高一物理动力学两类基本问题
(完整版)动力学的两类基本问题

动力学的两类基本问题一、基础知识1、动力学有两类问题:⑴是已知物体的受力情况分析运动情况;⑵是已知运动情况分析受力情况,程序如下图所示。
2、根据受力情况确定运动情况,先对物体受力分析,求出合力,再利用__________________求出________,然后利用______________确定物体的运动情况(如位移、速度、时间等).3.根据运动情况确定受力情况,先分析物体的运动情况,根据____________求出加速度,再利用______________确定物体所受的力(求合力或其他力).其中,受力分析是基础,牛顿第二定律和运动学公式是工具,加速度是桥梁。
解题步骤(1)确定研究对象;(2)分析受力情况和运动情况,画示意图(受力和运动过程);(3)用牛顿第二定律或运动学公式求加速度;(4)用运动学公式或牛顿第二定律求所求量。
例1. 一个静止在水平面上的物体,质量是2kg ,在8N 的水平拉力作用下沿水平面向右运动,物体与水平地面间的动摩擦因数为0.25。
求物体4s 末的速度和4s 内的位移。
例2. 滑雪者以v 0=20m/s 的初速度沿直线冲上一倾角为30°的山坡,从刚上坡即开始计时,至3.8s 末,滑雪者速度变为0。
如果雪橇与人的总质量为m=80kg ,求雪橇与山坡之间的摩擦力为多少?g=10m/s 2 .运动学公式 a (桥梁) 运动情况:如v 、t 、x 等 受力情况:如F 、m 、μ m F a v = v o +atx= v o t + at 2 21v 2- v o 2 =2ax二、练习1、如图所示,木块的质量m=2 kg,与地面间的动摩擦因数μ=0.2,木块在拉力F=10 N作用下,在水平地面上从静止开始向右运动,运动5.2 m后撤去外力F.已知力F与水平方向的夹角θ=37°(sin 37°=0.6,cos 37°=0.8,g取10 m/s2).求:(1)撤去外力前,木块受到的摩擦力大小;(2)刚撤去外力时,木块运动的速度;(3)撤去外力后,木块还能滑行的距离为多少?(1)2.8N(2)5.2m/s (3)6.76m2、如图所示,一个放置在水平台面上的木块,其质量为2 kg,受到一个斜向下的、与水平方向成37°角的推力F=10 N 的作用,使木块从静止开始运动,4 s 后撤去推力,若木块与水平面间的动摩擦因数为 0.1.(取g=10 m/s2)求:(1)撤去推力时木块的速度为多大?(2)撤去推力到停止运动过程中木块的加速度为多大?(3)木块在水平面上运动的总位移为多少?3、如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)4、如图所示,有一足够长的斜面,倾角α=37°,一小物块从斜面顶端A处由静止下滑,到B 处后,受一与小物块重力大小相等的水平向右的恒力作用,小物块最终停在C点(C点未画出).若AB长为2.25 m,小物块与斜面间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,g =10 m/s2.求:(1)小物块到达B点的速度多大?(2)B、C距离多大?5、如图所示,在倾角θ=30°的固定斜面的底端有一静止的滑块,滑块可视为质点,滑块的质量m=1kg,滑块与斜面间的动摩擦因数μ=36,斜面足够长.某时刻起,在滑块上作用一平行于斜面向上的恒力F=10N,恒力作用时间t1=3s后撤去.求:从力F开始作用时起至滑块返冋斜面底端所经历的总时间t及滑块返回底端时速度v的大小(g=10m/s2)6、(2013山东)如图所示,一质量m=0.4 kg的小物块,以v0=2 m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2 s的时间物块由A点运动到B点,A、B之间的距离L=10 m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g取10 m/s2.(1)求物块加速度的大小及到达B点时速度的大小;(2)拉力F与斜面夹角多大时,拉力F最小?