二值图像连通域标记算法与代码
基于FPGA的二值图像连通域快速标记

基于FPGA的二值图像连通域快速标记汪滴珠;安涛;何培龙【摘要】针对连通域标记算法运算量大、速度慢、硬件实现困难的缺点,提出一种适于现场可编程逻辑门阵列(FPGA)实现的二值图像连通域快速标记的算法,并用VHDL硬件开发语言在XILINX公司的FPGA上实现.实验结果表明了该算法能对二值图像复杂的连通关系正确标记,易于硬件实现,大大节约了硬件资源,电路结构简单,满足实时性要求.%In order to solve the prablems of low speed large computation and difficult hardware implementation of connected component labeling, a connected component fast labcling algorithm of binary image lageling applicable for field programmable gate array (FPGA) is proposed, which is implemented by VHDI. hardware description language based on FPGA platform of XILINX corporation. Experimental results show that the proposed algorithm can label binary image with complex connections correctly, implement hardware easily,save more hardware resource and meet real-time demands.【期刊名称】《现代电子技术》【年(卷),期】2011(034)008【总页数】3页(P115-117)【关键词】FPGA;二值图像;连通域;快速标记【作者】汪滴珠;安涛;何培龙【作者单位】中国科学院,光电技术研究所,四川,成都,610209;中国科学院研究生院,北京,100039;中国科学院,光电技术研究所,四川,成都,610209;中国科学院,光电技术研究所,四川,成都,610209【正文语种】中文【中图分类】TN919-34;TP391连通域标记算法是图像处理、计算机视觉和模式识别等领域的基本算法,它可以对图像中不同目标标上不同的标记,进而提取、分离目标,确定目标的特征和参数,从而对目标进行识别和跟踪。
二值图像连通域标记算法与代码_收藏

二值图像连通域标记算法与代码收藏10:19:42二值图像连通域标记算法与代码这里列举二值图像连通域标记算法包括直接扫描标记算法和二值图像连通域标记快速算法一、直接扫描标记算法把连续区域作同一个标记,常见的四邻域标记算法和八邻域标记算法。
1、四邻域标记算法:1)判断此点四邻域中的最左,最上有没有点,如果都没有点,则表示一个新的区域的开始。
2)如果此点四邻域中的最左有点,最上没有点,则标记此点为最左点的值;如果此点四邻域中的最左没有点,最上有点,则标记此点为最上点的值。
3)如果此点四邻域中的最左有点,最上都有点,则标记此点为这两个中的最小的标记点,并修改大标记为小标记。
2、八邻域标记算法:1)判断此点八邻域中的最左,左上,最上,上右点的情况。
如果都没有点,则表示一个新的区域的开始。
2)如果此点八邻域中的最左有点,上右都有点,则标记此点为这两个中的最小的标记点,并修改大标记为小标记。
3)如果此点八邻域中的左上有点,上右都有点,则标记此点为这两个中的最小的标记点,并修改大标记为小标记。
4)否则按照最左,左上,最上,上右的顺序,标记此点为四个中的一个。
代码实现:#include <list>#include <vector>#include <algorithm>像初步标记:为每个像素赋予临时标记,并且将临时标记的等价关系记录在等价表中2.整理等价表:这一环节分为两个步骤:(1)将具有等价关系的临时标记全部等价为其中的最小值;(2)对连通区域以自然数顺序重新编号,得到临时标记与最终标记之间的等价关系。
3.图像代换:对图像进行逐像素代换,将临时标记代换为最终标记.经过3个环节处理后,算法输出标记后的图像,图像中连通域按照由上到下,由左至右出现的顺序被标以连续的自然数。
代码实现:#include <list>#include <vector>#include <algorithm>arkValue1);pInnerListAdd->AddTail( (void *)().MarkValue2);( (void *)pInnerListAdd );();/* 定义pFindValue1和pFindValue2,存放在所有内层链表中找到特定值的某个内层链表的头指针,也就是外层链表的某个元素值。
二值化图像8联通域标记

区域生长法利用区域生长的思想,一次生长过程可以标记一整个连通区,只需对图像进行一次扫描就能标记出所有连通区。算法描述如下:
Step1、输入待标记图像bitmap(二值化原图,SDRAM内,u16,只有0x0000与0xffff),初始化一个与输入图像同样尺寸的标记矩阵labelmap(SDRAM内,大小与二值化原图相同,u16,初值0x0000),一个队列queue(SDRAM内,大小与二值化原图相同)以及标记计数labelIndex(unsigned char,最大值255,初值0);
{
int searchIndex, i, length;
labelmap[pixelIndex] = labelIndex;
length = width * height;
for(i = 0;i < 8;i++)
{
searchIndex = pixelIndex + NeighborDirection[i][0] * width + NeighborDirection[i][1];//???
