化工热力学第二版 夏清 第2章 吸收答案

化工热力学第二版 夏清 第2章 吸收答案
化工热力学第二版 夏清 第2章 吸收答案

第二章 吸收

1. 从手册中查得 KPa 、25 ℃时,若100 g 水中含氨1 g ,则此溶液上方的氨气平衡分压为 KPa 。已知在此组成范围内溶液服从亨利定律,试求溶解度系数H (kmol/ (m 3·kPa))及相平衡常数m 。

解:(1) 求H 由33NH NH C P H *=.求算.

已知:30.987NH a P kP *=.相应的溶液浓度3NH C 可用如下方法算出:

以100g 水为基准,因为溶液很稀.故可近似认为其密度与水相同.并取其值为31000/kg m .则:

(2). 求m .由333

333330.9870.00974101.331/170.01051/17100/18

0.00974/0.9280.0105

NH NH NH NH NH NH NH NH y m x P y P x m y x **

**===

===+=== 2. kpa 、10 ℃时,氧气在水中的溶解度可用p O2=×106x 表示。式中:P O2为氧在气相中的分压,kPa 、x 为氧在液相中的摩尔分数。试求在此温度及压强下与空气充分接触后的水中,每立方米溶有多少克氧。

解: 氧在空气中的摩尔分数为0.21.故: 因2O x 值甚小,故可以认为X x ≈

即:2266.4310O O X x -≈=? 所以:溶解度6522232()6.431032 1.1410()/()11.4118()g O kg O kg H O m H O --????==?=?????

3. 某混合气体中含有2%(体积)CO 2,其余为空气。混合气体的温度为30 ℃,总压强为 kPa 。从手册中查得30 ℃时CO 2在水中的亨利系数E = KPa ,试求溶解度系数H (kmol/(m 3·kPa、))及相平衡常数m ,并计算每100克与该气体相平衡的水中溶有多少克CO 2。

解:(1). 求H 由2H O H EM ρ=

求算.

(2). 求m

(1) 当0.02y =时.100g 水溶解的2CO

因x 很小,故可近似认为X x ≈

故100克水中溶有220.01318CO gCO

4.在 kPa 、0 ℃下的O 2与CO 混合气体中发生稳定的分子扩散过程。已知相距 cm 的两截面上O 2的分压分别为 kPa 和 kPa ,又知扩散系数为 cm 2/s ,试计算下列两种情况下O 2的传递速率,kmol/(m 2·s):

(1) O 2与CO 两种气体作等分子反向扩散。

(2) CO 气体为停滞组分。

解: (1) 等分子反向扩散时2O 的传递速率:

(2) 2O 通过停滞CO 的扩散速率

5. 一浅盘内存有2 mm 厚的水层,在20 ℃的恒定温度下逐渐蒸发并扩散到大气中。假定扩散始终是通过一层厚度为5 mm 的静止空气膜层,此空气膜层以外的水蒸气分压为零。扩散系数为×10-5 m 2/s ,大气压强为 KPa 。求蒸干水层所需的时间。

解: 这是属于组分()A 通过停滞组分的扩散。

已知扩散距离(静止空气膜厚度)为3510Z m -=?.水层表面的水蒸气分压(20)C o 的饱和水蒸气压力为1 2.3346A a P kP =.

静止空气膜层以外;水蒸气分压为20A P =

单位面积上单位时间的水分蒸发量为

故液面下降速度:

水层蒸干的时间:

6. 试根据马克斯韦尔-吉利兰公式分别估算0 ℃、 kPa 时氨和氯化氢在空气中的扩散系数D (m 2/s),并将计算结果与表2-2中的数据相比较。

解:(1). 氨在空气中的扩散系数.

查表2.4知道,空气的分子体积:

氨的分子体积:

又知29/.17/B A M g mol M g mol ==

则0.101.33a C kP o 时,氨在空气中的扩散系数可由Maxwea Gilliland :式计算.

(2) 同理求得

7. 在 kPa 、27 ℃下用水吸收混于空气中的甲醇蒸气。甲醇在气、液两相中的组成都很低,平衡关系服从亨利定律。已知溶解度系数H = kmol/(m 3·kPa),气膜吸收系数k G =×10-5 kmol/(m 2·s·kPa),液膜吸收系数k L =×10-5

kmol/(m 2·kmol/m 3)。试求总吸收系数K G ,并算出气膜阻力在总阻力中所占百分数。

解: 总吸收系数

气膜P 助在点P 助中所占百分数.

8. 在吸收塔内用水吸收棍子空气中的甲醇,操作温度27 ℃,压强 KPa 。稳定操作状况下塔内某截面上的气相甲醇分压为 5 kPa ,液相中甲醇组成为 kmol/m 3。试根据上题中的有关数据算出该截面上的吸收速率。

解: 吸收速率()A G A A N K P P *=-

由上题已求出521.12210/()G a k kmol m s kP -=???

又知:31.955/()a H kmol m kP =?

则该截面上气相甲醇的平衡分压为

则55221.12210(5 1.08) 4.410/()

0.1583/()A N kmol m s kmol m h --=??-=??=?

