高中数学 映射课件 湘教版必修1

合集下载

高中数学 121对应、映射和函数课件 湘教版必修1

高中数学 121对应、映射和函数课件 湘教版必修1
第十一页,共27页。
2.函数符号y=f(x)的理解 (1)对应法则f是表示定义域和值域的一种对应关系,与所选 择的字母(zìmǔ)无关.在研究函数时,除用符号f(x)外,还 常用g(x),F(x),G(x)等符号来表示.变量也不是用唯一的 字母(zìmǔ)来表示,f(x)=x+1与f(t)=t+1是同一个函数. (2)符号y=f(x)是“y是x的函数”的数学表示,应理解为:x 是自变量,它是对应法则所施加的对象;f是对应法则,它 既可以是解析式,也可以是图象、表格或文字描述等.y= f(x)仅仅是函数符号,不能认为“y等于f与x的乘积”.
自学(zìxué)导引
1. 映射的定义:设A,B是两个__非_空__的集合,如果按照 (ànzhào)某种对应法则f,对于集合A中的任何一个元素, 在集唯合一B(w中éi 都yī)有_____元素和它对应,这样的对应叫作从集 合A映到射集合B的__f_:__A→,B记作_________. 在映射f:A→B中,集合A叫作映射的__定__义__域__ ,与A中元 素x对应的B中的元素y叫x的__象_ (image),记作y=f(x)G,x 叫作y的_原__象__(inverse image).
第十七页,共27页。
题型二 映射(yìngshè)综合问题 【例2】 已知A={a,b,c},B={-2,0,2},映射f:A→B满足
f(a)+f(b)=f(c).求满足条件的映射的个数. 解 (1)当A中三个元素都对应0时,则f(a)+f(b)=0+0=0= f(c)有一个映射; (2)当A中三个元素对应B中两个时,满足f(a)+f(b)=f(c)的映 射有4个,分别为2+0=2,0+2=2, (-2)+0=-2,0+(-2)=-2. (3)当A中的三个元素对应B中三个元素时,有两个映射,分别 为(-2)+2=0,2+(-2)=0. 因此满足条件的映射共有7个. 点评 求解含有(hán yǒu)附加条件的映射问题,必须按映射 的定义处理,必要时进行分类讨论.

湘教版高中数学必修1全套PPT课件

湘教版高中数学必修1全套PPT课件

三 知识引入
我们通常用大写拉丁字母A,B,C,······表示集合,用小写的拉丁 字母a,b,c······表示集合中的元素.
如果a是集合A的元素,就说a属于(belong to)集合A记作
;如果a
不是集合A的元素,就说a不属于(not belong to)集合A记作
.
常用数集的记法:
非负整数集(自然数集):_____ N
集合的包含关系
[学习目标] 1.明确子集,真子集,两集合相等的概念; 2.会用符号表示两个集合之间的关系; 3.能根据两集合之间的关系求解参数的范围; 4.知道全集,补集的概念,会求集合的补集.
[知识链接] 1.已知任意两个实数a,b,如果满足a≥b,b≥a,
则它们的大小关系是 a=b 。
2.若实数x满足x>1,如何在数轴上表示呢? x≥1 时呢? 3.方程ax2-(a+1)x+1=0的根一定有两个吗?
I. 确定性:给定一个集合,那么任何一个元素在不在这个集合 中是确定的.
II. 互异性:集合中的元素是不重复出现的. III. 无序性:集合中的元素排列是没有顺序的.
集合相等:只要构成两个集合的元素是一样的,我们就称这两个集
合是相等的.
练习一下
一 学习目标 二 知识铺垫 三 知识引入 四 知识创新 五 知识强化 六 知识总结
一 学习目标 二 知识铺垫 三 知识引入 四 知识创新 五 知识强化 六 知识总结
四 知识创新
通过上面的分析,我们可以知道:例1至例4、例7所列举的元素组 成的集合元素个数是有限的;而例5、例6、例8所列举的元素组成 的集合元素个数是无限的.
我们把含有有限个个数的集合叫做有限集,用card来表示有限集中 元素的个数.含有无限个个数的集合叫做无限集.