}
}
}
//头步骤1
int ConnectedComponentLabeling(unsigned char *bitmap, int width, int height, int *labelmap)
{
int cx, cy, index, popIndex, labelIndex = 0;
Queue *queue = NULL;
popIndex = PopQueue(queue);
}
}
}
}
//free(queue);
二值图像的贴标签算法

⼆值图像的贴标签算法 贴标签就是将⼆值图中属于同⼀个连通域的像素标记起来。
之前编的程序需要多次遍历图像,所以速度⽐较慢,最近有朋友告诉我⼀种更简单的⽅法。
这⾥对⼆值图中⽩⾊的连通域进⾏贴标签,具体步骤是: 1、按⾏遍历图像,当遇到⼀个⽩点时,说明遇到了⼀个标签区域; 2、将当前⽩点的坐标作为种⼦点⼊栈; 3、判断栈是否为空,若栈⾮空,则在栈顶元素所在位置贴上对应的标签号,同时将⼆值图上的该位置赋成别的颜⾊(表明当前元素已经贴过标签),弹出栈顶元素,并将其8邻域的⽩点⼊栈,重复3直到栈空,这时,当前连通域已经完成贴标签过程; 4、继续按⾏遍历图像,直到遇到下⼀个⽩点,然后重复步骤2-3,直到遍历完图像;1////////////////////////////////////////////////////2// 功能:⼆值图贴标签(针对感兴趣区域)3// 参数:4// pBin - ⼆值图像5// pLabel - 标签矩阵(在外申请,和图像同样⼤⼩,并全部置0)6// lineByte - 图像的每⾏字节数7// roi - 感兴趣区域(左闭右开、上闭下开区间)8// 返回值:9// nLabel - 标签个数10///////////////////////////////////////////////////1112int Labeling(unsigned char *pBin, int *pLabel, int lineByte, CRect roi)13 {14//感兴趣区域的4条边界15int xMin = roi.left;16int xMax = roi.right;17int yMin = roi.top;18int yMax = roi.bottom;1920 stack<CPoint> stk;21int i,j,x,y,k;22int nLabel = 0; //标签编号(从1号标签贴起,⾮标签区域贴0)23for (y=yMin; y<yMax; y++)24 {25for (x=xMin; x<xMax; x++)26 {27if (pBin[y*lineByte+x]==255) //以找到的第⼀个⽩点为种⼦点28 {29 nLabel++;30 stk.push(CPoint(x,y)); //将种⼦点⼊栈31 pLabel[y*lineByte+x] = nLabel;32 pBin[y*lineByte+x] = nLabel*40;3334//若栈⾮空,弹出⼀个元素,并将其8邻域内的⽩点⼊栈,栈空时当前连通域完成贴标签35while (!stk.empty())36 {37 CPoint pt = stk.top();38 stk.pop();39 i = pt.y;40 j = pt.x;41 k = i*lineByte+j;42if (i>yMin && j>xMin && pBin[k-lineByte-1]==255) //左上43 {44 stk.push(CPoint(j-1,i-1));45 pLabel[k-lineByte-1] = nLabel;46 pBin[k-lineByte-1] = nLabel*40;47 }48if (i>yMin && pBin[k-lineByte]==255) //上49 {50 stk.push(CPoint(j,i-1));51 pLabel[k-lineByte] = nLabel;52 pBin[k-lineByte] = nLabel*40;53 }54if (i>yMin && j<xMax-1 && pBin[k-lineByte+1]==255) //右上55 {56 stk.push(CPoint(j+1,i-1));57 pLabel[k-lineByte+1] = nLabel;58 pBin[k-lineByte+1] = nLabel*40;59 }60if (j>xMin && pBin[k-1]==255) //左61 {62 stk.push(CPoint(j-1,i));63 pLabel[k-1] = nLabel;64 pBin[k-1] = nLabel*40;65 }66if (j<xMax-1 && pBin[k+1]==255) //右67 {68 stk.push(CPoint(j+1,i));69 