拉力F的最小值是多少?7、如图所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽,从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1 B.1∶1 C.∶1 D.1∶8、如下图所示,光滑水平面上放置质量分别为m、2m的A、B两个物体,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,则拉力F的最大值为( )A.μmg B.2μmg C.3μmg D.4μmg9、物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6kg,m B=2kg,A、B间动摩擦因数μ=0.2,如图所示.现用一水平向右的拉力F作用于物体A上,则下列说法中正确的是(g=10m/s2)()A.当拉力F<12N时,A相对B静止不动B.当拉力F>12N时,A一定相对B滑动C.无论拉力F多大,A相对B始终静止D.当拉力F=24N时,A对B的摩擦力等于6N10、物体A的质量m1=1kg,静止在光滑水平面上的木板B的质量为m2=0.5kg、长L=1m,某时刻A以v0=4m/s的初速度滑上木板B的上表面,为使A不致于从B上滑落,在A滑上B的同时,给B施加一个水平向右的拉力F,若A与B之间的动摩擦因数μ=0.2,试求拉力F大小应满足的条件。
动力学的两大基本问题

达C点
D.由于两杆的倾角
未知,故无法判断
如图所示,传送带与地面倾角θ=37°,从A→B 长度为16m,传送带以l0m/s的速率逆时针转 动。在传送带上端A无初速度地放一个质量为 0.5kg的物体,它与传送带之间的动摩擦因数为 0.5.求物体从A运动到B需时间是多 少?(sin37°=0.6,cos37°=0.8)
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
【解析】 题中将套有小球的细直杆放在我们比较陌生的风洞实验里,题目
(1)设小球所受的风力为F,小球质量为m 小球在杆上匀速运动时,F=mg, 得 =F/mg=0.5mg/mg=0.5
(2)设杆对小球的支 持力为N,摩擦力为 f,小球受力情况如 图所示,将F、mg沿 杆方向和垂直杆方 向正交分解,根据 牛顿第二定律得
其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
动力学的两类基本问题

自行车运动员通过蹬踏产生力矩, 使自行车快速旋转,根据角动量定 理可以优化运动员的蹬踏方式和节 奏。
04
机械能守恒定律
机械能守恒定律的表述
机械能守恒定律表述为
在一个孤立系统内,外力所做的功和内力所做的功的总和为零,机械能保持不变 。
机械能守恒定律也可以表述为
在一个系统内,除重力或弹力做功外,其他力对物体所做的功等于物体动能的改 变量。
动力学的重要性
动力学在工程技术和日常生活中有着广泛的 应用,如车辆、航空航天、机械、土木等领 域的设计和优化都需要用到动力学的理论和 方法。
动力学对于理解自然现象和解决实际问题具 有重要意义,如地球引力对物体运动的影响 、天体运动规律等都需要用到动力学的知识 。
动力学的发展推动了其他相关学科的发展, 如物理、化学、生物学等学科的发展都与动 力学密切相关。
飞行控制
研究如何通过控制飞机的 副翼、升降舵、方向舵等 系统,实现飞机的精确操 控。
飞行效率
研究如何通过优化飞行姿 态和轨迹,降低油耗,提 高飞行效率。
航天动力学
轨道力学
研究航天器在地球、太阳系等不 同引力场中的运动规律和轨道设
计。
姿态动力学
研究航天器在空间中的姿态稳定 和控制技术。
碰撞预警
研究如何通过监测航天器的轨道 和速度,预警可能发生的碰撞事
数学表达式为
MΔt=L2−L1,其中M表示作用在质点上的力矩,Δt表示力矩作用时间,L1和 L2分别表示质点初末角动量。
角动量定理的应用场景
卫星轨道
卫星绕地球运行时,受到地球的 引力作用,根据角动量定理可以 计算卫星的轨道半径和运行周期。
陀螺仪
陀螺仪利用角动量定理来保持自身 的旋转轴稳定,广泛应用于导航、 姿态控制等领域。