9. 在逆流操作的吸收塔中,于 kpa 、25 ℃下用清水吸收混合气中的H 2S ,将其组成由2%降至 (体积)。该系统符合亨利定律。亨利系数E =×16 kPa。若取吸收剂用量为理论最小用量的12倍,试计算操作液气比及出口液相组成若压强改为1013 kPa ,其他条件不变,再求手及

解: (1) 求101.33a kP 下,操作液气比及出口液相组成。 最小液气比12min 120.02040.001()518.0.0204/545Y Y L Y V X m

--===- 操作液气比为min 1.2() 1.2518622.L L V V

=?=?= 出口液相浓度

(2) 求1013a kP 下的操作液气比及出口液组成

则:

出口液相组成:

11. 在 kPa 下用水吸收据于空气中的氨。已知氨的摩尔分数为,混合气体于40 ℃下进入塔底,体积流量为 m 3/s ,空塔气速为 m/s 。吸收剂用量为理论最小用量的倍,氨的吸收率为95%,且已估算出塔内气相体积吸收总系数的平均值为。在操作条件下的气液平衡关系为,试求塔径及填料层高度。

解:

121212min 1211220.10.111110.1

(1)0.1111(10.95)0.005555.

0.

0.11110.005555() 2.47.0.11112.61.1 2.47 2.72.1()(0.11110.005555)00.0388.2.72

2.60.956.2.72

1G Y Y Y X Y Y L Y V X m

L V

V X Y Y X L mV S L N ?==-=-=?-==--===-=?==-+=?-+=====o 122210.1111ln[(1)]ln[(10.956)0.956]13.8110.9560.005555

Y Y S S S Y Y **--+=-?+=--- 塔截面积:

塔径: 又知:0.5562730.90.0195/.22.427340

V kmol s =??=+ 则:

塔上填料层高度:

12.在吸收塔中用清水吸收混合气中的SO 2,气体流量为5000 m 3(标准)/h ,其中SO 2占10%,要求SO 2回收率为95%。气、液逆流接触,在塔的操作条件下SO 2在两相间的平衡关系近似为。试求:

(1) 若取用水量为最小用量的15倍,用水量应为多少?

(2) 在上述条件下,用图解法求所需理论塔板数;

(3) 如仍用(2)中求出的理论板数,而要求回收率从95%提高到98%,用水量应增加到多少?

解:(1) 求用水量:

(2) 求理论板数

()a 梯级图解法

在Y X -直角坐标图中给出平衡线.26.77oE CY *=?及操作线BT

由图中B 点开始在操作线与平衡线之间画梯级

得理论板层数 5.5T N =

()b 用克列姆塞尔算图

则相对回收率12120.11110.005560.950.1111

Y Y Y mX ?--===- 在理论最小用水量下,T N =∞,J 据此查图221-得:

min 0.95A = 而

min 0.95L mV

= 查图221-(或由式277c -计算)可知当:

1.43.0.95L A mV

?===时 两种方法解得的结果相同。 (3) 求98ρ=o o 时所需增加的水量

用克列姆塞尔法估算,已知:'0.98. 5.5T N ?==

据此查图221-得' 1.75A =.

则:' 1.75 1.7526.72019390/.L mV kmol h ==??=

故需要增加的用水量

13. 在一个接触效能相当于8层理论塔板的筛板塔内,用一种摩尔质量为250、密度为则900 kg/m 3的不挥发油吸收捏于空气中的丁烧。塔内操作压强为 kPa ,温度为15 ℃,进塔气体含丁烷5%(体积),要求回收率为95%。丁烷在15 ℃时的蒸气压强为 kPa ,液相密度为58O kg/m 3假定拉乌尔定律及道尔顿定律适用,求:

(1) 回收每1 m 3丁烷需用溶剂油多少(m 3)?

(2) 若操作压强改为 kPa ,而其他条件不变,则上述溶剂油耗量将是多少(m 3)?

解: (1). 由拉乌尔定律.

由于为低组成吸收,可以认为 1.92Y X *=

由克列姆塞尔方程得到:

解得:

由此可知,每回收1kmol 丁烷所需纯溶剂油数量为

丁烷的摩尔质量为58.08.则回收每31m 液体丁烷所需溶剂油的体积为

(2). 若304.0.p kPa =则:

因为20X =故20Y *=

10.042.Y *=(条件未变,仍用上法求得)

14. 在一逆流吸收塔中用三乙醇胶水溶液吸收混于气态烃中的H 2S ,进塔气相含H 2S %(体积),要求吸收率不低于99%,操作温度300 K ,压强为 kPa ,平衡关系为,进塔液体为新鲜溶剂,出塔液体中H 2S 组成为 kmol(H 2S )/kmol(溶剂)。已知单位塔截面上单位时间流过的惰性气体量为 kmol/(m 2·s),气相体积吸收总系数为 kmol/(m 3·s·kPa),求所需填料层高度。 解:12G G Ya m

V Y Y Z H N K Y -=?=

Ωo o V () 已知: 则:2(0.030.026)0.00030.00143.0.030.026ln 0.0003

0.000395101.330.04/()m Ya G Y K K ap kmol m S --=

=-==?=?V 又知:

15.有一吸收塔,填料层高度为3 m ,操作压强为 KPa ,温度为20 ℃,用清水吸收棍于空气中的氨。

混合气质量流速G =58O kg/(m 2·h),含氨6%(体积),吸收率为99%;水的质量流速W =770 kg/(m 2·h)。该塔在等温下逆流操作,平衡关系为。K Ga 与气相质量流速的次方成正比而与液相质量流速大体无关。试计算当操作条件分别作下列改变时,填料层高度应如何改变才能保持原来的吸收率(塔径 不变):(1) 操作压强增大一倍;(2) 液体流量增大一倍;(3) 气体流量增大一倍。

解: 已知

混合气体的平均摩尔质量

(1) '2p p = 由于''m p m p =故''''''''12''221/0.90.452

0.4519.280.202842.78

1ln[()(1)]110.06380ln[(10.2028)0.2028]10.20280.0006380

5.496

OG OG Ya G m mp p mV S L Y m X N S S S Y m X V V H K K ap ==?

=?===-=-+---=?-+--===ΩΩQ 故:

填料层高度比原来减少了3 1.198 1.802m -=

(2)

(计算过程同(1)).

液体流速的增加对G K a 无显着影响.

则:''' 5.4960.4358 2.395.OG OG Z N H m =?=?=

即所需填料层高度较原来减少了3 2.3950.605m -=

(3)

气体质量流速增大时,总吸收系数G K a 相应增大.

即所需填料层高度较原来增加7.923 4.92m -=

16. 要在一个板式塔中用清水吸收混于空气中的丙醇蒸气。混合气体流量为30 kmol/h ,其中含丙醇1%(体积)。要求吸收率达到90%,用水量为90 kmol/h 。该塔在 KPa 、27 ℃下等温操作,丙醇在气、液两相中的平衡关系为,求所需理论板数。

解:

由题意知 2.53m =则:

又因为20X =.则:

第三章

2. 解:(1) 塔径

两种填料的φ值如下.

5050 4.5mm mm mm ??陶瓷拉西环(乱堆):2051/m φ=

2525 2.5mm mm mm ??陶瓷拉西环(乱堆):4501/m φ=

比较两种填料的φ值可知,小填料的泛点气速应比大填料的低,故应接小填料计算塔径.

由图(318)-中的乱堆填料泛点线查得

故:

塔径:

(2). 压强降

因两段填料层具有不同的φ值,故塔内流动阻力应分两段计算.

上层:2525 2.5.mm mm mm ??乱堆瓷环

由图(318)-查得

则全塔压降1373.4531458437.a p P =?+?=V 总

3. 解: 查附录知.331.205/,998.2/, 1.005V L L a kg m kg m mP S ρρμ===? 可查得两种填料的φ值为

瓷拉西环:2525 2.54501/mm mm mm

m φ??=?

金属鲍尔环:25250.61601/mm mm mm

m φ??=?

由图(318)-查得

对应于此横坐标数值的纵坐标值(乱堆填料泛点线) 即:

液泛的气体体积流量

上升气量3max 3000/m h V >,故会发生液泛。 改用鲍尔环,若鲍尔环的液泛速度为'F μ,填料因子为'φ

因横坐标值不变,则纵坐标仍为0.1

故改用鲍尔环后,发生液泛的上升气量为

北京化工大学《化工热力学》2016-2017考试试卷A参考答案

北京化工大学2016——2017学年第一学期 《化工热力学》期末考试试卷 班级: 姓名: 学号: 任课教师: 分数: 一、(2?8=16分)正误题(正确的画√,错误的画×,标在[ ]中) [√]剩余性质法计算热力学性质的方便之处在于利用了理想气体的性质。 [×]Virial 方程中12B 反映了不同分子间的相互作用力的大小,因此120B =的气体混合物,必定是理想气体混合物。 [√]在二元体系中,如果在某浓度范围内Henry 定律适用于组分1,则在相同的浓度范围内,Lewis-Randall 规则必然适用于组分2。 [×]某绝热的房间内有一个冰箱,通电后若打开冰箱门,则房间内温度将逐渐下降。 [×]溶液的超额性质数值越大,则溶液的非理想性越大。 [×]水蒸汽为加热介质时,只要传质推动力满足要求,应尽量采用较低压力。 [×]通过热力学一致性检验,可以判断汽液平衡数据是否正确。 [×]如果一个系统经历某过程后熵值没有变化,则该过程可逆且绝热。 二、(第1空2分,其它每空1分,共18分)填空题 (1)某气体符合/()p RT V b =-的状态方程,从 1V 等温可逆膨胀至 2V ,则体系的 S ? 为 21ln V b R V b --。 (2)写出下列偏摩尔量的关系式:,,(/)j i E i T p n nG RT n ≠???=?????ln i γ,