pLabel[k+1] = nLabel;70 pBin[k+1] = nLabel*40;71 }72if (i<yMax-1 && j>xMin && pBin[k+lineByte-1]==255) //左下73 {74 stk.push(CPoint(j-1,i+1));75 pLabel[k+lineByte-1] = nLabel;76 pBin[k+lineByte-1] = nLabel*40;77 }78if (i<yMax-1 && pBin[k+lineByte]==255) //下79 {80 stk.push(CPoint(j,i+1));81 pLabel[k+lineByte] = nLabel;82 pBin[k+lineByte] = nLabel*40;83 }84if (i<yMax-1 && j<xMax-1 && pBin[k+lineByte+1]==255) //右下85 {86 stk.push(CPoint(j+1,i+1));87 pLabel[k+lineByte+1] = nLabel;88 pBin[k+lineByte+1] = nLabel*40;89 }90 }91 }92 }93 }9495return nLabel;96 }。
python中连通域算法

python中连通域算法Python 中连通域算法连通域可以简单理解为一个图像中相邻的像素点相连形成的一块区域。
在图像处理中,我们常常需要对这些连通的区域进行一些操作,比如找到其中的特征、选择某个区域进行分析或对整个区域进行一些操作。
在Python 中,我们可以使用一些算法来找到图像中的连通域并进行相应的操作。
接下来,我将逐步介绍Python 中连通域的概念、如何找到连通域、如何在连通域上进行特定操作的方法。
1. 连通域的概念在图像处理中,连通域是一个由相邻的像素点构成的区域。
在二值图像中,像素点的值通常只有两个,例如黑色和白色,被称为“0”和“1”。
连通域的数量和形状通常与图像中的目标有关。
例如,在一张图片中,我们可能需要找到所有联通的数字或字母,或者只需要找到图像中最大或最小的连通区域。
2. 连通域的查找算法在Python 中,我们可以使用不同的算法来查找连通域。
其中,最常用的两种算法是DFS(深度优先搜索)和BFS(广度优先搜索)。
在这里,我们将重点介绍DFS 算法。
DFS 算法是一种非常适合连通域查找的算法。
它的基本思路是从图像中的某个像素点开始,沿着该点所在的连通域递归地访问所有相邻的未访问过的像素点。
通过递归,我们可以遍历整个连通域,并找到所有的像素点。
为了演示DFS 算法,我们先创建一个简单的二值图像。
以下代码创建一个10x10 的方形图像,其中心区域是黑色的(0),外围是白色的(1)。
import numpy as npimport matplotlib.pyplot as pltimage = np.ones((10, 10), dtype=np.uint8) # 创建一个10x10的白色方形图像image[3:7, 3:7] = 0 # 将图像中心区域切换为黑色plt.imshow(image, cmap=plt.cm.gray) # 绘制图像plt.axis('off')plt.show()运行后,可以看到以下图像:
matlab 二维坐标数组求解连通区域-概述说明以及解释1.引言概述部分的内容可以如下编写:1.1 概述在数字图像处理和计算机视觉领域中,连通区域是常见的概念,它代表了具有相同像素值或特定属性的像素的集合。
本文将主要介绍使用MATLAB对二维坐标数组进行连通区域的求解方法。
二维坐标数组是一种常见的数据结构,用于存储和表示二维平面上的图像、地理信息等。
连通区域的求解在许多应用中都具有重要意义。
例如,在图像处理中,我们经常需要对目标进行分割和提取,而连通区域的求解可以帮助我们实现这一目标。
此外,在计算机视觉领域,连通区域的应用也非常广泛,如对象识别、目标跟踪等。
在正文部分,我们将首先介绍二维坐标数组的定义和特点,包括如何表示和访问数组中的元素。
然后,我们将详细解释连通区域的概念和应用,以及常见的连通区域求解算法和技术。
最后,在结论部分,我们将总结本文所介绍的二维坐标数组求解连通区域的方法,并给出相关实验结果和分析。
通过本文的阅读,读者将能够了解和掌握使用MATLAB对二维坐标数组进行连通区域求解的方法和技巧,从而在实际应用中能够灵活运用和扩展相关算法。
希望本文能够对读者在数字图像处理和计算机视觉领域的学习和研究工作有所帮助。
文章结构部分可以根据文章的主要内容和逻辑,介绍文章的主要章节和各个章节的内容概要。
下面是1.2 文章结构部分的内容示例:1.2 文章结构本文将按照以下结构进行叙述:第二部分:正文本部分主要介绍了二维坐标数组的定义和特点,并深入探讨了连通区域的概念和应用。
首先,我们将对二维坐标数组进行详细的定义,并解释其在实际问题中的应用。