动力学两类基本问题

动力学两类基本问题1.由受力情况判断物体的运动状态,处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再应用运动学公式求出速度或位移.2.由物体的运动情况判断受力情况,处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力,至于牛顿第二定律中合力的求法可用力的合成和分解法(平行四边形定则)或正交分解法.3.求解上述两类问题的思路,可用如图所示的框图来表示:解决两类动力学基本问题应把握的关键(1)做好两个分析——物体的受力分析和物体的运动过程分析;根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况.(2)抓住一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.【典例1】(2013·江南十校联考,22)如图3-3-2所示,倾角为30°的光滑斜面与粗糙平面的平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,g=10 m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.图3-3-2教你审题关键词获取信息①光滑斜面与粗糙的水平面滑块在斜面上不受摩擦力,水平面受摩擦力②从斜面上的A点由静止释放滑块的初速度v0=0③最终停在水平面上的C点滑块的末速度为零④滑块经过B点时没有能量损失斜面上的末速度和水平面上的初速度大小相等第二步:分析理清思路→抓突破口做好两分析→受力分析、运动分析①滑块在斜面上:滑块做初速度为零的匀加速直线运动.②滑块在水平面上:滑块做匀减速运动.第三步:选择合适的方法及公式→利用正交分解法、牛顿运动定律及运动学公式列式求解.解析(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为v m,设滑块在斜面上运动的加速度大小为a1,则有mg sin 30°=ma1,v2m=2a1hsin 30°,解得:v m=4 m/s(2)滑块在水平面上运动的加速度大小为a2,μmg=ma2v2m=2a2L,解得:μ=0.4(3)滑块在斜面上运动的时间为t1,v m=a1t1得t1=0.8 s由于t>t1,滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s设t=1.0 s时速度大小为v=v m-a2(t-t1)解得:v=3.2 m/s答案(1)4 m/s(2)0.4(3)3.2 m/s1.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个桥梁——物体运动的加速度是联系运动和力的桥梁.2.解决动力学基本问题时对力的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.3.解答动力学两类问题的基本程序(1)明确题目中给出的物理现象和物理过程的特点.(2)根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.(3)应用牛顿运动定律和运动学公式求解.突破训练3如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)图5答案 5.53 s解析此题可以分为三个运动阶段:力F存在的阶段物体沿斜面向上加速,受力分析如图所示,由牛顿第二定律和运动学公式得:F-F f-mg sin θ=ma1F f=μF N=μmg cos θv1=a1t1解得:a1=2 m/s2v1=4 m/s第二阶段为从撤去力F到物体沿斜面向上的速度减为零,受力分析如图所示由牛顿第二定律和运动学公式mg sin θ+μmg cos θ=ma20-v1=-a2t2解得:a2=7.6 m/s2t2=0.53 s第三阶段物体反向匀加速运动(因为mg sin θ>μmg cos θ)mg sin θ-μmg cos θ=ma3v2=a3t3解得:a3=4.4 m/s2t3=5 st=t2+t3=5.53 s题组一动力学两类基本问题1.