迹,不写作法)21. 双曲线(为常数,且)与直线交于两点.(1)求与的值.(2)如图,直线交轴于点,交轴于点,若为的中点,求的面积.22. 某校在以“放飞青春梦想,展示你我风采”为主题的校园文化艺术节期间,举办了A.歌唱,B.舞蹈,.C绘画,D.演讲共四个类别的比赛,要求每位学生必须参加且仅能参加一个类别.小红随机调查了部分学生的报名情况,并绘制了下列两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次调查的学生总人数是多少?扇形统计图中“ ”部分的圆心角度数是多少?(2)请将条形统计图补充完整.(3)若全校共有1500名学生,请估计该校报名参加绘画和演讲两个类别的比赛的学生共有多少人.23. 某酒店计划购买一批换气扇,已知购买2台A型换气扇和2台B型换气扇共需220元;购买3台A型换气扇和1台B型换气扇共需200元.(1)求A,B两种型号的换气扇的单价.(2)若该酒店准备同时购进这两种型号的换气扇共60台,并且A型换气扇的数量不多于B型换气扇数量的2倍,请设计出最省钱的购买方案,并说明理由.24. 如图,AB是的直径,点E在AB的延长线上,点D为上一点,且 .(1)求证:ED是的切线、25. 如图,抛物线交x轴于点A,B交y轴于点C,直线经过点A,C.(1)求抛物线的解析式.(2)点P是抛物线上一动点,设点P的横坐标为m.①若点P在直线AV的下方,当的面积最大时,求m的值;②若是以AC为底的等腰三角形,请直接写出的值.26. 如图,在平行四边形ABCD中,,,,P是射线AD上一点,连接PB,沿将折叠,得 .(1)如图所示,当时,APB=________度;(2)如图所示,当时,求线段PA的长度;(3)当点P为AD中点时,点F是边AB上不与点A、B重合的一个动点,将沿折叠,得到,连接,求周长的最小值.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.。

广西省贵港市2019-2020学年中考数学模拟试题(1)含解析

广西省贵港市2019-2020学年中考数学模拟试题(1)含解析

广西省贵港市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,线段AB 是直线y=4x+2的一部分,点A 是直线与y 轴的交点,点B 的纵坐标为6,曲线BC 是双曲线y=k x 的一部分,点C 的横坐标为6,由点C 开始不断重复“A ﹣B ﹣C”的过程,形成一组波浪线.点P (2017,m )与Q (2020,n )均在该波浪线上,分别过P 、Q 两点向x 轴作垂线段,垂足为点D 和E ,则四边形PDEQ 的面积是( )A .10B .212C .454D .152.如图所示,有一条线段是ABC ∆(AB AC >)的中线,该线段是( ).A .线段GHB .线段ADC .线段AED .线段AF3.下列实数为无理数的是 ( )A .-5B .72C .0D .π4.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是( )A .17B .27C .37D .475.已知☉O 的半径为5,且圆心O 到直线l 的距离是方程x 2-4x-12=0的一个根,则直线l 与圆的位置关系是( )A .相交B .相切C .相离D .无法确定6.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( )A .16B .17C .18D .197.在Rt △ABC 中∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c =3a ,tanA 的值为( )A .13B .24C .2D .38.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或109.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >210.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94C .352D .35411.下列运算正确的是( )A .(a ﹣3)2=a 2﹣9B .(12)﹣1=2C .x+y=xyD .x 6÷x 2=x 312.在a 2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A .1B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a 的值是____.14.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=23,∠AEO=120°,则FC 的长度为_____.15.已知一个斜坡的坡度1:3i =,那么该斜坡的坡角的度数是______.16.如图,Rt △ABC 中,∠ACB=90°,D 为AB 的中点,F 为CD 上一点,且CF=13CD ,过点B 作BE ∥DC 交AF 的延长线于点E ,BE=12,则AB 的长为_____.17.如图,在四边形ABCD 中,//AD BC ,90B ∠=︒,8AD cm =,6AB cm =,BC 10cm =,点Q 从点A 出发以1/cm s 的速度向点D 运动,点P 从点B 出发以2/cm s 的速度向C 点运动,P 、Q 两点同时出发,其中一点到达终点时另一点也停止运动.若DP DQ ≠,当t =__s 时,DPQ ∆是等腰三角形.18.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m 的值为____,表示“D等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.20.(6分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。