其次,我们将介绍连通区域的概念和特点,并展示其在图像处理、地理信息系统等领域的广泛应用。
第三部分:结论本部分将重点讨论二维坐标数组求解连通区域的方法,并对实验结果进行分析。
我们将介绍一种有效的算法,基于二维坐标数组的特点,实现连通区域的快速求解。
同时,我们将通过实验结果验证该算法的准确性和效率,并分析不同参数对算法性能的影响。
two pass 连通区域算法

two pass 连通区域算法两遍算法(Two-pass algorithm)是图像处理中一种用来查找和标记图像中连通区域(或联通分量、区域)的方法。
这种算法首次被提出是在20世纪60年代,如今已成为图像处理中常用的一种方法。
这种算法相对简单而且高效,因此在实际应用中被广泛使用。
在本文中,我们将详细介绍两遍算法的原理和实现过程,并且通过一些示例来说明其应用。
首先,我们需要了解什么是连通区域。
在图像处理中,连通区域是指图像中由相邻像素点组成的一块区域。
在这个区域内的像素点具有相似的性质,比如颜色、亮度等。
通常情况下,我们希望将图像中相互连接的像素点组成的区域识别出来,并进行标记,这样我们就可以在后续的处理中对这些区域进行分析和处理。
两遍算法是一种经典的连通区域查找方法。
其基本思路就是通过两次扫描图像来实现。
在第一次扫描中,我们会遍历整个图像,对每一个像素点进行分析,并进行标记。
在第二次扫描中,我们会对已经被标记的像素点进行进一步处理,比如合并相邻的区域或者进行其他操作。
接下来,我们将详细介绍两遍算法的具体步骤。
第一步:初始化在进行第一次扫描之前,我们需要对一些变量进行初始化。
首先,我们需要一个数组来存储每个像素点的标记。
通常情况下,我们会使用一个与图像大小相同的数组来存储这些标记。
其次,我们需要设定一个阈值,用来确定两个像素点是否属于同一个区域。
最后,我们还需要定义一个函数,用来判断两个像素点是否相邻。
在大多数情况下,我们会使用四邻域或者八邻域来进行判断。
第二步:第一次扫描在第一次扫描中,我们会遍历整个图像,并对每一个像素点进行分析。
首先,我们会检查当前像素点是否已经被标记。
如果已经被标记,我们会继续遍历下一个像素点;如果没有被标记,我们将对该像素点进行标记,并进一步对相邻的像素点进行分析。
通过这种方式,我们就可以逐步找到图像中所有的连通区域,并对其进行标记。
第三步:第二次扫描在第二次扫描中,我们会对已经标记的像素点进行处理。
数字图像处理第6章二值图像处理-专业文档资料

二阶矩则描述了图像的对于直线和对轴与轴的转动惯量,因 此常常也把物体的二阶矩称为惯性矩。
中心矩 :
p q (x x)p(y y )qf(x ,y )d xp d ,q y 0 ,1 ,2
第6章 二值图像处理
低阶矩主要描述区域的面积、转动惯量、质心等等,具有 明显得几何意义,,四阶矩描述峰值的状态等等,一般 来说高阶矩受到图像离散化等的影响,高阶矩一般在应用中 不一定十分准确。
D e(ac)2(bd)2
② 街区距离,用Ds来表示:
(6-1)
D s |ac||bd|
③ 棋盘距离,用Dg表示如下:
(6-2)
D gma a x c|, ( |b|d|)
(6-3)
三者之间的关系为:Dg Ds,如De图6-1(a)、(b)和(c)所示。
第6章 二值图像处理
(a) 欧氏距离 (b) 街区距离 (c) 棋盘距离 (d)≤2构成菱形 (e)≤2构成正方形 图6-1 三种距离示意图
第6章 二值图像处理
6.2 二值图像的几何特征描述
6.2.1 二值图像中曲线的描述 6.2.1.1 轮廓跟踪-甲虫算法
目标区域的边界轮廓是描述目标的重要特征,对于二 值图像中的目标区域轮廓可以通过一种简单的轮廓跟踪算 法来得到,这种方法也被称作甲虫算法。如图6-6所示的二 值图像4连通分量,假定目标区域用1(黑色)表示,背景区域
1 (x,y)(x,y)
f(x,y)
0
else
M1N1
那么区域的面积为: S f (x, y) x0 y0
如果经过目标标记,区域占有的连通分量有k个,那么目
标区域的面积则是k个连通分量的面积总和,即有:
k
S Si i 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二值图像连通域标记算法与代码这里列举二值图像连通域标记算法包括直接扫描标记算法和二值图像连通域标记快速算法一、直接扫描标记算法把连续区域作同一个标记,常见的四邻域标记算法和八邻域标记算法。
1、四邻域标记算法:1)判断此点四邻域中的最左,最上有没有点,如果都没有点,则表示一个新的区域的开始。
2)如果此点四邻域中的最左有点,最上没有点,则标记此点为最左点的值;如果此点四邻域中的最左没有点,最上有点,则标记此点为最上点的值。
3)如果此点四邻域中的最左有点,最上都有点,则标记此点为这两个中的最小的标记点,并修改大标记为小标记。
