110KV电网线路继电保护课程设计
110kV区域电网的继电保护设计

11、对于由不对称负荷或外部不对称短路而引起的负序过电流,一般在50MW及以上的发电机上装设负序过电流保护。
本题目中的G1、G2、G3发电机额定容量分别为50MW、50MW、70MW,均小于100MW,因此要装设的保护有:纵联差动保护(与发电机变压器共用)、匝间短路保护、定子接地保护G3可多装设一组负序过电流保护。
由此可得:本次设计的变压器主保护为:瓦斯保护、纵联差动保护;后备保护为:复合电压启动的过电流保护、零序电流电压保护、过负荷保护。
1.5线路保护配置
在110-220kV中性点直接接地电网中,线路的保护以以下原则配置:
(1)对于相间短路,单侧电源单回线路,可装设三相多段式电流电压保护作为相间短路保护。如不满足灵敏度要求,应装设多段式距离保护。双电源单回线路,可装设多段式距离保护,如不能满足灵敏度和速动性的要求时,则应加装高频保护作为主保护,把多段式距离保护作为后备保护。
4、对于采用发电机变压器组单元接线的发电机,容量在对100MW以下的,应装设保护区小于90%的定子接地保护;容量在100MW以上的,应装设保护区为100%的定子接地保护;
5、1MW以上的水轮发电机,应装设一点接地保护装置;
6、与母线直接连接的发电机,当单相接地故障电流大于允许值时,应装设有选择性的接地保护装置;
正序阻抗
零序阻抗
线路阻抗标幺值的计算:
正序阻抗
零序阻抗
式中: ——每公里线路正序阻抗值Ω/ km
——每公里线路零序阻抗值Ω/km
——线路长度km
——基准电压115kV
——基准容量100MVA
继电保护课程设计--110kV电网距离保护设计

继电保护课程设计--110kV电网距离保护设计
一、课程介绍
本课程设计是针对110kV电网中的距离保护进行设计的,旨在使学生了解距离保护的基本原理、组成部分、应用场景以及调试方法等方面的知识,能够独立设计和调试110kV电网距离保护系统。
二、设计内容
1. 距离保护的基本原理及分类
了解距离保护的基本原理,包括电气距离原理、I-V特征法和角度特征法等,以及距离保护的分类。
2. 距离保护的组成部分
了解距离保护的组成部分,包括主保护、备用保护、监控装置和负载切换等,并掌握各个组成部分的功能和特点。
3. 距离保护的应用场景
了解距离保护在电网中的应用场景,包括线路距离保护、变压器距离保护和母线距离保护等,并掌握不同应用场景下距离保护的设计要求和调试方法。
4. 距离保护系统的设计
根据实际需求,独立设计110kV电网距离保护系统,包括选型、接线、参数设置和调试等,实现对电网故障的保护和自动切除。
5. 距离保护系统的调试
针对设计的距离保护系统进行调试,包括模拟故障、检查保护动作、检查自动切除等,保证距离保护系统的稳定可靠性。
三、设计要求
1. 设计过程需结合实际电网,在电网拓扑结构、线路参数、变压器参数和母线参数等方面进行适当调整和设计。
2. 设计过程中需加强安全意识,确保操作过程安全可靠。
3. 设计报告中需详细说明设计思路、参数设置、故障模拟和调试等过程,保证报告清晰明了。
110KV电网继电保护设计