2020年广西贵港市港南区中考数学一模试卷

2020年广西贵港市港南区中考数学一模试卷

2020年广西贵港市港南区中考数学一模试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2的相反数是()A.﹣2B.2C.﹣D.2.(3分)已知a<b,下列不等式中,变形正确的是()A.a﹣3>b﹣3B.3a﹣1>3b﹣1C.﹣3a>﹣3b D.>3.(3分)下面四个图形中,是三棱柱的平面展开图的是()A.B.C.D.4.(3分)使分式有意义的x的取值范围是()A.x>2B.x<2C.x≠2D.x≥25.(3分)下列运算错误的是()A.(a2)3=a6B.(x+y)2=x2+y2C.﹣32=﹣9D.61200=6.12×1046.(3分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.47.(3分)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.8.(3分)如果将抛物线y=x2﹣4x﹣1平移,使它与抛物线y=x2﹣1重合,那么平移的方式可以是()A.向左平移2个单位,向上平移4个单位B.向左平移2个单位,向下平移4个单位C.向右平移2个单位,向上平移4个单位D.向右平移2个单位,向下平移4个单位9.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=37°,那么∠BAD=()A.51°B.53°C.57°D.60°10.(3分)如图,已知△ABC中,AB=5,AC=4,BC=3,DE是AC的垂直平分线,DE 交AB于点D,交AC于点E,连接CD,则CD的值为()A.1B.1.5C.2D.2.511.(3分)已知Rt△ACB中,点D为斜边AB的中点,连接CD,将△DCB沿直线DC翻折,使点B落在点E的位置,连接DE、CE、AE,DE交AC于点F,若BC=6,AC=8,则AE的值为()A.B.C.D.12.(3分)如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F 是CD上一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则以下结论中:①S△ABM=4S△FDM;②PN=;③tan∠EAF=;④△PMN∽△DPE,正确的是()A.①②③B.①②④C.①③④D.②③④二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)若a+3=0,则a=.14.(3分)分解因式:a3﹣4ab2=.15.(3分)若x=2是关于x的一元二次方程ax2+bx﹣8=0(a≠0)的解,则代数式2020+2a+b 的值是.16.(3分)如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC 交AC于点E,如果BC=6,那么线段GE的长为.17.(3分)如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是.18.(3分)如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,P n(n,P n)….作x轴的垂线,垂足分别为A1,A2,…,A n…,连接A1P2,A2P3,…,A n﹣1P n,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点B n的纵坐标是.(结果用含n代数式表示)三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:()﹣1+20190+﹣2cos30°(2)先化简,再求值,÷﹣,其中a=﹣5.20.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2;(3)填空:△AA1A2的面积为.21.如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=﹣(x <0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)求一次函数解析式及m的值;(2)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.22.某校开展“阳光体育”活动,决定开设乒乓球、篮球、跑步、跳绳这四种运动项目,学生只能选择其中一种,为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成两张不完整的统计图,请你结合图中的信息解答下列问题:(1)样本中喜欢篮球项目的人数百分比是;其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补画完整并注明人数;(3)已知该校有1000名学生,根据样本估计全校喜欢乒乓球的人数是多少?23.某建设工程队计划每小时挖掘土540方,现决定租用甲、乙两种型号的挖掘机来完成这项工作,已知一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机恰好能完成每小时的挖掘量.(1)求甲、乙两种型号的挖掘机每小时各挖土多少方?(2)若租用一台甲型挖掘机每小时100元,租用一台乙型挖掘机每小时120元,且每小时支付的总租金不超过850元,又恰好完成每小时的挖掘量,请设计该工程队的租用方案.24.如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过C作CD⊥P A,垂足为D.(1)求证:CD为⊙O的切线;(2)若CD=2AD,⊙O的直径为20,求线段AC、AB的长.25.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求该抛物线的表达式;(2)点E是线段BC上方的抛物线上一个动点,求△BEC的面积的最大值;(3)点P是抛物线的对称轴上一个动点,当以A、P、C为顶点的三角形是直角三角形时,求出点P的坐标.26.如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿CB方向平移得到的,连接AE,AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,并证明你的结论;(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE 于点Q,QR⊥BD,垂足为点R.①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;②当线段BP的长为何值时,以点P、Q、R为顶点的三角形与△BOC相似?2020年广西贵港市港南区中考数学一模试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣2的相反数是()A.﹣2B.2C.﹣D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)已知a<b,下列不等式中,变形正确的是()A.a﹣3>b﹣3B.3a﹣1>3b﹣1C.﹣3a>﹣3b D.>【分析】根据不等式的性质解答即可.【解答】解:A、不等式a<b的两边同时减去3,不等式仍成立,即a﹣3<b﹣3,故本选项错误;B、不等式a<b的两边同时乘以3再减去1,不等式仍成立,即3a﹣1<3b﹣1,故本选项错误;C、不等式a<b的两边同时乘以﹣3,不等式的符号方向改变,即﹣3a>﹣3b,故本选项正确;D、不等式a<b的两边同时除以3,不等式仍成立,即<,故本选项错误;故选:C.【点评】本题考查了不等式的性质.注意:不等式两边都乘以同一个负数,不等号的方向改变.3.(3分)下面四个图形中,是三棱柱的平面展开图的是()A.B.C.D.【分析】根据三棱柱的展开图的特点作答.【解答】解:A、是三棱柱的平面展开图;B、是三棱锥的展开图,故不是;C、是四棱锥的展开图,故不是;D、两底在同一侧,也不符合题意.故选:A.【点评】熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.4.(3分)使分式有意义的x的取值范围是()A.x>2B.x<2C.x≠2D.x≥2【分析】根据分式有意义的条件:分母不等于0即可求解.【解答】解:根据题意得:x﹣2≠0,解得:x≠2.故选:C.【点评】本题主要考查了分式有意义的条件,解决本题的关键是熟记分式有意义的条件:分母不等于0.5.(3分)下列运算错误的是()A.(a2)3=a6B.(x+y)2=x2+y2C.﹣32=﹣9D.61200=6.12×104【分析】分别根据幂的乘方运算法则,完全平方公式,幂的乘方的定义以及科学记数法判断即可.【解答】解:A.(a2)3=a6,运算正确;B.(x+y)2=x2+2xy+y2,故原运算错误C.﹣32=﹣9,运算正确;D.61200=6.12×104,运算正确.【点评】本题主要考查了完全平方公式、科学记数法以及幂的乘方与积的乘方,熟记相关公式和运算法则是解答本题的关键.6.(3分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.4【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.(3分)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.【分析】先画树状图展示所有12种等可能的结果数,再找出两次都摸到白球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球都是的白色的结果共有2 种,所以两次都摸到白球的概率是=,【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.8.(3分)如果将抛物线y=x2﹣4x﹣1平移,使它与抛物线y=x2﹣1重合,那么平移的方式可以是()A.向左平移2个单位,向上平移4个单位B.向左平移2个单位,向下平移4个单位C.向右平移2个单位,向上平移4个单位D.向右平移2个单位,向下平移4个单位【分析】根据平移前后的抛物线的顶点坐标确定平移方法即可得解.【解答】解:∵抛物线y=x2﹣4x﹣1=(x﹣2)2﹣5的顶点坐标为(2,﹣5),抛物线y =x2﹣1的顶点坐标为(0,﹣1),∴顶点由(2,﹣5)到(0,﹣1)需要向左平移2个单位再向上平移4个单位.故选:A.【点评】本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定抛物线解析式更简便.9.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=37°,那么∠BAD=()A.51°B.53°C.57°D.60°【分析】连接BD,AB为直径可得出∠ADB=90°,由圆周角定理可得出∠ABD=37°,再在△ABD中,利用三角形内角和定理可求出∠BAD的度数.【解答】解:连接BD,如图所示.∵AB是⊙O的直径,∴∠ADB=90°.在△ABD中,∠ABD=∠ACD=37°,∠ADB=90°,∴∠BAD=180°﹣∠ABD﹣∠ADB=53°.故选:B.【点评】本题考查了圆周角定理以及三角形内角和定理,利用圆周角定理及三角形内角和定理,求出∠BAD的度数是解题的关键.10.(3分)如图,已知△ABC中,AB=5,AC=4,BC=3,DE是AC的垂直平分线,DE 交AB于点D,交AC于点E,连接CD,则CD的值为()A.1B.1.5C.2D.2.5【分析】直接利用△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出CD的长.【解答】解:∵AC=4,BC=3,AB=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=2,DE∥BC,且线段DE是△ABC的中位线,∴DE=1.5,Rt△CDE中,由勾股定理得:CD2=CE2+DE2,∴CD2=22+1.52,∴CD=2.5.故选:D.【点评】此题考查勾股定理及其逆定理,关键是得出线段DE是△ABC的中位线.11.(3分)已知Rt△ACB中,点D为斜边AB的中点,连接CD,将△DCB沿直线DC翻折,使点B落在点E的位置,连接DE、CE、AE,DE交AC于点F,若BC=6,AC=8,则AE的值为()A.B.C.D.【分析】直角三角形的勾股定理和斜边中线等于斜边一半可以得到等腰三角形的边长,通过作辅助线,可将所求的问题进行转化求BE,由折叠得CD是BE的中垂线,借助三角形的面积公式,可以求出BG,进而求出BE,由等腰三角形的性质,可得DN是三角形的中位线,得到DN等于BE的一半,求出DN,在根据勾股定理,求出AN,进而求出AE.【解答】解:过点D作DM⊥BC,DN⊥AE,垂足为M、N,连接BE交CD于点G,∵Rt△ACB中,AB==10,∵点D为斜边AB的中点,∴CD=AD=BD=AB=5,在△DBC中,DC=DB,DM⊥BC,∴MB=MC=BC=3,∴DM==4,由折叠得,CD垂直平分BE,∠BDC=∠EDC,在△ADE中,DA=DE,DN⊥AE,∴AN=NE=AE,∴DN是△ABE的中位线,∴DN∥BE,DN=BE,在△DBC中,由三角形的面积公式得:BC•DM=DC•BG,即:6×4=5×BG,∴BG==DN,在Rt△ADN中,AN==,∴AE=2AN=,故选:B.【点评】考查直角三角形的性质、等腰三角形的性质、三角形的中位线以及勾股定理等知识,综合应用知识较强,理解和掌握这些知识是解决问题的前提和关键.12.(3分)如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F 是CD上一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则以下结论中:①S△ABM=4S△FDM;②PN=;③tan∠EAF=;④△PMN∽△DPE,正确的是()A.①②③B.①②④C.①③④D.②③④【分析】①正确.利用相似三角形的性质解决问题即可.②正确.作PH⊥AN于H,求出PH,HN即可解决问题.③正确.求出EN,AN即可判断.④错误.证明∠DPN≠∠PDE即可.【解答】解:∵正方形ABCD的边长为2,点E是BC的中点,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴=()2=4,∴S△ABM=4S△FDM;故①正确;由勾股定理可知:AF=DE=AE==,∵×AD×DF=×AF×DN,∴DN=,∴EN=,AN==,∴tan∠EAF==,故③正确,作PH⊥AN于H.