,,(/)j i R i T p n nG RT n ≠???=??????ln i ?, ,,(/)j i i T p n nG RT n ≠???=?????i μ。 (3)对于温度为T ,压力为P 以及组成为{x}的理想溶液,E V =__0__, E H =__0__,/E G RT =__0__,ln i γ=__0__,?i f =__i f __。 (4)Rankine 循环的四个过程是:等温加热(蒸发),绝热膨胀(做功),等压(冷凝)冷却,绝热压缩。 (5)纯物质的临界点关系满足0p V ???= ????, 220p V ???= ???? ,van der Waals 方程的临界压缩因子是__0.375__,常见流体的临界压缩因子的范围是_0.2-0.3_。 二、(5?6=30分)简答题(简明扼要,写在以下空白处) (1)简述如何通过水蒸汽表计算某一状态下水蒸汽的剩余焓和逸度(假定该温度条件下表中最低压力的蒸汽为理想气体)。 剩余焓: ①通过线性插值,从过热水蒸汽表中查出给定状态下的焓值; ②从饱和蒸汽表中查得标准状态时的蒸发焓vap H ?(饱和液体的焓-饱和蒸汽的焓); ③通过00()T ig ig ig p p T H C dT C T T ?=≈-? 计算理想气体的焓变; ④通过R ig vap H H H H ?=-?-?得到剩余焓。 逸度: ①通过线性插值,从过热水蒸汽表中查出给定状态下的焓和熵并根据G H TS =-得到Gibbs 自由能(,)G T p ; ②从过热蒸汽表中查得最低压力时的焓和熵,计算得到Gibbs 自由能0(,)ig G T p ;

化工热力学(第三版)答案陈新志等

第1章 绪言 一、是否题 1. 封闭体系中有两个相βα,。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 2. 理想气体的焓和热容仅是温度的函数。(对) 3. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积 相等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、 终态压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径 无关。) 二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 功为() f i rev V V RT W ln =(以V 表示)或() i f rev P P RT W ln = (以P 表示)。 3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则 A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ???? ??--,?U =() 1121T P P R C ig P ??? ? ??--,?H = 112 1T P P C ig P ??? ? ??-。 B 等温过程的 W =21ln P P RT -,Q =2 1ln P P RT ,?U = 0 ,?H = 0 。 C 绝热过程的 W =( ) ???? ????? ? -???? ??--112 11ig P C R ig P P P R V P R C ,Q = 0 ,?U =( ) ???? ????? ? -??? ? ??-112 11ig P C R ig P P P R V P R C ,?H =112 1T P P C ig P C R ig P ??????????-???? ??。 4. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg 。

马沛生主编化工热力学第三章知识题解答

第三章 纯流体的热力学性质计算 思考题 3-1气体热容,热力学能和焓与哪些因素有关?由热力学能和温度两个状态参数能否确定气体的状态? 答:气体热容,热力学能和焓与温度压力有关,由热力学能和温度两个状态参数能够确定气体的状态。 3-2 理想气体的内能的基准点是以压力还是温度或是两者同时为基准规定的? 答:理想气体的内能的基准点是以温度为基准规定的。 3-3 理想气体热容差R p v c c -=是否也适用于理想气体混合物? 答:理想气体热容差R p v c c -=不适用于理想气体混合物,因为混合物的组成对此有关。 3-4 热力学基本关系式d d d H T S V p =+是否只适用于可逆过程? 答:否。热力学基本关系式d d d H T S V p =+不受过程是否可逆的限制 3-5 有人说:“由于剩余函数是两个等温状态的性质之差,故不能用剩余函数来计算性质随 着温度的变化”,这种说法是否正确? 答:不正确。剩余函数是针对于状态点而言的;性质变化是指一个过程的变化,对应有两个状态。 3-6 水蒸气定温过程中,热力学内能和焓的变化是否为零? 答:不是。只有理想气体在定温过程中的热力学内能和焓的变化为零。 3-7 用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多,为什么?能否 交叉使用这些图表求解蒸气的热力过程?

答:因为做表或图时选择的基准可能不一样,所以用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多。不能够交叉使用这些图表求解蒸气的热力过程。 3-8 氨蒸气在进入绝热透平机前,压力为 2.0 MPa ,温度为150℃,今要求绝热透平膨胀机出口液氨不得大于5%,某 人提出只要控制出口压力就可以了。你 认为这意见对吗?为什么?请画出T -S 图示意说明。 答:可以。因为出口状态是湿蒸汽,确定了出口的压力或温度,其状态点也就确定了。 3-9 很纯的液态水,在大气压力下,可以过冷到比0℃低得多的温度。假设1kg 已被冷至 -5℃的液体。现在,把一很小的冰晶(质量可以忽略)投入此过冷液体内作为晶种。如果其后在5 1.01310Pa 下绝热地发生变化,试问:(1)系统的终态怎样?(2)过程是否可逆? 答:压力增高,又是绝热过程,所以是一个压缩过程(熵增加,若为可逆过程则是等熵过程),故系统的终态仍是过冷液体。此过程不可逆。 3-10 A 和 B 两个容器,A 容器充满饱和液态水,B 容器充满饱和蒸气。二个容器的容 积均为1000cm 3,压力都为1 MPa 。如果这两个容器爆炸,试问哪一个容器被破坏得更严重? 答:A 容器被破坏得更严重。因为在压力、体积相同的情况下,饱和液态水的总热力学能远远大于饱和蒸气。 二、计算题:

化工热力学答案课后总习题答案详解

化工热力学答案_课后总习题答案详解 第二章习题解答 一、问答题: 2-1为什么要研究流体的pVT 关系? 【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。(1)流体的PVT 关系可以直接用于设计。(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。只要有了p-V-T 关系加上理想气体的id p C ,可以解决化工热力学的大多数问题。 2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。 【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。 2)临界点C 的数学特征: 3)饱和液相线是不同压力下产生第一个气泡的那个点的连线; 4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。 5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。 6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。 7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。 2-3 要满足什么条件,气体才能液化? 【参考答案】:气体只有在低于T c 条件下才能被液化。 2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素? 【参考答案】:不同。真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有 ()() () () 点在点在C V P C V P T T 00 2 2 ==?? ?