湘教版高一数学必修第一册全册完整课件

湘教版高一数学必修第一册全册完整课件

湘教版高一数学必修第一册全册 完整课件目录
0002页 0058页 0060页 0091页 0093页 0151页 0204页 0235页 0259页 0289页 0350页 0352页 0354页 0356页 0358页 0382页 0406页
第1章 集合与函数 1.1.2 集合的包含关系 1.2 函数的概念和性质 阅读与思考 数学实验 1.2.4 从解析式看函数的性质 1.2.6 分段函数 1.2.8 二次函数的图像和性质——对称性 小结与复习 问题探索 2.1 指数函数 阅读与思考 2.2.3 对数函数的图像和性质 2.4 函数与方程 2.4.2 计算函数零点的二分法 2.5 函数模型及其应用 2.5.2 形形色色的函数模型
第1章 集合与函数
湘教版高一数学必修第一册全册完 整课件
1.1.1 集合的含义和表示
湘教版高一数学必修第一册全册完 整课件
1.1.2 集合的包含关系
湘教版高一数学必修第一册册完 整课件

2019湘教版高中数学必修一1-2-1对应、映射和函数必修1精品课件

2019湘教版高中数学必修一1-2-1对应、映射和函数必修1精品课件
3.函数的定义:设A,B是两个非空的_数__集__,如果按照某种 对应法则f,对于集合A中的任何一个数x,在集合B中都有 _唯__一__的数y和它对应,这样的对应f叫作定义于A取值于B 的_函__数__(function),记作f:A→B,或者__y_=__f(_x_)(x∈A, y∈B).
这里,A叫作函数的_定__义__域__,与x∈A对应的数y叫x的__象__, 记作y=f(x),由所有x∈A的象组成的集合叫作函数的 _值__域__. 4.观察实际例子并对照定义看出,一个函数f(x)有三个要素: 首先是_对__应__法__则_,也就是如何从x确定f(x)的法则.不知道 对__应__法__则__,就不能从根本上了解这个函数. 其次是_定__义__域_,就是自变量x的取值范围.对应法则形式上 相同的两个函数,若_定__义__域_不同,就算不同的函数. 知道了对应法则和定义域,_值__域__也就确定了,对_值__域__的 了解表明对函数有了更深入的认识,所以_值__域__也算是函数 的要素之一.
自学导引
1.映射的定义:设A,B是两个__非__空_的集合,如果按照某种 对应法则f,对于集合A中的任何一个元素,在集合B中都 有_唯__一__元素和它对应,这样的对应叫作从集合A到集合B 的_映__射__,记作__f_:__A_→__B_. 在映射f:A→B中,集合A叫作映射的__定__义__域__,与A中元 素x对应的B中的元素y叫x的_象__(image),记作y=f(x)G,x 叫作y的_原__象__(inverseimage).
由x+1=32, x2+1=54,
得 x=12.
所以 2在 B 中对应元素为( 2+1,3),32,54在 A 中对应元素
为12.
题型三 对函数定义的理解 【例3】判断下列对应是否为函数:

湘教版高一数学必修第一册全册课件【完整版】

湘教版高一数学必修第一册全册课件【完整版】

第1章 集合与函数
湘教版高一数学必修第一册全册课 件【完整版】
1.1.1 集合的含义和表示
湘教版高一数学必修第一册全册课 件【完整版】
1.1.2 集合的包含关系
湘教版高一数学必修第一册全册课 件【完整版】
湘教版高一数学必修第一册全册 课件【完整版】目录
0002页 0064页 0115页 0175页 0211页 0257页 0289页 0291页 0322页 0375页 0401页 0403页 0405页 0407页 0409页 0411页 0457页
第1章 集合与函数 1.1.2 集合的包含关系 1.2.1 对应、映射和函数 1.2.2 表示函数的方法 1.2.3 从图像看函数的性质 1.2.5 函数的定义域和值域 1.2.7 二次函数的图像和性质——增减性和最值 数学实验 第2章 指数函数、对数函数和幂函数 阅读与思考 2.1.1 指数概念的推广 2.2.1 对数的概念和运算律 2.2.3 对数函数的图像和性质 2.3.2 幂函数的图像和性质 2.4.1 方程的根与函数的零点 数学实验 2.5.1 几种函数增长快慢的比较
湘教版高一数学必修第一册全册课 件【完整版】
1.2.2 表示函数的方法
湘教版高一数学必修第一册全册课 件【完整版】
数学实验
湘教版高一数学必修第一册全册课 件【完整版】
1.2 函数的概念和性质
湘教版高一数学必修第一册全册课 件【完整版】
1.2.1 对应、完整版】
阅读与思考

湘教版高中数学必修一课件1.2.1对应、映射和函数

湘教版高中数学必修一课件1.2.1对应、映射和函数

课堂讲义
• 要点三 映射的个数问题 • 例3 已知A={x,y},B={a,b,c},集合A
到集合B的所有不同的映射有多少个?
解 分两类考虑: (1)集合 A 中的两个元素都对应 B 中相同元素的映射有 3 个.
课堂讲义
(2)集合 A 中的两个元素对应 B 中不同元素的映射有 6 个.
∴A 到 B 的映射共有 9 个.
• (2)已知集合A={a,b},B={2,0,-2},f是 从A到B的映射,且f(a)+f(b)=0,求这样的映
解 射(1f)的可以个建数立.以下 8 个不同的映射:
课堂讲义
(2)符合要求的映射 f 有以下 3 个:
课堂讲义
要点四 函数的概念 例 4 下列对应或关系式中是 A 到 B 的函数的是( )
有当y≥-1时,它在A中才有原象,而当y< -1时,它在A中就没有原象,即集合B中小于 -1的元素没有原象.
课堂讲义
• 规律方法 1.解答此类问题的关键是: • (1)分清原象和象; • (2)搞清楚由原象到象的对应法则; • 2.对A中元素,求象只需将原象代入对应法
则即可,对于B中元素求原象,可先设出它的 原象,然后利用对应法则列出方程(组)求解.
60°相对应的 B 中的元素是________,与 B 中元素
2 2
相对应的 A 中的元素是________.
答案
(1)D
3 (2) 2
45°
课堂讲义
解析 (1)由映射定义知,B 中至少有元素 1,2,3,4,即 B 中至少 有 4 个元素,选 D. (2)60°角的正弦等于 23,45°角的正弦等于 22,所以 60°的象是 23, 22的原象是 45°.
都有 2 个 y 值与之对应,不是函数,C 项中由于 x-2≥0 且 1