∵BE∥AD,∴==2,∴P A=,∵PH∥EN,∴==,∴AH=×=,HN=,∴PN==,故②正确,∵PN≠DN,∴∠DPN≠∠PDE,∴△PMN与△DPE不相似,故④错误.故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,解直角三角形,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)若a+3=0,则a=﹣3.【分析】根据相反数的定义即可得到结果.【解答】解:∵a+3=0,∴a=﹣3.故答案为:﹣3.【点评】本题考查了相反数的定义,熟记相反数的定义是解题的关键.14.(3分)分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.15.(3分)若x=2是关于x的一元二次方程ax2+bx﹣8=0(a≠0)的解,则代数式2020+2a+b 的值是2024.【分析】根据x=2是关于x的一元二次方程ax2+bx﹣8=0(a≠0)的解,可以得到2a+b 的值,然后代入代数式2020+2a+b,即可求得所求式子的值.【解答】解:∵x=2是关于x的一元二次方程ax2+bx﹣8=0(a≠0)的解,∴4a+2b﹣8=0,∴4a+2b=8,∴2a+b=4,∴2020+2a+b=2020+(2a+b)=2020+4=2024,故答案为:2024.【点评】本题考查一元二次方程的解,解答本题的关键是明确题意,求出2a+b的值.16.(3分)如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC 交AC于点E,如果BC=6,那么线段GE的长为2.【分析】由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.【解答】解:∵点G是△ABC重心,BC=6,∴CD=BC=3,=2,∵GE∥BC,∴△AEG∽△ACD,∴==,∴GE=2.故答案为:2.【点评】此题考查了相似三角形的判定与性质以及三角形重心的性质.解题时注意:重心到顶点的距离与重心到对边中点的距离之比为2:1.17.(3分)如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是3.【分析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对弦,转化为求弦的长的问题.【解答】解:∵图中扇形的弧长是2π,根据弧长公式得到2π=∴n=120°即扇形的圆心角是120°∴弧所对的弦长是2×3sin60°=3【点评】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18.(3分)如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,P n(n,P n)….作x轴的垂线,垂足分别为A1,A2,…,A n…,连接A1P2,A2P3,…,A n﹣1P n,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点B n的纵坐标是.(结果用含n 代数式表示)【分析】根据反比例函数图象上点的坐标特征求得点P1、P2的纵坐标,由平行四边形对边平行且相等的性质求得点B1的纵坐标是y2+y1、B2的纵坐标是y3+y2、B3的纵坐标是y4+y3,据此可以推知点B n的纵坐标是:y n+1+y n=+=.【解答】解:∵点P1(1,y1),P2(2,y2)在反比例函数的图象上,∴y1=3,y2=;∴P1A1=y1=3;又∵四边形A1P1B1P2,是平行四边形,∴P1A1=B1P2=3,P1A1∥B1P2 ,∴点B1的纵坐标是:y2+y1=+3,即点B1的纵坐标是;同理求得,点B2的纵坐标是:y3+y2=1+=;点B3的纵坐标是:y4+y3=+1=;…点B n的纵坐标是:y n+1+y n=+=;故答案是:.【点评】本题考查了平行四边形的性质、反比例函数图象上点的坐标特征、反比例函数的图象.解答此题的关键是根据平行四边形的对边平行且相等的性质求得点B n的纵坐标y n+1+y n.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:()﹣1+20190+﹣2cos30°(2)先化简,再求值,÷﹣,其中a=﹣5.【分析】(1)根据负整数指数幂、零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(1)()﹣1+20190+﹣2cos30°=2+1+3﹣2×=2+1+3﹣=3+2;(2)÷﹣=﹣==﹣,当a=﹣5时,原式==1.【点评】本题考查分式的化简求值、负整数指数幂、零指数幂和特殊角的三角函数值,解答本题的关键是明确题意它们各自的计算方法.20.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2;(3)填空:△AA1A2的面积为3.【分析】(1)分别作出平移后对应点,再首尾顺次连接即可得;(2)根据位似变换的概念作出变换后的对应点,再首尾顺次连接即可得;(3)利用三角形的面积公式计算可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)△AA1A2的面积为×6×1=3.故答案为:3.【点评】本题主要考查作图﹣平移变换和位似变换,解题的关键是掌握平移变换和位似变换的概念与性质,并据此作出变换后的对应点.21.如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=﹣(x <0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)求一次函数解析式及m的值;(2)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【分析】(1)把B(﹣1,m)代入反比例函数可求出m的值,把把A(﹣4,),B(﹣1,2)代入一次函数y=kx+b可求出k、b的值,进而确定一次函数的关系式:(2)由于点P在直线y=x+上;可设P(x,x+),利用两个三角形的面积相等列方程求出x,进而确定点P的坐标.【解答】解:(1)把B(﹣1,m)代入反比例函数得,m=2,把A(﹣4,),B(﹣1,2)代入一次函数y=kx+b得:则,解得∴一次函数的解析式为,即:m=2,一次函数的关系式为y=x+;(2)连接PC、PD,如图,由于点P在直线y=x+上;设P(x,x+)由△PCA和△PDB面积相等得:××(x+4)=×1×(2﹣x﹣),解得,x=﹣,把x=﹣代入得,y=×(﹣)+=,∴P点坐标是(﹣,).【点评】考查一次函数、反比例函数图象上点的坐标特征,把点的坐标代入关系式是常用的方法,将点的坐标转化为线段的长,是解决问题的关键.22.某校开展“阳光体育”活动,决定开设乒乓球、篮球、跑步、跳绳这四种运动项目,学生只能选择其中一种,为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成两张不完整的统计图,请你结合图中的信息解答下列问题:(1)样本中喜欢篮球项目的人数百分比是20%;其所在扇形统计图中的圆心角的度数是72°;(2)把条形统计图补画完整并注明人数;(3)已知该校有1000名学生,根据样本估计全校喜欢乒乓球的人数是多少?【分析】(1)利用1减去其它各组所占的比例即可求得喜欢篮球的人数百分比,利用百分比乘以360度即可求得扇形的圆心角的度数;(2)根据喜欢A乒乓球的有44人,占44%即可求得调查的总人数,乘以对应的百分比即可求得喜欢篮球的人数,作出统计图;(3)总人数1000乘以喜欢乒乓球的人数所占的百分比即可求解.【解答】解:(1)1﹣44%﹣8%﹣28%=20%,所在扇形统计图中的圆心角的度数是:360×20%=72°,故答案为:20%,72°;(2)调查的总人数是:44÷44%=100(人),则喜欢篮球的人数是:100×20%=20(人),;(3)全校喜欢乒乓球的人数是1000×44%=440(人).答:根据样本估计全校喜欢乒乓球的人数是440人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.某建设工程队计划每小时挖掘土540方,现决定租用甲、乙两种型号的挖掘机来完成这项工作,已知一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机恰好能完成每小时的挖掘量.(1)求甲、乙两种型号的挖掘机每小时各挖土多少方?(2)若租用一台甲型挖掘机每小时100元,租用一台乙型挖掘机每小时120元,且每小时支付的总租金不超过850元,又恰好完成每小时的挖掘量,请设计该工程队的租用方案.【分析】(1)设甲型挖掘机每小时挖土x方,乙型挖掘机每小时挖土y方,根据“一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机每小时共挖土540方”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用m台甲型挖掘机、n台乙型挖掘机,根据租用的挖掘机每小时挖掘540方,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可得出各租用方案,求出各挖掘方案所需费用,将其与850元比较后即可得出结论.【解答】解:(1)设甲型挖掘机每小时挖土x方,乙型挖掘机每小时挖土y方,依题意,得:,解得:.答:甲型挖掘机每小时挖土60方,乙型挖掘机每小时挖土80方.(2)设租用m台甲型挖掘机、n台乙型挖掘机,依题意得:60m+80n=540,化简得:3m+4n=27,∴m=9﹣n.∵m、n均为正整数,∴或.当m=5、n=3时,支付租金:100×5+120×3=860(元),∵860>850,∴此租车方案不符合题意;当m=1、n=6时,支付租金:100×1+120×6=820(元),∵820<850,∴此租车方案符合题意.答:该工程队的租用方案为租1台甲型挖掘机和6台乙型挖掘机.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.24.如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过C作CD⊥P A,垂足为D.(1)求证:CD为⊙O的切线;(2)若CD=2AD,⊙O的直径为20,求线段AC、AB的长.【分析】(1)欲证明CD为⊙O的切线,只要证明∠OCD=90°即可.(2)作OF⊥AB于F,设AD=x,则OF=CD=2x,在Rt△AOF中利用勾股定理列出方程即可解决问题.【解答】证明:(1)连接OC.∵点C在⊙O上,OA=OC,∴∠OCA=∠OAC,∵CD⊥P A,∴∠CDA=90°,∴∠CAD=∠DCA=90°,∵AC平分∠P AE,∴∠DAC=∠CAO,∴∠DCO=∠DCA+∠ACO=∠DCA+∠DAC=90°,∴CD是⊙O切线.(2)作OF⊥AB于F,∴∠OCD=∠CDF=∠OFD=90°,∴四边形CDFO是矩形,∴OC=FD,OF=CD,∵CD=2AD,设AD=x,则OF=CD=2x,∵DF=OC=10,∴AF=10﹣x,在Rt△AOF中,AF2+OF2=OA2,∴(10﹣x)2+(2x)2=102,解得x=4或0(舍弃),∴AD=4,AF=6,AC=4,∵OF⊥AB,∴AB=2AF=12.【点评】本题考查切线的判定,矩形的判定和性质、垂径定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.25.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求该抛物线的表达式;(2)点E是线段BC上方的抛物线上一个动点,求△BEC的面积的最大值;(3)点P是抛物线的对称轴上一个动点,当以A、P、C为顶点的三角形是直角三角形时,求出点P的坐标.【分析】(1)将点A、B的坐标代入函数解析式,列出方程组,通过解方程组求得a、b 的值即可;利用配方法将函数解析式转化为顶点式,即可得到点M的坐标;(2)利用待定系数法确定直线BC解析式,由函数图象上点的坐标特征求得点E、F的坐标,然后根据两点间的距离公式求得EF长度,结合三角形的面积公式列出函数式,根据二次函数最值的求法求得点E的横坐标,易得其纵坐标,则点E的坐标迎刃而解了;(3)需要分类讨论:点A、P、C分别为直角顶点,利用勾股定理求得答案.【解答】解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),∴,解得∴y=﹣x2+2x+3=﹣(x﹣1)2+4;(2)如图,作EF∥y轴交BC于点F,记△BEC的面积为S,∵B(3,0),C(0,3),∴直线BC解析式为:y=﹣x+3.设E(m,﹣m2+2m+3),则F(m,﹣m+3).∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.∴当时,此时,点E的坐标是(3)设P(1,n),A(﹣1,0)、C(0,3),∴AC2=10,AP2=4+n2,CP2=1+(n﹣3)2=n2﹣6n+10①当AC⊥AP时,AC2+AP2=CP2,即10+4+n2=n2﹣6n+10.解得;②当AC⊥CP时,AC2+CP2=AP2,即10+n2﹣6n+10=4+n2,解得;③当AP⊥CP时,AP2+CP2=AC2,即4+n2+n2﹣6n+10=10.解得n=1或2.综上所述,符合条件的点P的坐标是或或(1,1)或(1,2),【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.26.如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿CB方向平移得到的,连接AE,AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,并证明你的结论;(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE 于点Q,QR⊥BD,垂足为点R.①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;②当线段BP的长为何值时,以点P、Q、R为顶点的三角形与△BOC相似?【分析】(1)四边形ABCE是菱形.证明:∵△ECD是△ABC沿BC方向平移得到的,∴EC∥AB,EC=AB.∴四边形ABCE是平行四边形.又∵AB=BC,∴四边形ABCE是菱形.(2)①由菱形的对称性知,△PBO≌△QEO,可得S△PBO=S△QEO,由△ECD是由△ABC 平移得到的,可得ED∥AC,ED=AC=6.又∵BE⊥AC,∴BE⊥ED,可得S四边形PQED。