2、八邻域标记算法:1)判断此点八邻域中的最左,左上,最上,上右点的情况。
如果都没有点,则表示一个新的区域的开始。
2)如果此点八邻域中的最左有点,上右都有点,则标记此点为这两个中的最小的标记点,并修改大标记为小标记。
3)如果此点八邻域中的左上有点,上右都有点,则标记此点为这两个中的最小的标记点,并修改大标记为小标记。
4)否则按照最左,左上,最上,上右的顺序,标记此点为四个中的一个。
代码实现:#include<list>#include<vector>#include<algorithm>//连通区域属性结构typedef struct tagMarkRegion{std::list<POINT> MarkPointList;//点列表RECT rect;}MarkRegion;//定义MarkMap 结构,用来存放等价对typedef struct tagEqualMark{ int MarkValue1; //标记值int MarkValue2; //标记值} EqualMark;//定义MarkMapping 结构,用来存放标记映射关系typedef struct tagMarkMapping{ int nOriginalMark; //第一次扫描的标记int nMappingMark; //等价整理之后对应标记} MarkMapping;/*功能说明:八连通标记参数说明:I,表示图像数据指针ImageWidth,表示图像宽ImageHeight,表示图像高off,表示偏移量nFlag,表示指定标记iColorType,表示颜色类型,(黑点,白点)markInfo,表示连通区域属性信息返回值:连通点数量,int类型*/int FillAreaFlag33(LPINT I,int ImageWidth,int ImageHeight,long off,int nFlag,int iColorType, MarkRegion &markInfo){bool bNew;RECT rect;int m,n,i,j,k,nDot=1,offset,offtemp,yMin;int dxy[8],x,y;dxy[0]=-ImageWidth-1; dxy[1]=-ImageWidth; dxy[2]=-ImageWidth+1;dxy[3]=-1;dxy[4]=1;dxy[5]=ImageWidth-1; dxy[6]=ImageWidth; dxy[7]=ImageWidth+1;rect.left=65535; rect.right=-1;rect.bottom=65535; rect.top=-1;markInfo.MarkPointList.clear();POINT ptTmp;if(I[off]==iColorType && I[off]!=nFlag)//黑点同时未被标记的情况{I[off]=nFlag;x=off%ImageWidth;y=off/ImageWidth;ptTmp.x = x;ptTmp.y = y;markInfo.MarkPointList.push_back(ptTmp);if(x<rect.left)rect.left=x;if(x>rect.right)rect.right=x;if(y<rect.bottom)rect.bottom=y;if(y>rect.top)rect.top=y;}else{return 0;}for(i=y; i<ImageHeight; i++){bNew=false;yMin=i;for(j=0; j<ImageWidth; j++){offset=i*ImageWidth+j;if(I[offset]==nFlag){for(k=0; k<8; k++)//八邻域搜索{if(i==0 && k<=2)continue;if(i==ImageHeight-1 && k>=5)continue;if(j==0 && (k==0 || k==3 || k==5))continue;if(j==ImageWidth-1 && (k==2 || k==4 || k==7))continue;offtemp=offset+dxy[k];if(I[offtemp]==iColorType && I[offtemp]!