高一数学必修一映射课件PPT

高一数学必修一映射课件PPT
D.在课堂上,教师带领学生,通过观察足球赛、电 子游戏来总结物体的运动规律教学活动
E.在课堂上,讲到一个历史人物时,先让学生记笔记, 然后测验和这个人物相关的知识。
F.带领学生研究历史人物,并和自己现在的生活进 行对比,设想如果这个历史人物生活在现代他会是 怎样的。 G.最后,让学生谈谈这个历史人物在历史上的作为 对我们现在的生活产生了哪些影响。 H.在课堂上,通过扔骰子给学生讲解概率论。
2.函数是“两个数集A、B间的一种确定的对 应关系”,如果集合A、B不都是数集,这种 对应关系又怎样解释呢?
知识探究(一)
考察下列两个对应:
A
B
图1
A
B
图2
思考1:上述两个对应有何共同特点?
集合A中的任何一个元素,在集合B中都有唯 一确定的元素和它对应.
思考2:我们把具有上述特点的对应叫做映 射,那么如何定义映射?
图1
A
B
图2
思考4:在我们的生活中处处有映射,你能举 一个实例吗?
知识探究(二)
思考1:函数一定是映射吗?映射一定是函数 吗?
思考2:映射有哪几种对应形式?
一对一,多对一
思考3:设集合A=N,B={x|x是非负偶数},你 能给出一个对应关系f,使从集合A到集合B的 对应是一个映射吗?并指出其对应形式.
设A、B是两个非空的集合,如果按某一个 确定的对应关系f,使对于集合A中的任意一 个元素x,在集合B中都有唯一确定的元素y与 之对应,那么就称对应f:A→B为从集合A到 集合B的一个映射.
其中集合A中的元素x称为原象,在集合B 中与x对应的元素y称为象.
思考3:下图中的对应是不是映射?为什么?
A
B
重新思考教学方式,让自己在课堂上变得比之前更加高效。