2020年广西贵港市中考数学模拟试题

2020年广西贵港市中考数学模拟试题

第 "/ 题 图
第 "% 题 图
第 "" 题 图
!$!本题满分+分为提高饮水质量#越来越多的居民开 始选 购家用 净水 器!一商家抓住 商机#从厂 家购进 了 &#) 两 种型号 家用净水 器共 !%# 台#& 型号家用 净 水 器 进 价 是 !1# 元.台#) 型 号 家 用 净 水 器 进 价 是 $1# 元.台 #购 进 两 种 型 号 的 家 用 净 水 器 共 用 去 $%### 元 ! !!"求 &#) 两种型号家用净水器各购进了多少台! !""为使每台 ) 型号家用净水器的毛利润 是 & 型 号的 " 倍#且保证 售 完这!%#台家用净水器 的 毛 利 润 不 低 于 !!### 元#求 每 台 & 型 号 家 用净水器的售价至少是多少元* 注毛利润0售价(进价
!%!本题满分+分如图#点 1 是矩形#%)' 的边#' 延长线上一点#以 #1 为直径的$( 交矩形对角线#) 于点,#在线段 )' 上取一点*# 连接 *,#使 *)0*,! !!"求证%*, 是$( 的切线& !""若89:%)#'0$1##,0%#1'0"#求 ,) 的长!
!'!本题满分!#分在 矩 形 #%)' 中##%0!"#%)0"1#- 是 线 段 #% 上一点点 - 不与#% 重 合#将 &-%) 沿 直 线 -) 折 叠#顶 点 % 的 对应点是点6#)6#-6 分别交线段#' 于点*#(! !!"如图!#若 (-0(*#求证%#*0-%& !""如图"#连接 %* 交-) 于点,#若 %*()6! 求证%四边形 %,6- 是菱形& 当 #*04#求-%),的值!