如图3-2-5所示,水平桌面由粗糙程度不同的AB、BC两部分组成,且AB=BC,小物块P(可视为质点)以某一初速度从A点滑上桌面,最后恰好停在C点,已知物块经过AB与BC两部分的时间之比为1∶4,则物块P与桌面上AB、BC部分之间的动摩擦因数μ1、μ2之比为(P物块在AB、BC上所做的运动均可看作匀变速直线运动)()图3-2-5A.1∶1B.1∶4C.4∶1 D.8∶1解析:选D由牛顿第二定律可知,小物块P在AB段减速的加速度a1=μ1g,在BC段减速的加速度a2=μ2g,设小物块在AB段运动时间为t,则可得:v B=μ2g·4t,v0=μ1gt+μ2g·4t,由x AB=v0+v B2·t,x BC=v B2·4t,x AB=x BC可求得:μ1=8μ2,故D正确。
超重失重、等时圆和动力学两类基本问题(解析版)

超重失重、等时圆和动力学两类基本问题导练目标导练内容目标1超重失重目标2动力学两类基本问题目标3等时圆模型【知识导学与典例导练】一、超重失重1.判断超重和失重现象的三个角度(1)从受力的角度判断:当物体受到的向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时处于失重状态;等于零时处于完全失重状态。
(2)从加速度的角度判断:当物体具有向上的加速度时处于超重状态;具有向下的加速度时处于失重状态;向下的加速度恰好等于重力加速度时处于完全失重状态。
(3)从速度变化角度判断:物体向上加速或向下减速时,超重;物体向下加速或向上减速时,失重。
2.对超重和失重问题的三点提醒(1)发生超重或失重现象与物体的速度方向无关,只取决于加速度的方向。
(2)并非物体在竖直方向上运动时,才会出现超重或失重现象。
只要加速度具有竖直向上的分量,物体就处于超重状态;同理,只要加速度具有竖直向下的分量,物体就处于失重状态。
(3)发生超重或者失重时,物体的实际重力并没有发生变化,变化的只是物体的视重。
1如图所示,一个圆形水杯底部有一小孔,用手堵住小孔,往杯子里倒半杯水。
现使杯子做以下几种运动,不考虑杯子转动及空气阻力,下列说法正确的是()A.将杯子竖直向下抛出,小孔中有水漏出B.将杯子斜向上抛出,小孔中有水漏出C.用手握住杯子向下匀速运动,不堵住小孔也没有水漏出D.杯子做自由落体运动,小孔中没有水漏出【答案】D【详解】ABD.杯子跟水做斜抛运动、自由落体运动、下抛运动时都只受重力,处于完全失重状态,杯子与水相对静止,因此不会有水漏出,AB错误,D正确;C.杯子向下做匀速运动,处于平衡状态,水受重力,会漏出,C错误。
故选D。
2“笛音雷”是春节期间常放的一种鞭炮,其着火后一段时间内的速度-时间图像如图所示(取竖直向上为正方向),其中t0时刻为“笛音雷”起飞时刻、DE段是斜率大小为重力加速度g的直线。
不计空气阻力,则关于“笛音雷”的运动,下列说法正确的是()A.“笛音雷”在t 2时刻上升至最高点B.t 3~t 4时间内“笛音雷”做自由落体运动C.t 0~t 1时间内“笛音雷”的平均速度为v 12D.t 3~t 4时间内“笛音雷”处于失重状态【答案】D【详解】A 由图可知,t 0~t 4时间内“笛音雷”的速度一直为正值,表明其速度方向始终向上,可知,“笛音雷”在t 2时刻并没有上升至最高点,上升至最高点应该在t 4时刻之后,故A 错误;B .t 3~t 4时间内“笛音雷”速度方向向上,图像斜率为一恒定的负值,表明t 3~t 4时间内“笛音雷”实际上是在向上做竖直上抛运动,其加速度就是重力加速度g ,故B 错误;C .将A 、B 用直线连起来,该直线代表匀加速直线运动,其平均速度为v12,而AB 线段与横轴所围的面积大于AB 曲线与横轴所围的面积,该面积表示位移,根据v =ΔxΔt可知,直线代表的匀加速直线运动的平均速度大于AB 曲线代表的变加速直线运动的平均速度,即t 0~t 1时间内“笛音雷”的平均速度小于v12,故C 错误;D .根据上述,t 3~t 4时间内“笛音雷”做竖直上抛运动,加速度方向竖直向下,“笛音雷”处于失重状态,故D 正确。