关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。 2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。为了提高计算复杂分子压缩因子的准确度。 偏心因子不可以直接测量。偏心因子ω的定义为:000.1)p lg(7.0T s r r --==ω , ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。 2-6 什么是状态方程的普遍化方法?普遍化方法有哪些类型? 【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a ,b ,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT 性质的计算。普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式 (普遍化压缩因子图法);(2)以两项virial 方程表示的普遍化第二virial 系数关系式(普遍化virial 系数法) 2-7简述三参数对应状态原理与两参数对应状态原理的区别。 【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为了提高对比态原理的精度,引入了第三参数如偏心因子ω。三参数对应态原理为:在相同的 r T 和r p 下,具有相同ω值的所有 流体具有相同的压缩因子Z ,因此它们偏离理想气体的程度相同,即),P ,T (f Z r r ω=。而两参数对应状态原理为:在相同对比温度r T 、对比压力 r p 下,不同气体的对比摩尔体积r V (或压缩因子z ) 是近似相等的,即(,) r r Z T P =。三参数对应状态原理比两参数对应状态原理精度高得多。 2-8总结纯气体和纯液体pVT 计算的异同。 【参考答案】: 由于范德华方程(vdW 方程)最 大突破在于能同时计算汽、液两相性质,因此,理论上讲,采用基于vdW 方程的立方型状态方程能同时将纯气体和纯液体的性质计算出来(最小值是饱和液体摩尔体积、最大值是饱和气体摩尔体积),但事实上计算的纯气体性质误差较小,而纯液体的误差较大。因此,液体的p-V-T 关系往往采用专门计算液体体积的公式计算,如修正Rackett 方程,它与立方型状态方程相比,既简单精度又高。 2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则? 【参考答案】:对于混合气体,只要把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,如Tr ,

化工热力学本科试卷A

泰山学院课程考试专用 泰山学院材料与化学工程系2005级、2007级3+2化学工程与 工艺专业本科2007~2008学年第一学期 《化工热力学》试卷A (试卷共8页,答题时间120分钟) 一、 判断题(每小题1分,共15 分。请将答案 填在下面的表格内) 1、只要温度、压力一定,任何偏摩尔性质都等于化学位。 2、对于确定的纯气体来说,其维里系数B 、C 、……只是温度的函数。 3、孤立体系的熵总是不变的。 4、当过程不可逆时,体系的作功能力较完全可逆的情况下有所下降。 5、二元液相部分互溶体系及其蒸汽的达到相平衡时,体系的自由度为2。 6、理想溶液中所有组分的活度系数均为1。 7、二元混合物的相图中泡点线表示的饱和汽相,露点线表示的是饱和液相。 8、二元组分形成恒沸物时,在恒沸点体系的相对挥发度等于1。 9、若化学平衡常数随着温度的升高而升高,则反应的标准焓变化0H ?为负值。 10、纯物质的平衡汽化过程,其摩尔体积、焓及吉布斯函数的变化均大于零。 11、在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。 12、对于理想溶液的某一容量性质恒有0i i M M =。 13、能量不仅有数量的大小还有质量的高低,相同数量的电能和热能来说,电 能的做功能力大于热能。 14、无论以Henry 定律为基准,还是以Lewis-Randall 规则为基准定义标准态 逸度,混合物中组分i 的活度和逸度的值不变。 15、逸度与压力的单位是相同的。

二、填空题(1-5题每空1分,6-11题每空2分,共25分) 1、在相同的初态下,节流膨胀的降温效果 (大于/小于) 等熵膨胀的降温效果。 2、恒温恒压下,吉布斯-杜亥姆方程为 (以i M 表示)。 3、形成二元溶液时,当异种分子之间的作用力小于同种分子之间的作用力时, 形成正偏差溶液,正偏差较大的溶液具有最 的沸点。 4、对于二元混合物来说一定温度下的泡点压力与露点压力 (相同/不 同)的。 5、当过程的熵产生 时,过程为自发过程。 6、当化学反应的温度不发生变化时,对体积增大的气相反应,增大压力,反 应进度 ,加入惰性气体反应进度 。 7、已知平衡压力和液相组成,用完全理想体系下的汽液平衡准则计算泡点温 度时,在假设的温度下算出1i y <∑,说明假设的温度 , 应 ,重新计算,直到1i y =∑。 8、正丁醇(1)和水(2)组成液液平衡系统,25℃,测得水相中正丁醇的摩 尔分数为0.00007,而醇相中水的摩尔分数为0.26,则水在水相中的活度系数为 ,水在醇相中的活度系数为 。 9、某换热器内,冷热两种流体进行换热,热流体的流率为 -1100kmol h ?,-1-129kJ kmol K p c =??,温度从500K 降为350K,冷流体的流率 也是-1100kmol h ?,-1-129kJ kmol K p c =??,温度从300K 进入热交换器,该换热器表面的热损失-187000kJ h Q =-?,则冷流体的终态温度t 2= K,该换热过程的损耗功W L = kJ/h 。设300K T Θ=,冷热流体的压力变化可以忽略不计。