新湘教版必修1高中数学 第一课时 映射

新湘教版必修1高中数学 第一课时 映射

1.2函数的概念和性质1.2.1对应、映射和函数第一课时映射请思考并分析下面给出的对应关系,它们有什么共同特点?(1)集合A={全班同学},集合B={全班同学的姓},对应关系是:集合A中的每一个同学在集合B中都有一个属于自己的姓.(2)设集合A={0,-3,2,3,-1,-2,1},集合B={9,0,4,1,5},对应关系是:集合A中的每一个数,在集合B中都有其对应的平方数(如图所示).1.映射的定义设A,B是两个非空的集合,如果按照某种对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一元素和它对应,这样的对应叫作从集合A到集合B的映射,记作f:A→B.2.像与原像在映射f:A→B中,集合A叫做映射的定义域,与A中元素x对应的B中的元素y叫x 的像,记作y=f(x),x叫作y的原像.已知集合A={a,b},B={0,1},则下列对应不是从A到B的映射的是()[提示]A、B、D都是映射,对于C,元素a对应两个元素0,1.不满足唯一性,不是映射.故选C.[例1] (1)A =N ,B =N +,f :x →|x -1|;(2)A ={x |0≤x ≤6},B ={y |0≤y ≤2},f :x →y =12x ;(3)A ={x ||x |≥3,x ∈N},B ={a |a ≥0,a ∈Z}, f :x →a =x 2-2x +4.[思路点拨] 首先明确对应关系,然后从映射的定义出发,考查A 中任意一个元素在B 中是否都有唯一的元素与之对应.[解] (1)集合A =N 中元素1在对应关系f :x →|x -1|下为0,而0∉N +,即A 中元素1在对应关系f 下,B 中没有元素与之对应,故不是映射.(2)A 中元素6在对应关系f :x →y =12x 下为3.而3∉B ,故不是映射.(3)对A ={x ||x |≥3,x ∈N}中的任意元素,总有整数x 2-2x +4=(x -1)2+3∈B 与之对应.故是从A 到B 的映射.1.已知A ={1,2,3,…,9},B =R ,从集合A 到集合B 的映射f :x →x2x +1. (1)与A 中元素1相对应的B 中的元素是什么? (2)与B 中元素49相对应的A 中的元素是什么?解:(1)A 中元素1,即x =1,代入对应关系得x 2x +1=12×1+1=13,即与A 中元素1相对应的B 中的元素是13.(2)B 中元素49,即x 2x +1=49,解得x =4,因此与B 中元素49相对应的A 中的元素是4.[例2] 设f :A →B 是从A 到B 的一个映射,其中A =B ={(x ,y )|x ,y ∈R},f :(x ,y )→(x -y ,x +y ),那么A 中元素(-1,2)的像是________,B 中元素(-1,2)的原像是________.[思路点拨] 首先要理解映射、像、原像的概念,然后从像与原像的概念出发进行思考.[解] 当x =-1,y =2时,有x -y =-3,x +y =1, 因此(-1,2)的像是(-3,1),解方程组⎩⎪⎨⎪⎧x -y =-1,x +y =2.得⎩⎨⎧x =12,y =32.∴(-1,2)的原像是⎝⎛⎭⎫12,32.2.f :A →B 是集合A 到集合B 的映射,A =B ={(x ,y )|x ∈R ,y ∈R},f :(x ,y )→(kx ,y +b ),若B 中的元素(6,2)在此映射下与集合A 中的元素(3,1)对应,求k 与b 的值.解:当⎩⎪⎨⎪⎧ x =3y =1时,⎩⎪⎨⎪⎧ kx =3k =6y +b =b +1=2⇒⎩⎪⎨⎪⎧k =2,b =1.故k =2,b =1.1.已知集合A ={1,2,3,4},B ={5,6,7},在下列A 到B 的四种对应法则中,其中A 到B 的映射是( )A .(1)(2)B .(1)(3)C .(1)(4)D .(2)(4)解析:选A ∵(1)(2)中,A 中任意一个元素在B 中都有唯一一个元素与之对应,∴(1)(2)是映射.而(3)集合A 中元素4没有元素与之对应,(4)中元素3在B 中有两个元素与之对应. 2.设集合A ={1,2,3,4,5},B ={1,9,25,49,81,100},下面的对应关系f 能构成A 到B 的映射的是( )A .f :x →(2x +1)2B .f :x →(2x -3)2C .f :x →-2x -1D .f :x →(2x +1)3解析:选B ∵A 选项中A 中元素5→(2×5+1)2=112∉B , C 选项中A 中元素1→-2×1-1=-3∉B , D 选项中A 中元素1→(2×1+1)3=27∉B , ∴B 选项正确.3.给定映射f :(x ,y )→(x +2y,2x -y ),在映射f 下(3,1)的原像为( ) A .(1,3) B .(1,1) C .