110KV电网继电保护设计继电保护是电网运行中至关重要的一环,其作用是在发生故障时迅速切除故障部分,保护电网的安全运行。
110KV电网作为中高压电网的重要组成部分,其继电保护设计至关重要。
本文将深入研究110KV电网继电保护设计,探讨其原理、技术要点以及优化方案。
一、110KV电网继电保护原理110KV电网继电保护的原理是基于故障发生时的各种异常信号进行判断,并通过控制装置实现切除故障部分。
在设计中,需要考虑到各种可能发生的故障类型和异常信号,并制定相应的逻辑关系和动作规则。
1.1 故障类型110KV电网可能发生的故障类型包括短路、接地故障、过载等。
短路是指两个或多个相之间或相与地之间出现低阻值连接;接地故障是指线路或设备与地之间出现低阻值连接;过载则是指线路或设备承受超过额定负荷而导致运行异常。
1.2 异常信号在故障发生时,电网中会出现各种异常信号,如电流异常、电压异常、频率异常等。
这些异常信号是继电保护的重要依据,通过对这些信号的监测和分析,可以判断出故障的类型和位置,并采取相应的保护动作。
二、110KV电网继电保护技术要点110KV电网作为中高压电网的重要组成部分,其继电保护设计的合理性和准确性对于保障电力系统的安全稳定运行具有举足轻重的作用。
在110KV电网继电保护设计中,有以下几个关键的技术要点需要特别关注:2.1精确测量精确测量是继电保护设计的基础,也是关键的一环。
在故障发生时,通过精确测量电流、电压、频率等各种参数,可以准确判断故障类型和位置,从而为故障切除和系统保护提供依据。
为了实现精确测量,需要在继电保护设计中选用高精度、高可靠性的测量仪表,并通过定期校准和检修等手段确保其测量准确性。
2.2快速动作110KV电网继电保护的另一个重要特点是快速动作。
在发生故障时,快速切除故障部分是防止事态扩大和降低对整个系统影响的关键。
因此,在继电保护设计中,应充分考虑动作速度,采用快速响应的控制装置和保护装置,确保故障切除的及时性和准确性。
继电保护110kv课程设计

继电保护110kv 课程设计一、课程目标知识目标:1. 理解110kV继电保护的基本原理,掌握其主要设备和保护功能的分类及工作原理。
2. 掌握继电保护配置原则,能够分析不同故障情况下继电保护的动作过程。
3. 了解电力系统对继电保护的基本要求,掌握相关标准和技术规范。
技能目标:1. 能够正确阅读并分析110kV电力系统的继电保护图纸,识别各种保护装置及其功能。
2. 通过案例分析,培养学生解决实际工程问题的能力,能对继电保护系统进行简单的设计和计算。
3. 能够运用继电保护知识,模拟故障分析,提出改进保护配置和参数设置的建议。
情感态度价值观目标:1. 培养学生对电力系统继电保护重要性的认识,激发其学习热情和责任感。
2. 增强学生的团队合作意识,培养在实践操作中相互协作、共同解决问题的能力。
3. 引导学生形成严谨的科学态度,认识到继电保护在保障电力系统安全中的重要作用。
课程性质分析:本课程属于电力系统及其自动化专业的核心课程,具有较强的理论性与实践性,旨在通过学习,使学生能够掌握110kV继电保护的基本知识和技能。
学生特点分析:学生应为具有一定电力系统知识基础的大三或大四本科生,具有一定的理论分析能力和实际操作能力。
教学要求分析:教学过程中应注重理论与实践相结合,通过案例分析和模拟操作,提高学生解决实际问题的能力。
同时,强调安全意识与规范操作,确保学生能够达到课程所设定的具体学习成果。
二、教学内容1. 继电保护基础理论- 继电保护概述:定义、作用、发展历程。
- 继电保护原理:电流保护、电压保护、差动保护、方向保护等。
- 保护装置的类型及功能:如继电器、保护屏、综合自动化装置等。
2. 110kV继电保护系统配置与工作原理- 继电保护系统配置:线路保护、变压器保护、母线保护等。
- 继电保护动作过程:故障类型、保护动作逻辑、时间特性等。
- 典型保护装置工作原理:如纵联差动保护、距离保护、过流保护等。
3. 继电保护案例分析与实践操作- 案例分析:分析实际电力系统故障案例,理解保护动作过程。
110kV电网线路保护继电保护课程设计