2019-2020学年贵港市中考数学模拟试卷(有标准答案)(Word版)

2019-2020学年贵港市中考数学模拟试卷(有标准答案)(Word版)

广西贵港市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是()A.7 B.﹣7 C.D.﹣2.数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,23.如图是一个空心圆柱体,它的左视图是()A.B.C.D.4.下列二次根式中,最简二次根式是()A.B.C. D.5.下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a26.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7.下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.19.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+111.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC 的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.112.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②的最小值是,其中正确△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN结论的个数是()A.2 B.3 C.4 D.5二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= .14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结果保留π)18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.20.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.12 2≤x<3a m 3≤x<4450.3 4≤x<536n5≤x<6210.14合计b1(1)填空:a= ,b= ,m= ,n= ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD :S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.广西贵港市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是()A.7 B.﹣7 C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:B.2.数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,2【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.故选:C.3.如图是一个空心圆柱体,它的左视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.4.下列二次根式中,最简二次根式是()A.B.C. D.【考点】74:最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.5.下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.7.下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根【考点】O1:命题与定理.【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.【解答】解:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.1【考点】X6:列表法与树状图法;K6:三角形三边关系.【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)==,故选B9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由图象,得y=2x2﹣2,由平移规律,得y=2(x﹣1)2+1,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC 的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1【考点】R2:旋转的性质.【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S的最小值是,其中正确△OMN结论的个数是()A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN ∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,此时S的最小值是1﹣=,故⑤正确;△OMN综上所述,正确结论的个数是5个,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= ﹣8 .【考点】1A:有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣5=﹣8.故答案为:﹣8.14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 3.7×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6﹣1=5.【解答】解:370 000=3.7×105,故答案为:3.7×105.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为60°.【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB∥CD,∠ABF=40°,∴∠CFB=180°﹣∠B=140°,又∵∠CFE:∠EFB=3:4,∴∠CFE=∠CFB=60°,∵AB∥CD,∴∠BEF=∠CFE=60°,故答案为:60°.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【分析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠PAP′===.故答案为.17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为π+2.(结果保留π)【考点】MO:扇形面积的计算;KG:线段垂直平分线的性质.【分析】连接OD、AD,根据点C为OA的中点可得∠CDO=30°,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积.【解答】解:连接O、AD,∵点C为OA的中点,∴∠C DO=30°,∠DOC=60°,∴△ADO为等边三角形,∴S扇形AOD==π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)=﹣﹣(π﹣×2×2)=π﹣π﹣π+2=π+2.故答案为π+2.18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是2≤k≤9 .【考点】G8:反比例函数与一次函数的交点问题.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】解:当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=﹣x+6代入y=得:﹣x+6=,x2﹣6x+k=0,△=(﹣6)2﹣4k=36﹣4k,∵反比例函数y=的图象与△ABC有公共点,∴36﹣4k≥0,k≤9,即k的范围是2≤k≤9,故答案为:2≤k≤9.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【解答】解:(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1(2)当a=﹣2+原式=+===7+520.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.【考点】N3:作图—复杂作图.【分析】(1)在OA上截取OP=2a即可求出点P的位置;(2)根据角平分线的作法即可作出∠AOB的平分线;(3)以M为圆心,作一圆与射线OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于D点,连接MD即为OB的垂线;【解答】解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【解答】解:(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y=得k=6,则反比例函数的解析式是y=;(2)根据题意得2x﹣4=,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.12 2≤x<3a m 3≤x<4450.3 4≤x<536n 5≤x<6210.14合计b1(1)填空:a= 30 ,b= 150 ,m= 0.2 ,n= 0.24 ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可.【解答】解:(1)b=18÷0.12=150(人),∴n=36÷150=0.24,∴m=1﹣0.12﹣0.3﹣0.24﹣0.14=0.2,∴a=0.2×150=30;故答案为:30,150,0.2,0.24;(2)如图所示:(3)3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.【考点】ME:切线的判定与性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP ⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R ﹣,OA=R,根据勾股定理列方程即可得到结论.【解答】解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°,∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=,在Rt△PAE中,tan∠1==,∴PE=,设⊙O的半径为R,则OE=R﹣,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半径为.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD :S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.【考点】HF:二次函数综合题.【分析】(1)令x=0可求得C点坐标,化为顶点式可求得D点坐标;(2)令y=0可求得A、B的坐标,结合D点坐标可求得△ABD的面积,设直线CD交x轴于点E,由C、D坐标,利用待定系数法可求得直线CD的解析式,则可求得E点坐标,从而可表示出△BCD的面积,可求得k的值;(3)由B、C、D的坐标,可表示出BC2、BD2和CD2,分∠CBD=90°和∠CDB=90°两种情况,分别利用勾股定理可得到关于a的方程,可求得a的值,则可求得抛物线的解析式.【解答】解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD=×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,∴E(,0),∴BE=3﹣=∴S△BCD =S△BEC+S△BED=××(3a+a)=3a,∴S△BCD :S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.【考点】LO:四边形综合题.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②想办法证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x=,推出DN==,由△BDN∽△BAM,可得=,由此求出AM,由△ADM∽△APE,可得=,由此求出AE=,可得EC=AC﹣AE=4﹣=由此即可解决问题.【解答】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB==2,∵AD=CD=2,∴BD==2,由翻折可知,BP=BA=2.②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x=,∵DB=DA,DN⊥AB,∴BN=AN=,在Rt△BDN中,DN==,由△BDN∽△BAM,可得=,∴=,∴AM=2,∴AP=2AM=4,由△ADM∽△APE,可得=,∴=,∴AE=,∴EC=AC﹣AE=4﹣=,易证四边形PECH是矩形,∴PH=EC=.。