(3,1)D.⎝⎛⎭⎫12,12解析:选B 依题意得:⎩⎪⎨⎪⎧ x +2y =3,2x -y =1,∴⎩⎪⎨⎪⎧x =1,y =1.4.已知集合A ={a ,b },B ={c ,d },则A 到B 的一一映射有________个. 解析:A →B 的映射有2个,如图.答案:25.已知映射f :A →B ,其中A ={-2,-1,1,2,3},集合B 中的元素都是A 中元素在f 下的像,且对任意a ∈A ,f (a )=|a |a ,则集合B 中的元素有________个,若1∈B ,则1的原像是________.解析:依题意有:-2→|-2|-2=-1,-1→|-1|-1=-1,1→|1|1=1,2→|2|2=1,3→|3|3=1,∴B 中的元素有2个,若1∈B ,则1的原像有3个,且是1,2,3.答案:2 1,2,36.已知集合A 到集合B ={0,1,2,3}的映射f :x →1|x |-1,试问集合A 中的元素最多有几个?写出元素最多时的集合A .解:∵f :x →1|x |-1是集合A 到集合B 的映射, ∴A 中每一个元素在集合B 中都应该有像. 令1|x |-1=0,该方程无解,所以0没有原像. 分别令1|x |-1=1,2,3.解得x =±2,±32,±43.故集合A 中的元素最多有6个 即A =⎩⎨⎧⎭⎬⎫2,-2,32,-32,43,-43 .通过对映射的学习,你觉得映射有哪些特性?映射是一种特殊的对应,它满足“存在性(即集合A中的每一个元素在集合B中都有对应元素)”和“唯一性(集合A中的每一个元素在集合B中都有唯一元素与之对应)”;但集合B中的元素未必有原象,即使有也未必唯一.映射中的两个集合A,B可以是数集、点集或由图形组成的集合等.封闭性:A中元素的对应元素必在集合B中,如集合A={1,2,3,4},B={1,2,3,4,5},对应法则f:x→x-1,这组对应不是映射.有序性:“A到B”的映射是有方向的,A到B的映射与B到A的映射一般不是同一个映射.整体性:映射不是只有集合A或者集合B,而是集合A、B以及对应法则f的整体,是一个系统,记作f:A→B.有时,当映射为f:A→B时,集合A中的元素a对应集合B中的元素b,也可表示为f:a→b=f(a)或者直接写成b=f(a).一、选择题1.已知映射f:A→B,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A 中元素映射f下的像,且对任意的a∈A,在B中都有和它对应的元素|a|,则集合B中的元素的个数有()A.4B.5C.6 D.7解析:选A由对应法则可知,B中的元素有1、2、3、4,∴B中的元素有4个.2.已知集合A=N+,B={正奇数},映射f:A→B使A中任一元素a和B中元素2a-1相对应,则与B中元素17对应的A的元素为()A.3 B.5C.17 D.9解析:选D由对应法则有:17=2a-1,∴a=9.3.给出下列两个集合之间的对应法则,回答问题:①A ={你们班的同学},B ={体重},f :每个同学对应自己的体重; ②M ={1,2,3,4},N ={2,4,6,8},f :n =2m ,n ∈N ,m ∈M ; ③M =R ,N ={x |x ≥0},f :y =x 4;④A ={中国,日本,美国,英国},B ={北京,东京,华盛顿,伦敦},f :对于集合A 中的每一个国家,在集合B 中都有一个首都与它对应.上述四个对应中是映射的有________,是函数的有________,是一一映射的有________.( )A .3个,2个,1个B .3个,3个,2个C .4个,2个,2个D .2个,2个,1个解析:选C 由映射、函数、一一映射的定义可知:①②③④是映射,②③是函数,②④是一一映射.4.设f :x →x 2是集合A 到集合B 的映射,如果B ={1,2},则A ∩B 可能是( ) A .∅ B .∅或{1} C .{1}D .∅或{2}解析:选B 依题设知:A 可能为:{1,2},{1,-2},{-1,2},{-1,-2},{1,2,-1},{1,-1,-2},{1,2,-2},{-1,2,-2},{-1,1,2,-2},{1},{-1},{2},{-2}.∴A ∩B 可能为∅,可能为{1}. 二、填空题5.已知A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b 是从A 到B 的映射,若1和8的原像分别为3和10,则5在f 下的像是________.解析:由题知⎩⎪⎨⎪⎧ 3a +b =1,10a +b =8,∴a =1,b =-2,∴f :x →y =x -2,则5-2=3. 答案:36.已知映射f :A →B ,其中A =R =B ,对应法则f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在原像,则k 的取值范围是________.