引言电力系统继电保护是电力系统安全运行的重要保证,尤其是近年来,继电保护产品类型众多,原理不断有所突破,特别是微机保护的采用,实现了继电保护行业的革命,随之而来的网络技术又为继电保护技术的发展提供了新的手段。
继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。
对电力系统继电保护的基本性能要求是有选择性、速动性、灵敏性、可靠性。
本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。
其中短路电流的计算和距离保护的整定计算及校验是本设计的重点。
通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。
1.继电保护整定计算的基本任务和要求1.1继电保护整定计算概述继电保护装置属于二次系统,它是电力系统中的一个重要组成部分,它对电力系统安全稳定运行起着极为重要的作用,没有继电保护的电力系统是不能运行的。
继电保护要达到及时切除故障,保证电力系统安全稳定运行的目的,需要进行多方面的工作,包括设计、制造、安装、整定计算、调试、运行维护等,继电保护整定计算是其中极其重要的一项工作。
电力生产运行和电力工程设计工作都离不开整定计算,不同部门整定计算的目的是不同的。
电力运行部门整定计算的目的是对电力系统中已经配置安装好的各种继电保护按照具体电力系统参数和运行要求,通过计算分析给出所需要的各项整定值,使全系统中的各种继电保护有机协调地布置、正确地发挥作用。
电力工程设计部门整定计算的目的是按照所设计的电力系统进行分析计算、选择和论证继电保护装置的配置和选型的正确性,并最后确定其技术规范。
同时,根据短路计算结果选择一次设备的规范。
(完整word版)110KV线路继电保护课程设计

前言电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。
因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。
继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化的发展。
随着计算机硬件的迅速发展,微机保护硬件也在不断发展。
电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护。
继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。
对电力系统继电保护的基本性能要求是有选择性,速动性,灵敏性,可靠性。
这次课程设计以最常见的110KV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。
特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。
重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。
3/ 27目录前言............................................... 错误!未定义书签。
摘要............................................ 错误!未定义书签。
1 系统运行方式和变压器中性点接地的选择.............. 错误!未定义书签。
1.1选择原则..................................... 错误!未定义书签。
1.1.1 发电机、变压器运行方式选择的原则....... 错误!未定义书签。
1.1.2 变压器中性点接地选择原则............... 错误!未定义书签。
110kv电网继电保护设计电流保护

110kv电网继电保护设计电流保护xx科技大学课程设计说明书课程名称继电保护课程设计题目110kv电网继电保护设计--电流保护学院农业工程学院班级农业电气化与自动化111班学生姓名指导教师日期 2014.11.29课程设计任务书课程设计名称继电保护课程设计学生姓名xxx 专业班级农电111班设计题目110KV电网继电保护设计——电流保护一、课程设计目的专业课程设计,一方面使学生获得综合运用学过的知识进行电力变电所、牵引变电所各主要元件的保护设计及整定和保护设备的选型的基本能力,另一方面能巩固与扩大学生的电气综合设计知识,为毕业设计做准备,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。
学生通过专业课程设计,应在下述各方面得到锻炼:1.掌握继电保护保护方案的确定原则,整定计算的一般步骤,了解系统运行方式的确定,保护整定系数的分析与应用,前后级整定配合的基本原则;2.掌握保护、控制、测量、信号回路阅读和设计基本方法;3.学习相关保护设备的选择和一般的维护。
二、设计内容和要求1.短路计算。
必须说明系统运行方式、短路点与短路类型的决定原则或依据。
2.保护方式的选择及整定计算。
要求说明选用保护方式的原则,各保护的整定计算条件,并用表格列出整定计算结果。
3.绘制保护原理接线图。
要求绘制单线原理接线图及某一元件保护原理展开图。
4.对保护的评价。
要求从选择性、灵敏性和速动性、可靠性四个方面来评价所采用保护的质量。
5.编写设计说明书。
不少于2000字的说明书。
三、设计任务和要求1.原始资料●各变电站、发电厂的操作直流电源电压U=220KV●发电厂最大发电容量50+2x25=100MW,最小发电容量为50MW,正常发电容量为50+25=75MW●线路X1=0.3Ω/km,X0=2X1Ω/km●变压器均为Y N,D11,110±2x2.5%/10.5KV,U k=10.5%●Δt=0.5s,负荷侧后备保护t dz=1.5s,变压器和母线均配置有差动保护,K zq=1.2 ●发电厂升压变中性点直接接地,其他变压器不接地2.设计任务●系统保护配置方案与计算●10km线路保护的接线图●对本网络所采用的保护进行评价。
110KV单电源环形网络继电保护课程设计