〖8套试卷汇总〗广西省贵港市2020年中考数学第二次押题试卷

〖8套试卷汇总〗广西省贵港市2020年中考数学第二次押题试卷

2020年数学中考模拟试卷一、选择题1.如图,矩形ABCD 中,AB =4,AD =6,E 为AD 中点,分别以B 、E 为圆心,以AB 、AE 为半径画弧,两弧交于点F ,连接AF 、BE ,则AF 的长为( )A.125B.135C.245D.52.菱形具有而平行四边形不具有的性质是( ) A .对角线互相垂直 B .对边平行 C .对边相等D .对角线互相平分3.下列运算不正确的是( )=1B.123()32-=-C.0.000521=5.21×10-4D.2a 1a-1+-a-1=2a-14.下列计算正确的是( )A. B.C.D.5.如图,将半径为4cm 的圆折叠后,圆弧恰好经过圆心,则折痕的长为()A .B .CD 6.关于x 的方程(m ﹣2)x 2﹣4x+1=0有实数根,则m 的取值范围是( )A .m≤6B .m <6C .m≤6且m≠2D .m <6且m≠27.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A .a ﹣d =b ﹣cB .a+c+2=b+dC .a+b+14=c+dD .a+d =b+c8.如图,直线a ∥b ,等边三角形ABC 的顶点B 在直线b 上,若∠1=34°,则∠2等于( )A .84°B .86°C .94°D .96°9.如图,反比例函数y=kx的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k 的值为( )A .6-B .5-C .4-D .3-10.直线y =﹣2x+5分别与x 轴,y 轴交于点C 、D ,与反比例函数y =3x的图象交于点A 、B .过点A 作AE ⊥y 轴于点E ,过点B 作BF ⊥x 轴于点F ,连结EF ;下列结论:①AD =BC ;②EF ∥AB ;③四边形AEFC 是平行四边形;④S △EOF :S △DOC =3:5.其中正确的个数是( )A .1B .2C .3D .4二、填空题11.方程20x =的根是_____.12.设α、β是方程x 2+2018x ﹣2=0的两根,则(α2+2018α﹣1)(β2+2018β+2)=_____. 13.如图,在.△ABC 中,各边的长度如图所示,∠C=90°,AD 平分∠CAB 交BC 于点D ,则点D 到AB 的距离是__.14.如图所示,边长为2的正方形ABCD 的顶点A 、B 在一个半径为2的圆上,顶点C 、D 在该圆内,将正方形ABCD 绕点A 逆时针旋转,当点D 第一次落在圆上时,点C 运动的路线长为______.15.计算:32()m m ?=____.16.绝对值等于2的数是_____.17.用配方法求二次函数y =2x 2﹣4x ﹣1图象的顶点坐标是_____.18.用一组a ,b ,c 的值说明命题“若ac =bc ,则a =b”是错误的,这组值可以是a =_____. 19.分解因式:3x 2﹣6x ﹣9=_____.三、解答题20.暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:元.(毛利润=(售价﹣进价)×销售量)(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润. 21.计算:﹣2sin60°+|﹣2|﹣20190.22.设中学生体质健康综合评定成绩为x 分,满分为100分,规定:85≤x≤100为A 级,75≤x≤85为B 级,60≤x≤75为C 级,x <60为D 级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题: (1)在这次调查中,一共抽取了 名学生,α= %; (2)补全条形统计图;(3)扇形统计图中C 级对应的圆心角为 度;(4)若A 级由2个男生参加自主考试,B 级由1个女生参加自主考试,刚好有一男一女考取名校,请用树状图或列表法求他们的概率.23.在“双十一”购物节中,某儿童品牌玩具淘宝专卖店购进了A 、B 两种玩具,其中A 类玩具的进价比B 玩具的进价每个多3元,经调查发现:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同(1)求A 、B 的进价分别是每个多少元?(2)该玩具店共购进了A 、B 两类玩具共100个,若玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则该淘宝专卖店至少购进A 类玩具多少个?24.如图,某校准备给长12米,宽8米的矩形ABCD 室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形PQFG ),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点O 为矩形和菱形的对称中心,OP AB ,2OQ OP =,12AE PM =,为了美观,要求区域Ⅱ的面积不超过矩形ABCD 面积的18,若设OP x =米.(1)当3x =时,求区域Ⅱ的面积. (2)计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当x 为多少时,室内光线亮度最好,并求此时白色区域的面积.②三种瓷砖的单价列表如下,,m n 均为正整数,若当2x =米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时m =__________,n =__________.25.红星公司生产的某种时令商品每件成本为20元,经过市场调查发现,这种商品在未来40天内的日销售量y 1(件)与时间t (天)的关系如图所示;未来40天内,每天的价格y 2(元/件)与时间t (天)的函数关系式为:y 2=1t 25(1t 20)41t 40(21t 40)2⎧+⎪⎪⎨⎪-+⎪⎩剟剟(t 为整数);(1)求日销售量y 1(件)与时间t (天)的函数关系式;(2)请预测未来40天中哪一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定销售一件商品就捐赠a 元(a 为定值)利润给希望工程.公司通过销售记录发现,前20天中,第18天的时候,扣除捐赠后日销售利润为这20天中的最大值,求a 的值.26.企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为 人,请补全条形统计图; (2)统计的捐款金额的中位数是 元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?【参考答案】*** 一、选择题 1.C 2.A 3.B 4.C 5.B 6.A 7.A 8.C 9.D 10.C 二、填空题11.120,x x ==. 12.4 13.314.315.m 16.±2 17.(1,﹣3) 18.﹣1(答案不唯一) 19.3(x ﹣3)(x+1). 三、解答题20.(1)要想尽可能多的购进甲种手机,应该安排进货方案是:甲种手机购20部,乙种手机购30部;(2)甲种手机减少5部,毛利润最大为为24500元. 【解析】分析:(1)设甲种手机购进x 部,则乙种手机购进()15500040002500x -÷ 部,根据总利润不低于2万元建立不等式求出其解即可;(2)设甲种手机减少m 部,毛利润为y 元,先求出m 的取值范围,根据利润=售价-进价建立函数解析式即可.详解:(1)设甲种手机购进x 部,由题意,得1550004000300500200002500xx -+⨯≥,解得:22.x ≤∵两种手机数量都为整数, ∴x 的最大值为20.∴乙种手机应该购进(155000−4000×20)÷2500=30部,∴要想尽可能多的购进甲种手机,应该安排怎样的进货方案是:甲种手机购20部,乙种手机购30部。

贵港市2020年中考数学模拟试题及答案

贵港市2020年中考数学模拟试题及答案

贵港市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。

①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。

广西贵港市2019-2020学年届数学中考一模试卷(含答案)

广西贵港市2019-2020学年届数学中考一模试卷(含答案)