化工热力学(第三版)陈钟秀课后习题答案

第二章 2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。 解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol 查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程 P=RT/V=8.314×323.15/124.6×10-6=21.56MPa (2) R-K 方程 22.5 22.5 6 0.52 6 8.314190.60.427480.42748 3.2224.610 c c R T a Pa m K mol P - ?== =???? 531 68.314190.60.08664 0.08664 2.985104.610 c c RT b m mol P --?===??? ∴() 0.5RT a P V b T V V b = --+ ()()50.555 8.314323.15 3.222 12.46 2.98510323.1512.461012.46 2.98510---?= - -???+? =19.04MPa (3) 普遍化关系式 323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+ ∵ c r ZRT P P P V = = ∴ c r PV Z P RT = 65 4.61012.46100.21338.314323.15 c r r r PV Z P P P RT -???===? 迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01Z Z Z ω=+=0.8938+0.008×0.4623=0.8975 此时,P=P c P r =4.6×4.687=21.56MPa 同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。 ∴ P=19.22MPa 2-2.分别使用理想气体方程和Pitzer 普遍化关系式计算510K 、2.5MPa 正丁烷的摩尔体积。已知实验值为1480.7cm 3/mol 。 解:查附录二得正丁烷的临界参数:T c =425.2K P c =3.800MPa V c =99 cm 3/mol ω=0.193

化工热力学答案(3章)

3-1. 物质的体积膨胀系数β和等温压缩系数k 的定义分别为: 1P V V T β???= ????,1T V k V P ???=- ????。试导出服从Vander Waals 状态方程的β和k 的表达式。 解:Van der waals 方程2 RT a P V b V =-- 由Z=f(x,y)的性质1y x z z x y x y z ???????????=- ? ? ??????????得 1 T P V P V T V T P ????? ??????=- ? ? ?????????? 又 () 2 3 2T P a RT V V V b ???=- ????- V P R T V b ???= ? ?-?? 所以 ()2321P a RT V V b V T R V b ???-??-??=-?? ????-???? ()() 323 2P RV V b V T RTV a V b -???= ????-- 故 ()() 22 3 12P RV V b V V T RTV a V b β-???== ? ???-- ()() 2 223 12T V V b V k V P RTV a V b -???=-= ????-- 3-2. 某理想气体借活塞之助装于钢瓶中,压力为34.45MPa ,温度为93℃,反抗一恒定的外压力3.45 MPa 而等温膨胀,直到两倍于其初始容积为止,试计算此过程之U ?、H ?、S ?、A ?、G ?、 TdS ?、 pdV ?、Q 和W 。 解:理想气体等温过程,U ?=0、H ?=0 ∴ Q =-W = 21 1 1 2ln 2V V V V RT pdV pdV dV RT V ===??? =2109.2 J/mol ∴ W =-2109.2 J/mol 又 P P dT V dS C dP T T ??? =- ???? 理想气体等温膨胀过程dT =0、P V R T P ???= ???? ∴ R d S d P P =- ∴ 2 2 2 1 1 1 ln ln ln2S P P P S P S dS R d P R P R ?==-=-=??=5.763J/(mol· K) A U T S ?=?-?=-366×5.763=-2109.26 J/(mol·K) G H T S A ?=?-?=?=-2109.26 J/(mol·K) TdS T S A =?=??=-2109.26 J/(mol· K) 21 1 1 2ln 2V V V V RT pdV pdV dV RT V ===??? =2109.2 J/mol 3-3. 试求算1kmol 氮气在压力为10.13MPa 、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。

《化工热力学》第三版课后习题答案

化工热力学课后答案 第1章 绪言 一、是否题 1. 封闭体系的体积为一常数。(错) 2. 封闭体系中有两个相βα, 。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相 等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态 压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 功为() f i rev V V RT W ln =(以V 表示)或() i f rev P P RT W ln = (以P 表示)。 3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则 A 等容过程的 W = 0 ,Q =() 1121T P P R C ig P ??? ? ??--, U =( )11 2 1T P P R C ig P ??? ? ? ?--,H = 112 1T P P C ig P ??? ? ??-。 B 等温过程的 W =21ln P P RT -,Q =2 1ln P P RT ,U = 0 ,H = 0 。 C 绝热过程的 W =( ) ???? ????? ? -???? ??--112 11ig P C R ig P P P R V P R C ,Q = 0 ,U = ( ) ??????????-???? ??-11211ig P C R ig P P P R V P R C ,H =1121T P P C ig P C R ig P ??????????-???? ??。