2024高考物理一轮复习--牛顿第二定律的应用--瞬时性问题,动力学中的两类基本问题

瞬时性问题、动力学中的两类基本问题一、瞬时问题的两类模型轻绳、轻杆和接触面的弹力能跟随外界条件发生突变;弹簧(或橡皮绳)的弹力不能突变,在外界条件发生变化的瞬间可认为是不变的.二、动力学两类基本问题1.解题指导(1)做好两个分析:①受力分析,表示出合力与分力的关系;②运动过程分析,表示出加速度与各运动量的关系.(2)熟悉两种处理方法:合成法和正交分解法.(3)把握一个关键:求解加速度是解决问题的关键.2.必备知识(1)基本思路(2)基本步骤(3)解题关键(1)两类分析——物体的受力分析和物体的运动过程分析。
(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁。
三、针对练习1、如图甲、乙所示,细绳拴一个质量为m 的小球,小球分别用固定在墙上的轻质铰链杆和轻质弹簧支撑,平衡时细绳与竖直方向的夹角均为53°,轻杆和轻弹簧均水平。
已知重力加速度为g ,sin 53°=0.8,cos 53°=0.6。
下列结论正确的是( )A .甲、乙两种情境中,小球静止时,细绳的拉力大小均为43mgB .甲图所示情境中,细绳烧断瞬间小球的加速度大小为43gC .乙图所示情境中,细绳烧断瞬间小球的加速度大小为53gD .甲、乙两种情境中,细绳烧断瞬间小球的加速度大小均为53g2、如图所示,细线连接着A 球,轻质弹簧两端连接着质量相等的A ,B 球,在倾角为θ的光滑斜面体C 上静止,弹簧与细线均平行于斜面.C 的底面粗糙,在水平地面上能始终保持静止,在细线被烧断的瞬间,下列说法正确的是( ) A .两个小球的瞬时加速度均沿斜面向下,大小均为g sin θ B .A 球的瞬时加速度沿斜面向下,大小为2g sin θ C .C 对地面的压力等于A ,B 和C 的重力之和 D .地面对C 无摩擦力3、如图所示,物块1的质量为3m ,物块2的质量为m ,两者通过弹簧相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( ) A .a 1=0,a 2=g B .a 1=g ,a 2=g C .a 1=0,a 2=4 g D .a 1=g ,a 2=4 g4、如图所示,质量分别为m 、2m 的球A 、B 由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀减速运动的电梯内,细线承受的拉力为F ,此时突然剪断细线,在绳断的瞬间,弹簧的弹力大小和小球A 的加速度大小分别为( ) A .2F 3 2F 3m +gB .F 3 2F3m+gC .2F 3 F 3m+gD .F 3 F3m+g5、如图,A 、B 两球质量相等,光滑斜面的倾角为θ,图甲中,A 、B 两球用轻弹簧相连,图乙中A 、B 两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间(重力加速度为g )( ) A .图甲中A 球的加速度不为零 B .图乙中两球加速度均为g sin θ C .图乙中轻杆的作用力一定不为零D .图甲中B 球的加速度是图乙中B 球加速度的3倍6、如图所示,质量为2 kg 的物体B 和质量为1 kg 的物体C 用轻弹簧连接并竖直地静置于水平地面上。
两类动力学问题

3.解题策略 (1)问题实质是力与运动的关系,解题的关键在于弄清 图像斜率、截距、交点、拐点、面积的物理意义。 (2)应用物理规律列出与图像对应的函数方程式,进而 明确“图像与公式”“图像与物体”间的关系,以便对有 关物理问题作出准确判断。
[多维探究] (一)由v t图像分析物体的受力情况 [典例1] (2016· 海南高考)沿固定斜面
m A
F
L
B
(1)求物体与地面间的动摩擦因数μ; (2)用大小为 30 N,与水平方向成 37°的力斜向上拉此物
体,使物体从A处由静止开始运动并能到达B处,求该力作用 的最短时间t.
【答案】 (1)μ=0.5;(2)t=1.03s.