广西贵港市2019-2020学年届数学中考一模试卷(含答案)一、单选题1.﹣3的倒数是()A. ﹣3B. 3C. ﹣D.【答案】C【考点】有理数的倒数2.一天时间为86400秒,用科学记数法表示这一数据是()A. 864×102B. 86.4×103C. 8.64×104D. 0.864×105【答案】C【考点】科学记数法—表示绝对值较大的数3.若一个等腰三角形的两边长分别为和,则这个等腰三角形的周长是为().A. B. C. 或 D. 或【答案】B【考点】三角形三边关系,等腰三角形的性质4.下列命题中,属于真命题的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧B. 同位角相等C. 对角线互相垂直的四边形是菱形D. 若a=b,则【答案】 D【考点】立方根及开立方,平行线的性质,菱形的判定,垂径定理5.一组数据5、a、4、3、2的平均数是3,则这组数据的方差为()A. 0B.C. 2D. 10【答案】C【考点】平均数及其计算,方差6.若点M(﹣3,m)、N(﹣4,n)都在反比例函数y= (k≠0)图象上,则m和n的大小关系是()A.m<nB.m>NC.m=nD.不能确定【答案】A【考点】反比例函数的性质7.如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM的取值范围是()A. 3≤OM≤5B. 3≤OM<5C. 4≤OM≤5D. 4≤OM<5【答案】A【考点】勾股定理,垂径定理8.关于x的一元二次方程x2﹣ax+ =0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定【答案】A【考点】一元二次方程根的判别式及应用9.如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A. 10°B. 20°C. 30°D. 40°【答案】B【考点】三角形的外角性质,矩形的性质10.在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是()A. B. C. D.【答案】 D【考点】二次函数图象与系数的关系,一次函数图像、性质与系数的关系11.如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数至少为()A. 5B. 6C. 7D. 8【答案】B【考点】由三视图判断几何体二、填空题12.计算:2a×(﹣2b)=________.【答案】﹣4ab【考点】单项式乘单项式13.分解因式:3a2﹣6a+3=________.【答案】3(a﹣1)2【考点】提公因式法与公式法的综合运用14.圆锥底面圆的半径为4cm,其侧面展开图的圆心角120°,则圆锥母线长为________cm.【答案】12【考点】圆锥的计算15.将抛物线y=﹣x2+1向右平移2个单位长度,再向上平移3个单位长度所得的抛物线解析式为________.【答案】y=﹣(x﹣2)2+4【考点】二次函数图象的几何变换16.如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE=________.【答案】2【考点】全等三角形的判定与性质,等边三角形的判定与性质,三角形中位线定理17.如图,在平面直角坐标系xoy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O,…,依此规律,得到等腰直角三角形A2018OB2018,则点A2018的坐标为________.【答案】(﹣22018,0)【考点】探索图形规律三、解答题18.(1)计算:﹣22+|2sin60°|+()﹣1+π0;(2)解方程:=1【答案】(1)解:原式=﹣4+|2× |+2+1=﹣4+ +3=﹣1+(2)解:两边都乘以(x+2)(x﹣2),得:16+(x﹣1)(x+2)=(x+2)(x﹣2),解得:x=﹣18,检验:x=﹣18时,(x+2)(x﹣2)=320≠0,∴分式方程的解为x=﹣18【考点】实数的运算,0指数幂的运算性质,负整数指数幂的运算性质,解分式方程,特殊角的三角函数值19.如图,在直角三角形ABC中,(1)过点A作AB的垂线与∠B的平分线相交于点D(要求:尺规作图,保留作图痕迹,不写作法);(2)若∠A=30°,AB=2,则△ABD的面积为________.【答案】(1)解:如图,点D为所作;(2)【考点】三角形的面积,含30度角的直角三角形,作图—复杂作图20.如图,在平面直角坐标系中,一次函数y=nx+2的图象与反比例函数y= 在第一象限内的图象交于点A,与x轴交于点B,线段OA=5,C为x轴正半轴上一点,且sin∠AOC= .(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.(3)请直接写出nx≤ ﹣2的解集.【答案】(1)解:过A点作AD⊥x轴于点D.∵sin∠AOC= = ,OA=5,∴AD=4.在Rt△AOD中,由勾股定理得:DO=3.∵点A在第一象限,∴点A的坐标为(3,4),将A的坐标为(3,4)代入y= ,得m=3×4=12,∴该反比例函数的解析式为y= ,将A的坐标为(3,4)代入y=nx+2得:n= ,∴一次函数的解析式是y= x+2(2)解:在y= x+2中,令y=0,则x=﹣3,∴点B的坐标是(﹣3,0),∴OB=3,又AD=4,∴S△AOB= OB•AD= ×3×4=6,∴△AOB的面积为6(3)解:依题意,得:,解得:或,∴(3,4),(﹣6,﹣2),根据图示知,当x<﹣6或0<x<3时,nx≤ ﹣2.故nx≤ ﹣2的解集是:x<﹣6或0<x<3.【考点】待定系数法求一次函数解析式,待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题,锐角三角函数的定义21.某校对九年级(1)班全体学生进行体育测试,测试成绩分为优秀、良好、合格和不合格四个等级,根据测试成绩绘制的不完整统计图表如下:九年级(1)班体育成绩频数分布表:根据统计图表给出的信息,解答下列问题:(1)九年级(1)班共有多少名学生?(2)体育成绩为优秀的频数是________,合格的频数为________;(3)若对该班体育成绩达到优秀程度的3个男生和2个女生中随机抽取2人参加学校体育竞赛,恰好抽到1个男生和1个女生的概率是________.【答案】(1)解:13÷26%=50,∴九年级(1)班共有50名学生(2)2;26(3)【考点】频数(率)分布表,扇形统计图,列表法与树状图法,概率公式22.某海尔专卖店春节期间,销售10台Ⅰ型号洗衣机和20台Ⅱ型号洗衣机的利润为4000元,销售20台Ⅰ型号洗衣机和10台Ⅱ型号洗衣机的利润为3500元.(1)求每台Ⅰ型号洗衣机和Ⅱ型号洗衣机的销售利润;(2)该商店计划一次购进两种型号的洗衣机共100台,其中Ⅱ型号洗衣机的进货量不超过Ⅰ型号洗衣机的进货量的2倍,问当购进Ⅰ型号洗衣机多少台时,销售这100台洗衣机的利润最大?最大利润是多少?【答案】(1)解:设每台I型电脑销售利润为x元,每台II型电脑的销售利润为y元,根据题意得:,解得:.答:每台I型电脑销售利润为100元,每台II型电脑的销售利润为150元.(2)解:设购进I型电脑x台,这100台电脑的销售总利润为w元,根据题意得:w=100x+150(100﹣x),即w=﹣50x+15000,100﹣x≤2x,解得:x≥33 .∵w=﹣50x+15000,∴w随x的增大而减小.∵x为正整数,∴当x=34时,w取最大值,最大利润w=﹣50×34+15000=13300,则100﹣x=66,即商店购进34台I型电脑的销售利润最大,最大利润为13300元.【考点】解一元一次不等式组,一次函数的实际应用,二元一次方程组的实际应用-销售问题23.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)解:如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线(2)解:连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=2 .【考点】圆周角定理,切线的判定,三角形的内切圆与内心,相似三角形的判定与性质24.如图,已知抛物线y=ax2+bx+3过等腰Rt△BOC的两顶点B、C,且与x轴交于点A(﹣1,0).(1)求抛物线的解析式;(2)抛物线的对称轴与直线BC相交于点M,点N为x轴上一点,当以M,N,B为顶点的三角形与△ABC 相似时,求BN的长度;(3)P为线段BC上方的抛物线上的一个动点,P到直线BC的距离是否存在最大值?若存在,请求出这个最大值的大小以及此时点P的坐标;若不存在,请说明理由.【答案】(1)解:令x=0,则y=3,∴C(0,3),∴OC=3.又∵Rt△BOC是等腰直角三角形,∴B(3,0),将A(﹣1,0),B(3,0)代入y=ax2+bx+3得:,解得,∴y=﹣x2+2x+3(2)解:抛物线的对称轴为直线x=﹣=1,由B(3,0),C(0,3),得直线BC解析式为:y=﹣x+3;∵对称轴x=1与直线BC:y=﹣x+3相交于点M,∴M为(1,2);可设BN的长为x.当△MNB∽△ACB时,∴= ,即= ,解得:x=3;当△MNB∽△CAB时,∴= ⇒= ,解得:x= ,∴BN的长为3或.(3)解:设经过P与直线BC平行的直线解析式为y=﹣x+n,联立得:,﹣x+n=﹣x2+2x+3,x2﹣3x+n﹣3=0,△=9﹣4(n﹣3)=0,解得:n= ,∴P到直线BC的距离存在最大值时,经过P与直线BC平行的直线解析式为y=﹣x+ ,则x2﹣3x+ =0,解得:x= ,y=﹣+ = ,∴点P的坐标为(),则经过点P与直线BC垂直的直线解析式为y=x+t,则= +t,解得:t= ,故经过点P与直线BC垂直的直线解析式为y=x+ ,联立可得,解得:,则P到直线BC的距离最大值为= .【考点】待定系数法求一次函数解析式,两一次函数图像相交或平行问题,待定系数法求二次函数解析式,相似三角形的性质,二次函数与一次函数的综合应用25.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)解:CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG= FD,同理.在Rt△DEF中,EG= FD,∴CG=EG(2)解:(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG 中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG= MC,∴EG=CG(3)解:(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又∵BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【考点】全等三角形的判定与性质,直角三角形斜边上的中线,正方形的性质,等腰直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!"!"年贵港市初中学业水平 考试模拟试卷一
考 试 时 间 !"# 分 钟 ! 满 分 !"# 分
第 卷 选 择 题 ! 共 $% 分
一选择题本大题共!" 小 题每 小 题 $ 分共 $% 分!在 每 小 题 给 出 的 四
个选项中只有一项是符合要求的
#!计 算 "$ 的 正 确 结 果 是
*'$! !
,'1
)!下 列 命 题 中 真 命 题 是
!
&'若$" #!则"#$
)'当" 是一切实数时槡""0"
*'四 边 形 的 内 角 和 与 外 角 和 相 等
,'垂 直 于 同 一 直 线 的 两 条 直 线 平 行
*!如图#' 是$( 上的两点%) 是ห้องสมุดไป่ตู้( 的直径!若%'0$13则 %()#
#!!如图四边形 #%)' 是边长为!的正方形*, 为%' 所在直线上的
两点!若 #*0 槡"!#%*#,0!$1.则下列结论正确的是
&''*0!!
)'567%#,(0
! "
!
*'#,0槡1!
,'四
边形
#,)*
的面
积为
4 /
! ! 第 !" 题 图
第 卷 非 选 择 题 ! 共 +/ 分
二 填 空 题 本 大 题 共 % 小 题 每 小 题 $ 分 共 !+ 分
#$!当 &0
!
!!
!!
!
时 分
式&("无 &(/
意义
!
#%!分 解 因 式 $/" (!"0 ! ! ! ! ! ! ! #&!如图直 线 "$ 被 直 线0 所 截!若 "'$%!0
/#3%$0!!#3则 %"0 ! ! ! ! ! ! !
第 "# 题 图
!#!本题满分%分如图一 次 函 数/0"&2$ 的 图 象 与 反 比 例 函 数/0
2 &