化工热力学习题集(附答案)

模拟题一 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( c ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( a ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( b ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( a ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( a ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( a ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( ) A. 0.7lg()1s r Tr P ω==-- B. 0.8lg()1s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。

化工热力学答案解析

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P =68.3146734.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.56 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p = =6 0.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106 = 5 8.314673 2.98710 V -?-?-0.553.224(673)( 2.98710)V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6 =0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2 =0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3 ·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为550.1cm 3 ·mol -1 所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为 Tc =304.2K Pc =7.376MPa ω=0.225

化工热力学答案3章

Vander Waals 状态方程的 和k 的表达式 解: Van der waals 方程 p 一 V b V 2 pdV 、Q 和 W 。 S =-366 X 5.763-2109.26 J/(mol ? K) S A =-2109.26 J/(mol ? K) 3-1.物质的体积膨胀系数 和等温压缩系数 k 的定义分别为: 丄丄,k 丄丄。试导出服从 V T P V P T 由 Z=f(x,y) 的性质 z x 丄 1 得 p V T 1 x y y z V T T p P V 又 P 2a RT p R V T V 3 V b 2 T V V b 所以 2a RT V V b 1 V 3 2 V b T P R V RV 3 V b T P RTV 3 2a V 2 b 故 1 V RV 2 V b V T P RTV 3 2a V b 2 k 1 V V 2 V 2 b V 3 P T RTV 2a V 2 b 3-2.某理想气体借活塞之助装于钢瓶中,压力为 TdS A =-2109.26 J/(mol ? K) pdV V 2 pdV 2V 1 RT dV RTln 2 =2109.2 J/mol V 1 V 3-3.试求算1kmol 氮气在压力为 10.13MPa 温度为773K 下的内能、焓、熵、 C V 、 C p 和自由焓之值。假 34.45MPa,温度为93 'C,反抗一恒定的外压力 3.45 MPa 而等温膨胀,直到两倍于其初始容积为止,试计算此过程之 U 、 H 、 S 、 A 、 G 、 TdS 、 解:理想气体等温过程, U =0、 H =0 Q =-W = pdV V 2 RT dV RTl n2 =2109.2 J/mol V W =-2109.2 J/mol 又 dS CP " V P dP 理想气体等温膨胀过程 dT =0、 dS dP P S 2 dS S| P 2 R dl n P P Rln P P 2 P 1 Rln2 =5.763J/(mol -K)

化工热力学试卷三套与答案

一. 选择题(每题2分,共10分) 1.纯物质的第二virial 系数B ( A ) A 仅是温度的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 2.T 温度下的过冷纯液体的压力P (A 。参考P -V 图上的亚临界等温线。) A. >()T P s B. <()T P s C. =()T P s 3. 二元气体混合物的摩尔分数y 1=0.3,在一定的T ,P 下,8812.0?,9381.0?21==?? ,则此时混合物的逸度系数为 。(C ) A 0.9097 B 0.89827 C 0.8979 D 0.9092 4. 某流体在稳流装置中经历了一个不可逆绝热过程,装置所产生的功为24kJ ,则流体的熵变( A ) A.大于零 B.小于零 C.等于零 D.可正可负 5. Henry 规则( C ) A 仅适用于溶剂组分 B 仅适用于溶质组分 C 适用于稀溶液的溶质组分 D 阶段适用于稀溶液的溶剂 二、 填空题(每题2分,共10分) 1. 液态水常压下从25℃加热至50℃,其等压平均热容为75.31J/mol,则此过程的 焓变为(1882.75)J/mol 。 2. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变 化至P 2,则,等温过程的 W =21ln P P RT -,Q =2 1 ln P P RT ,U = 0 ,H = 0 。 3. 正丁烷的偏心因子ω=0.193,临界压力为p c =3.797MPa ,则在Tr =0.7时的蒸 汽压为( 0.2435 )MPa 。 4. 温度为T 的热源与温度为T 0的环境之间进行变温热量传递,其等于热容为Cp , 则E xQ 的计算式为(0 (1)T xQ p T T E C dT T = - ? )。