=nFlag) {I[offtemp]=nFlag;nDot++;m=offtemp/ImageWidth;n=offtemp%ImageWidth;ptTmp.x = n;ptTmp.y = m;markInfo.MarkPointList.push_back(ptTmp);if(n < rect.left)rect.left=n;if(n > rect.right)rect.right=n;if(m < rect.bottom)rect.bottom=m;if(m > rect.top)rect.top=m;y=offtemp/ImageWidth;if(y<=yMin){yMin=y;if(!bNew)bNew=true;}}}}}if(bNew){i=yMin-1;}}markInfo.rect.left = rect.left;markInfo.rect.right = rect.right;markInfo.rect.top = rect.top;markInfo.rect.bottom = rect.bottom;return nDot;}/*功能说明:四连通标记参数说明:I,表示图像数据指针ImageWidth,表示图像宽ImageHeight,表示图像高off,表示偏移量nFlag,表示指定标记iColorType,表示颜色类型,(黑点,白点)markInfo,表示连通区域属性信息返回值:连通点数量,int类型*/int FillAreaFlag22(LPINT I,int ImageWidth,int ImageHeight,long off,int nFlag,int iColorType, MarkRegion &markInfo){bool bNew;RECT rect;int m,n,i,j,k,nDot=1,offset,offtemp,yMin;int dxy[4],x,y;dxy[0]=-ImageWidth; dxy[1]=1;dxy[2]=ImageWidth; dxy[3]=-1;rect.left=65535; rect.right=-1;rect.bottom=65535; rect.top=-1;markInfo.MarkPointList.clear();POINT ptTmp;if(I[off]==iColorType && I[off]!=nFlag)//黑点同时未被标记的情况 {I[off]=nFlag;x=off%ImageWidth;y=off/ImageWidth;ptTmp.x = x;ptTmp.y = y;markInfo.MarkPointList.push_back(ptTmp);if(x<rect.left)rect.left=x;if(x>rect.right)rect.right=x;if(y<rect.bottom)rect.bottom=y;if(y>rect.top)rect.top=y;}else{return 0;}for(i=y; i<ImageHeight; i++){bNew=false;yMin=i;for(j=0; j<ImageWidth; j++){offset=i*ImageWidth+j;if(I[offset]==nFlag){for(k=0; k<4; k++)//四邻域搜索{if(i==0 && k==0)continue;if(i==ImageHeight-1 && k==2)continue;if(j==0 && k==3)continue;if(j==ImageWidth-1 && k==1)continue;offtemp=offset+dxy[k];if(I[offtemp]==iColorType && I[offtemp]!=nFlag) {I[offtemp]=nFlag;nDot++;m=offtemp/ImageWidth;n=offtemp%ImageWidth;ptTmp.x = n;ptTmp.y = m;markInfo.MarkPointList.push_back(ptTmp);if(n < rect.left)rect.left=n;if(n > rect.right)rect.right=n;if(m < rect.bottom)rect.bottom=m;if(m > rect.top)rect.top=m;y=offtemp/ImageWidth;if(y<=yMin){yMin=y;if(!bNew)bNew=true;}}}}}if(bNew){i=yMin-1;}}markInfo.rect.left = rect.left;markInfo.rect.right = rect.right;markInfo.rect.top = rect.top;markInfo.rect.bottom = rect.bottom;return nDot;}二、二值图像连通域标记快速算法算法描述首先,在进行标记算法以前,利用硬件开辟独立的图像标记缓存和连通关系数组,接着在视频流的采集传输过程中,以流水线的方式按照视频传输顺序对图像进行逐行像素扫描,然后对每个像素的邻域分别按照逆时针方向和水平方向进行连通性检测和等价标记关系合并,检测出的结果对标记等价数组和标记缓存进行更新,在一帧图像采集传输结束后,得到图像的初步标记结果以及初步标记之间的连通关系,最后,根据标号对连通关系数组从小到大的传递过程进行标号的归并,利用归并后的连通关系数组对图像标记缓存中的标号进行替换,替换后的图像为最终标记结果,并且连通域按照扫描顺序被赋予唯一的连续自然数。