象交
于#
%

点 与
&



点)与
/




'

#

坐标为("!点 % 的坐标为!"3! !求 反 比 例 函 数 与 一 次 函 数 的 解 析 式
"求&#(% 的面积!
!'!本题满分!#分已知%#' 是&#%) 的高#且 %'0)'! !!"如 图 !#求 证 %%%#'0 %)#'& !""如 图 "#点 * 在 #' 上#连 接 %*#将 &#%* 沿 %* 折 叠 得 到 &#5%*##5% 与#) 相交于点,#若 %*0%)#求%%,) 的大小& !$"如图$#在!""的条件下#连接 *,#过点 ) 作)6(*,#交 *, 的延 长线于点6#若 %,0!##*60%#求线段 ), 的长!
#'!有4 张 相同 的 卡片每张 卡片上 分别写 有 !4
第 !1 题 图
的自然数从中任取一张卡 片则 抽 到 卡 片 上 的 数 字 是 $ 的 整 数 倍 的
概率为!!!!!!!
#(!如图在扇形 #(% 中%#(%04#3点 ) 为(# 的 中 点)*((# 交
弧#% 于点*以 点 ( 为 圆 心() 的 长 为 半 径 作 弧 )' 交 (% 于 点
第 "/ 题 图
第 "% 题 图
!$!本题满分+分某水 果 店 计 划 购 进 &#) 两 种 水 果 共 !/# 千 克#这 两 种水果的进价和售价如表所示
进价元千克 售价元千克
& 种水果
1
+
)种水果
4
!$
!!"若该水果店购进这两种水果共花费 !#"# 元#求该水果店购进 &# )两种水果各多少千克! !""在!!"的基础上#为了迎接春节 的来 临#水果店 老 板 决 定 把 & 种 水 果全部八 折出售#) 种 水 果全部 降价 !# 出售#那 么售完后 共获 利 多 少元*
!!!本题满分+分某学校在暑假期间开展'心怀感恩(孝敬父 母)的实 践 活动#倡导学生在假期中帮助父母干家务!开学以后#校学 生会随机 抽 取了部分学生#就暑假'平均每天帮助父母干家务所用时长)进行了 调
#以 下 是 根 据 相 关 数 据 绘 制 的 统 计 图 !
!%!本题满分+分如图#1#4 是 以 #% 为 直 径 的 $( 上 的 点#且#+ 40 %+4#弦 14 交#% 于点)#%1 平分%#%'#1,(%' 于点,! !!"求证%1, 是$( 的切线& !""若 )40$#%40/#求 )1 的长!
的度数是
!
&'$13!
)'113!
*'%13!
,'.#3
!!
!!
第4题图
第 !# 题 图
第 !! 题 图
#"!如图在&#%) 中)'%* 分别是&#%) 的边#%#) 上的中线则
+&'*, +&%),
0
!
&'1! ! !
)'!/ ! !
*'$! ! !
,'!"
##!如图在等腰直角三角形 #%) 中#%0#)0"%%#)04#3点 ' 是
#) 的中点点 - 是%) 边上的动点连接 -#-'!则 -#2-' 的 最
小值为
!
&'槡"2!!! )'槡!#"2槡" *'槡1!!
,'$
///////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////
'!若 (#0/则阴影部分的面积为!!!!!!!
!!!!
第 !. 题 图
第 !+ 题 图
#)!如图已知抛物线/!0("&"2"直线/"0"&2"当& 任取一值时&
对应的函数值分别为/!/"!若/!"/"取 /!/"中 的 较 小 值 记 为 1
若/!0/"记 10/!0/"!例如当 &0! 时/!0#/"0//!)/"此 时 10#!下列判断
第 "! 题 图
!
//////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////
当 &)# 时 /!#/" 当&)#时& 值越大1 值越小
使得 1 大于"的&值不存在
使得 10!的& 值是(!"或槡""!
其中正确的是!!!!!!! 三解答题本大题共+小题共%%分!解答应写出文字说明证 明过程或
验算步骤
#*!本 题 满 分 !# 分 每 小 题 1 分
)'!+"###### 千 瓦
*'!+"##### 千 瓦 !
,'!+"#### 千 瓦
%!下 列 二 次 根 式 中 是 最 简 二 次 根 式 的 是
!
&'槡/! !
)'槡%! !
槡 *'槡+!!!
,'
! "
&!下 列 运 算 正 确 的 是
!
&'$"" (/"" 0"" ! !
)'""""$0$"1
第 "1 题 图
!
!
&'(!!!!! !)'"!!! !!*'+!!!!! ,'(" !!如 图 所 示 该 几 何 体 的 主 视 图 是
!
第"题图
$!长 江 三 峡 工 程 电 站 的 总 装 机 容 量 用 科 学 记 数 法 表 示 为 !!+"-!#. 千 瓦
把它写成原数是
!
&'!+"### 千 瓦 ! !
*'"2"" 0"" 2/! !
,'($""$0 ("."%
相关文档
最新文档