【集训冲关】 2.如图所示,有两个高低不同的水平面,高水平面光滑, 低水平面粗糙。一质量为5 kg、长度为2 m的长木板靠在高水平 面边缘A点,其表面恰好与高水平面平齐,长木板与低水平间的 动摩擦因数为0.05,一质量为1 kg可视为质点的滑块静止放置, 距A点距离为3 m,现用大小为6 N、水平向右的外力拉滑块,当 滑块运动到A点时撤去外力,滑块以此时的速度滑上长木板。滑 块与长木板间的动摩擦因数为0.5,取g=10 m/s2。求:
(1)滑块滑动到A点时的速度大小;6 m/s (2) 滑块滑动到长木板上时,滑块和长木板的加速度大小分 5 m/s2 0.4 m/s2 别为多少? (3)通过计算说明滑块能否从长木板的右端滑出。 滑块能从长木板的右端滑出。
突破点(四) 动力学的图像问题
1.常见的动力学图像 vt图像、a t图像、F t图像、F a图像等。 2.动力学图像问题的类型
下滑的物体受到与斜面平行向上的拉力F的 作用,其下滑的速度-时间图线如图所 示。已知物体与斜面之间的动摩擦因数为常数,在0~5 s、5~ 10 s、10~15 s内F的大小分别为F1、F2和F3,则 A.F1<F2 C.F1>F3 B.F2>F3 D . F 1= F 3 ( A )
动力学的两类基本问题的分析

动力学两类基本问题的分析上海师范大学附属中学 李树祥一、根据运动情况确定物体的受力1、解题步骤:(1)确定研究对象,并将研究对象从周围环境中隔离出来。
分析研究对象的受力,并画出受力图(注意:研究对象有时也可以选几个物体组成的整体,但上海市高中物理学科教学基本要求中,对用牛顿第二定律的计算,仅限于受到恒力作用的单个物体,且质量不变)。
(2)受力较为复杂时,要建立坐标系。
物体做变速直线运动时:建立的坐标系以保证列式、计算方便。
一般以运动方向为一个坐标轴,以垂直运动方向为另一个轴。
物体做曲线运动时:一般沿半径和切线方向建立坐标系。
(3)考察物体的运动情况。
若题中没有明确给出加速度,则要根据运动学公式求出加速度(如是匀变速直线运动,则要使用匀变速公式;如是匀速圆周运动,则要利用向心加速度公式求加速度)。
(4)列牛顿第二定律方程,求出某个力。
2、运用牛顿定律解题的常规做法:⑴物体只受一个力作用时,物体所受合外力就是此力,则此力就等于ma 。
⑵物体受两个力时,通常用作图法。
即物体受这两个力的合力必与加速度a 同方向,据此推知合力的方向,并作出力合成的平行四边形,利用三角形知识求解有关量。
⑶物体受三个力或超过三个力时,通常建立坐标系,应用正交分解法列出牛顿定律的分量表达式:∑F x =ma x∑F y =ma y应用正交分解法要注意:①坐标系的选取以计算方便为原则,一般选定加速度方向为坐标轴方向(有时也以少分解矢量为原则)。
②加速度的分解仅限于在两个正交方向上分解,不要在任意方向上分解。
③列分量表达式时,代入公式的合外力、加速度都必须是该方向上的分量,不要张冠李戴。
④运用牛顿第二定律进行计算时,各物理量单位都必须取国际制单位。
3、充分发挥数学公式的三个作用:⑴确定各个物理量之间的数值关系; ⑵确定各个物理量之间的单位关系;⑶若公式是矢量表达式,则可以确定矢量的方向。
例如,需要求某物理量的大小和方向时,可事先假定该物理量沿某方向,然后列出数学矢量式,若求出的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理动力学两类基
本问题
Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
孙恒芳教你学物理-----动力学的两类基本问题专题
【考点自清】
牛顿第二定律确定了运动和力的关系,使我们能够把物体的受力情况与运动情况联系起来。
利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向。
已知物体的受力情况,根据牛顿第二定律,可以求出物体的运动情况;已知物体的初始条件(初位置和初速度),根据运动学公式,就可以求出物体在任一时刻的速度和位移,也就可以求解物体的运动情况。
可用程序图表示如下:
?