化工热力学(第三版)陈钟秀课后习题答案

第二章 2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50 C 的容器中产生的压力:(1)理想气 体方程;(2) R-K 方程;(3)普遍化关系式。 解:甲烷的摩尔体积 V=0.1246 m 3/1kmol=124.6 cm 3/mol 查附录二得甲烷的临界参数: T c =190.6K P c =4.600MPa V c =99 cm 3/mol 3 =0.008 (1)理想 气体方程 P=RT/V=8.314 X 323.15/124.6 10^=21.56MPa (2) R-K 方程 0.4夕74842 190.2 6 4. 6 160 P. 2^2K 0.5mol_ 2 8 314 x 190 6 531 b =0.08664 c =0.08664 6 2.985 10 m mol P c 4.6 汇 10 "V - b~T°'5V V b 3.222 0~5 Z5 Z5 323.15. 12.46 10 12.46 2.985 10 =19.04MPa (3)普遍化关系式 T r =「T c =323. 15 1 90. 6 1. 6V r 5二V V c =124.6 99 = 1.259<2 ???利用普压法计算, Z = z° ?「z 1 此时,P=P c P r =4.6 X .687=21.56MPa 同理,取 乙=0.8975依上述过程计算, 的值。 /? P=19.22MPa 2-2.分别使用理想气体方程和 Pitzer 普遍化关系式计算 510K 、2.5MPa 正丁烷的摩尔体积。已知实验值为 3 1480.7cm 3 /mol 。 解:查附录二得正丁烷的临界参数: T c =425.2K P c =3.800MPa V c =99 cm 3/mol 3 =0193 RT c 8.314 323.15 12.46-2.985 10 ZRT 二 P c P r V PV RT P r 旦 RT 4.6 106 12 .46 10\“.2133P r 8.314 323.15 迭代:令 Z o = 1T P r0=4.687 又 Tr=1.695 , 0 1 查附录三得:Z =0.8938 Z =0.4623 0 1 Z =Z Z =0.8938+0.008 0.4623=0.8975 直至计算岀的相邻的两个 Z 值相差很小,迭代结束,得 Z 和P

化工热力学马沛生第一版第三章习题答案

习题 3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种: (1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。 V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -= (2)Helmholtz 方程,即能量的导数式 p V S H S U T ??? ????=??? ????= T S V A V U p ??? ????=??? ????=- T S p G p H V ? ??? ????=???? ????= p V T G T A S ??? ????=??? ????=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ??? ????-=??? ???? p S S V p T ??? ????=? ??? ???? T V V S T p ??? ????=??? ???? T p p S T V ? ??? ????-=??? ???? 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响? 答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。 3-3. 如何理解剩余性质?为什么要提出这个概念? 答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即: ),(),(p T M p T M M ig R -= M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。 需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。 定义剩余性质这一个概念是由于真实流体的焓变、熵变计算等需要用到真实流体的热容关系式,而对于真实流体,其热容是温度和压力的函数,并且没有相应的关联式,为了解决此问题就提出了剩余性质的概念,这样就可以利用这一概念方便地解决真实流体随温度、压力变化的焓变、熵变计算问题了。 3-4. 热力学性质图和表主要有哪些类型?如何利用体系(过程)的特点,在各种图上确定

化工热力学习题集(附标准答案)

化工热力学习题集(附标准答案)

————————————————————————————————作者:————————————————————————————————日期:

模拟题一 一.单项选择题(每题1分,共20分) 本大题解答(用A 或B 或C 或D )请填入下表: 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( A ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( B ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( A ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( A ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( B ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( A ) A. 0.7lg()1 s r Tr P ω==-- B. 0.8lg()1 s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( B ) A. 1x y z Z Z x x y y ???? ?????=- ? ? ?????????? B. 1y x Z Z x y x y Z ????????? =- ? ? ?????????? C. 1y x Z Z x y x y Z ????????? = ? ? ?????????? D. 1y Z x Z y y x x Z ????????? =- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( C ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( B ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。(D )强度性质无偏摩尔量 。 12. 关于逸度的下列说法中不正确的是 ( D ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体 的状态方程变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 14 15 16 17 18 19 20 答案

化工热力学课后答案

化工热力学课后答案(填空、判断、画图) 第1章 绪言 一、是否题 1. 封闭体系的体积为一常数。(错) 2. 封闭体系中有两个相βα,。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积 相等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、 终态压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径 无关。) 二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 功为() f i rev V V RT W ln =(以V 表示)或() i f rev P P RT W ln = (以P 表示)。 3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则 A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ???? ??--,?U =() 1121T P P R C ig P ???? ??--,?H = 112 1T P P C ig P ??? ? ??-。 B 等温过程的 W =21ln P P RT -,Q =2 1ln P P RT ,?U = 0 ,?H = 0 。 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是 超临界流体。)

(完整版)化工热力学(第三版)答案陈钟秀

2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。 解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol 查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程 P=RT/V=8.314×323.15/124.6×10-6=21.56MPa (2) R-K 方程 2 2.52 2.560.52 6 8.314190.60.427480.42748 3.2224.610 c c R T a Pa m K mol P -?===???? 531 68.314190.60.08664 0.08664 2.985104.610 c c RT b m mol P --?===??? ∴() 0.5RT a P V b T V V b = --+ ()()50.555 8.314323.15 3.222 12.46 2.98510323.1512.461012.46 2.98510---?= - -???+? =19.04MPa (3) 普遍化关系式 323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+ ∵ c r ZRT P P P V = = ∴ c r PV Z P RT = 654.61012.46100.21338.314323.15 c r r r PV Z P P P RT -???===? 迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01Z Z Z ω=+=0.8938+0.008×0.4623=0.8975 此时,P=P c P r =4.6×4.687=21.56MPa 同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。 ∴ P=19.22MPa 2-2.分别使用理想气体方程和Pitzer 普遍化关系式计算510K 、2.5MPa 正丁烷的摩尔体积。已知实验值为1480.7cm 3/mol 。 解:查附录二得正丁烷的临界参数:T c =425.2K P c =3.800MPa V c =99 cm 3/mol ω=0.193

相关文档
最新文档