解析:∵y =-x 2+2x =-x 2+2x -1+1=-(x -1)2+1, ∴y ≤1.则B =(-∞,1],∵k ∈R ,且在集合A 中不存在原像,∴k >1. 答案:k >1 三、解答题7.设A ={(x ,y )|x +y <3,且|x |<2,x ∈Z ,y ∈N +},B ={0,1,2},f :(x ,y )→x +y ,判断f 是否为A 到B 的映射.解:列举法写出集合A .A ={(0,1),(0,2),(1,1),(-1,1),(-1,2),(-1,3)},B ={0,1,2},f 为A 到B 的映射.8.已知映射f :A →B 中,A =B ={(x ,y )|x ∈R ,y ∈R},f :A 中的元素(x ,y )对应到B 中的元素(3x +y -1,x -2y +1).(1)是否存在这样的元素(a ,b )使它的像仍是自己?若存在,求出这个元素;若不存在,说明理由;(2)判断这个映射是不是一一映射? 解:(1)以自己为像的元素(a ,b )满足方程组⎩⎪⎨⎪⎧3a +b -1=a ,a -2b +1=b ,解得⎩⎨⎧a =27,b =37.∴存在元素⎝⎛⎭⎫27,37使它的像仍是自己. (2)设B 中的元素(a ,b )在A 中原像是(x ,y ),则⎩⎪⎨⎪⎧3x +y -1=a ,x -2y +1=b ,解得⎩⎨⎧x =2a +b +17,y =a -3b +47.说明方程组有唯一解. 即(a ,b )在A 中的原像唯一. 所以该映射是一一映射.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中集合A中的元素x称为原象,在集合B 中与x对应的元素y称为象.
思考3:下图中的对应是不是映射?为什么?
A
B
图1
A
B
图2
思考4:在我们的生活中处处有映射,你能举 一个实例吗?
知识探究(二)
思考1:函数一定是映射吗?映射一定是函数 吗?
思考2:映射有哪几种对应形式?
一对一,多对一
思考3:设集合A=N,B={x|x是非负偶数},你 能给出一个对应关系f,使从集合A到集合B的 对应是一个映射吗?并指出其对应形式.
(3)A Z, B R, f : x x; (4) A Z, B Z, f : x x2 3.
作业:
P23练习:
4.
P24习题1.2 A组:10.
P25习题1.2 B组:1.
例2 已知集合A={a,b},集合B={c,d,e}. (1)试建立一个从集合A到集合B的映射? (2)一共可建立多少个从集合A到集合B的 映射?
例3 下列对应关系f是否为从集合A到集合B的 函数?
(1) A R, B {y | y 0}, f : x | x |; (2) A R, B R, f : x x2;
③“唯一性”:对于集合A中的任何一个元 素,在集合B中和它对应的元素是唯一的.
理论迁移
例1 试判断下面给出的对应是否为从集合A到集合 B的映射? (1)集合A={P|P是数轴上的点},集合B=R,对应 关系f:数轴上的点与它所代表的实数对应;
(2)集合A={P|P是平面直角坐标系中的点},集 合B={(x,y)|x∈R,y∈R},对应关系f:平面直角 坐标系中的点与它的坐标对应;
第一章 1.2.2 函数的表示法 映射
问题提出
1.设集合A={x|x是正方形},B={y|y>0},对 应关系f:正方形→面积,那么从集合A到集 合B的对应是否是函数?为什么?
2.函数是“两个数集A、B间的一种确定的对 应关系”,如果集合A、B不都是数集,这种 对应关系又怎样解释呢?
知识探究(一)
考察下列两个对应:
A
B
图1
A
B
图2
思考1:上述两个对应有何共同特点?
集合A中的任何一个元素,在集合B中都有唯 一确定的元素和它对应.
思考2:我们把具有上述特点的对应叫做映 射,那么如何定义映射?
设A、B是两个非空的集合,如果按某一个 确定的对应关系f,使对于集合A中的任意一 个元素x,在集合B中都有唯一确定的元素y与 之对应,那么就称对应f:A→B为从集合A到 集合B的一个映射.
思考4:图1是从集合A到集合B的一个映射吗?图2 是从集合B到集合A的一个映射吗?
A
B
图1
A
BLeabharlann 图2思考5:有人说映射有“三性”,即“有序性”, “存在性”和“唯一性”,对此你是怎样理解的?
①“有序性”:映射是有方向的,A到B的映 射与B到A的映射往往不是同一个映射;
②“存在性”:对于集合A中的任何一个元素, 集合B中都存在元素和它对应;
(3)集合A={x|x是三角形},集合B={x|x是圆}, 对应关系f:每一个三角形都对应它的内切圆;
(4)集合A={x|x是学校的班级},集合 B={x|x是学校的学生},对应关系f:每一个 班级都对应班里的学生;
(5)集合A={1,2,3,4}, B={3,4,5,6,7, 8,9},对应关系f:x→2x+1
相关文档
最新文档