根据物体的运动情况,由运动学公式可以求出加速度,再根据牛顿第二定律可确定物体的受力情况,从而求出未知的力,或与力相关的某些物理量。
如动摩擦因数、劲度系数、力的方向等。
可用程序图表示如下:
?
1.基本方法
⑴明确题目中给出的物理现象和物理过程的特点,如果是比较复杂的问题,应该明确整个物理现象是由几个物理过程组成的,找出相邻过程的联系点,再分别研究每一个物理过程.
⑵根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.图中应注明力、速度、加速度的符号和方向.对每一个力都应明确施力物体和受力物体,以免分析力时有所遗漏或无中生有.
⑶应用牛顿运动定律和运动学公式求解,通常先用表示物理量的符号运算,解出所求物理量的表达式来,然后将已知物理量的数值及单位代入,通过运算求结果.应事先将已知物理量的单位都统一采用国际单位制中的单位.
⑷分析流程图
两类基本问题中,受力分析是关键,求解加速度是桥梁和枢纽,思维过程如下:
?
(1)明确研究对象。
根据问题的需要和解题的方便,选出被研究的物体。
(2)分析物体的受力情况和运动情况,画好受力分析图,明确物体的运动性质和运动过程。
(3)选取正方向或建立坐标系,通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向。
(4)求合外力F合。
(5)根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论。
特别提醒:
①物体的运动情况是由所受的力及物体运动的初始状态共同决定的。
②无论是哪种情况,联系力和运动的“桥梁”是加速度。
【重点精析】
【例1】风洞实验中可产生水平方向的、大小可以调节的风力,先将一套有小球的细杆放入风洞实验室,小球孔径略大于细杆
直径,如图所示。
(1)当杆在水平方向上固定时,调节风力的大小,
使小球在杆上匀速运动,这时所受风力为小球所受重
力的倍,求小球与杆的动摩擦因数;
(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离x的时间为多少。
(sin37°=,cos37°=【变式练习1】如右图所示,质量M=10kg的木
楔ABC静置于粗糙水平地面上,滑动摩擦系数
μ=.在木楔的倾角θ=30°的斜面上,有一质量m=的
物块由静止开始沿斜面下滑.当滑行位移s=时,其
速度v=s。
在这过程中木楔没有滑动,求地面对木楔
的静摩擦力的大小和方向以及地面对木楔的支持力
(取g=10m/s2).
【互动探究】字母演算最后为Mg+mg+masinθ,又说明了什么呢?
复杂过程的处理方法——程序法
按时间的先后顺序对题目给出的物体运动过程(或不同的状态)进行分析(包括列式计算)的解题方法可称为程序法。
用程序法解题的基本思路是:
1、划分出题目中有多少个不同的过程或多少个不同的状态。
2、对各个过程或各个状态进行具体分析,得出正确的结果。
3、前一个过程的结束就是后一个过程的开始,两个过程的分界点是关键。
【例2】质量m=30kg的电动自行车,在F=180N的水平向左的牵引力的作用下,沿水平面从静止开始运动.自行车运动中受到的摩擦力F′=150N.在开始运动后的第5s末撤消牵引力F.求从开始运动到最后停止电动自行车总共通过的路程.
【变式练习2】一辆汽车在恒定牵引力作用下由静止开始沿直线运动,4s 内通过8m的距离,此后关闭发动机,汽车又运动了2s停止,已知汽车的质量m=2×103kg,汽车运动过程中所受阻力大小不变,求:
(1)关闭发动机时汽车的速度大小;
(2)汽车运动过程中所受到的阻力大小;
(3)汽车牵引力的大小.
【例3】质量为m=2kg的木块原来静止在粗糙水平地面上,现在第1、3、5……奇数秒内给物体施加方向向右、大小为F1=6N的水平推力,在第2、4、6……偶数秒内给物体施加方向仍向右、大小为F2=2N的水平推力。
已知物体与地面间的动摩擦因数μ=,取g=10m/s2,问:
(1)木块在奇数秒和偶数秒内各做什么运动
(2)经过多长时间,木块位移的大小等于
说明:(1)本题属于已知受力情况求运动情况的问题,解题思路为先根据受力情况由牛顿第二定律求加速度,再根据运动规律求运动情况.
(2)根据物体的受力特点,分析物体在各段时间内的运动情况,并找出位移的一般规律,是求解本题的关键.
1、等时圆模型(如图所示)
2、等时圆规律:
⑴小球从圆的顶端沿光滑弦轨道静止滑下,滑到弦轨道与圆的交点的时间相等。
(如图a)
⑵小球从圆上的各个位置沿光滑弦轨道静止滑下,滑到圆的底端的时间相等。
(如图b)
⑶沿不同的弦轨道运动的时间相等,都等于小球沿竖直直径(d)自由落体的时间,即
3、等时性的证明
设某一条弦与水平方向的夹角为α,圆的直径为d(如右
图)。
根据物体沿光滑弦作初速度为零的匀加速直线运动,加
速度为a=gsinα,位移为s=dsinα,所以运动时间为
即沿各条弦运动具有等时性,运动时间与弦的倾角、长短无
关。
【例4】如图,通过空间任一点A可作无限多个斜面,若将若
干个小物体从点A分别沿这些倾角各不相同的光滑斜面同时滑下,
那么在同一时刻这些小物体所在位置所构成的面是()
A.球面B.抛物面C.水平面D.无法确定
【解析】由“等时圆”可知,同一时刻这些小物体应在同一“等时圆”上,所以A正确。
【变式练习3】如图,位于竖直平面内的固定光滑圆
轨道与水平面相切于M点,与竖直墙相切于点A,竖直墙
上另一点B与M的连线和水平面的夹角为600,C是圆环
轨道的圆心,D是圆环上与M靠得很近的一点(DM远小
于CM)。
已知在同一时刻:a、b两球分别由A、B两点
从静止开始沿光滑倾斜直轨道运动到M点;c球由C点自
由下落到M点;d球从D点静止出发沿圆环运动到M
点。
则()
A.a球最先到达M点B.b球最先到达M点
C.c球最先到达M点D.d球最先到达M点
【例4】如图a所示,在同一竖直线上有A、B两点,相距为h,B点离地高度为H,现在要在地面上寻找一点P,使得从A、B两点分别向点P安放的
光滑木板,满足物体从静止开始分别由A和B沿木板下滑到P点的时间相等,求O、P两点之间的距离。
【变式练习4】如图是一倾角为α的输送带,A处为原料输入口,为避免粉尘飞扬,在A与输送带间建立一管道(假使光滑),使原料从A处以最短的时间到达输送带上,则管道与竖直方向的夹角应为多大?
【同步作业】
1、静止在水平地面上的物体的质量为2kg,在水平恒力F推动下开始运动,4s末它的速度达到4m/s,此时将F撤去,又经6s物体停下来,如果物体与地面的动摩擦因数不变,求F的大小。
2、消防队员为缩短下楼的时间,往往抱着竖直的杆直接滑下.假设一名质量为60kg、训练有素的消防队员从七楼(即离地面18m的高度)抱着竖直的杆以最短的时间滑下.已知杆的质量为200kg,消防队员着地的速度不能大于
6m/s,手和腿对杆的最大压力为1800N,手和腿与杆之间的动摩擦因数为,设当地的重力加速度g=10m/s2.假设杆是固定在地面上的,杆在水平方向不移动.试求:
(1)消防队员下滑过程中的最大速度;
(2)消防队员下滑过程中杆对地面的最大压力;
(3)消防队员下滑的最短的时间.。