2.电网各个元件参数计算及短路电流计算2.1基准值选择基准功率:S B=100MV·A,基准电压:V B=115V。
基准电流:I B=S B/1.732 V B=100×103/1.732×115=0.502K A;基准电抗:Z B=V B/1.732 I B=115×103/1.732×502=132.25Ω;电压标幺值:E=E(2)=1.052.2电网各元件等值电抗计算2.2.1输电线路等值电抗计算(1) 线路AB等值电抗计算正序以及负序电抗:X L1= X1L1=0.4×40=16ΩX L1*= X L1/ Z B=16/132.25=0.121零序电抗:X L10= X0L1= 3X1L1=3×0.4×40=48ΩX L10*= X L10/ Z B=48/132.25=0.363(2) 线路BC等值电抗计算正序以及负序电抗:X L2= X1L2=0.4×40=16ΩX L2*= X L2/ Z B=16/132.25=0.121零序电抗:X L20= X0L2= 3X1L2=3×0.4×40=48ΩX L20*= X L20/ Z B=48/132.25=0.363(3) 线路CA等值电抗计算正序以及负序电抗:X L3= X1L3=0.4×50=20ΩX L3*= X L3/ Z B=20/132.25=0.1512零序电抗:X L30= X0L3= 3X1L3=3×0.4×50=60ΩX L30*= X L30/ Z B=50/132.25=0.45372.2.2变压器等值电抗计算(1) 变压器T1、T2等值电抗计算X T1= X T2=U K%/100×U N2/ S N=1O.5/100×110×110/60≈21.175ΩX T1*= X T2*=X T1/ Z B=31.7625/132.25=0.1601(2) 变压器T3等值电抗计算X T3= U K%/100×U N2/ S N≈21.175ΩX T3*=X T3/ Z B=21.175/132.25=0.1601(3) 变压器T4、T5、T6等值电抗计算X T4= X T5=X T6= X T7= U K%/100×U N2/ S N≈63.525ΩX T6*= X T7* = X T4*= X T5*=63.525/132.25=0.48032.2.3发电机等值电抗计算(1)发电机G1、G2、G3电抗标幺值计算X G1* = X G2*= X G3*=X d S B/ S G= X d S B COSφ/ P G=0.129×100×0.85/50=0.21932.2.4 各线路运行方式下流过断路器的最大负荷电流(1) 保护1的最大运行方式:发电机G1、G2、G3全投入,继开线路AC;通过保护1的负荷电流最大;保护1的最小运行方式:发电机G3停,线路全部运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
110KV电网线路继电保护课程设计二、设计内容1. CA线路保护设计AS、AC、AB线路保护设计2.2BS线路保护设计3. BA、1三、设计任务1.系统运行方式和变压器中性点接地的选择2.故障点的选择及正、负、零序网络的制定3.短路电流计算4.线路保护方式的选择、配置与整定计算(选屏)*5.主变及线路微机保护的实现方案6.线路自动综合重合闸7.保护的综合评价*8、110KV系统线路保护配置图,主变保护交、直流回路图随着电力系统的飞速发展,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。
电力系统的运行中最常见也是最危险的故障是发生各种形式的各种短路。
发生短路时可能会产生以下后果:(1)电力系统电压大幅度下降,广大用户负荷的正常工作遭到破坏。
(2)故障处有很大的短路电流,产生的电弧会烧坏电气设备。
(3)电气设备中流过强大的电流产生的发热和电动力,使设备的寿命减少,甚至遭到破坏。
(4)破坏发电机的并列运行的稳定性,引起电力系统震荡甚至使整个系统失去稳定而解列瓦解。
因此在电力系统中要求采取各种措施消除或减少发生事故的可能性,一旦发生故障,必须迅速而有选择性的切除故障,且切除故障的时间常常要求在很短的时间内(十分之几或百分之几秒)。
实践证明只有在每个元件上装设保护装置才有可能完成这个要求,而这种装置在目前使用的大多数是由单个继电器或继电器及其附属设备的组合构成的,因此称为继电保护装置,它能够反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发生告警信号。
继电保护的任务就是在系统运行过程中发生故障(三相短路、两相短路、单相接地等)和出现不正常现象时(过负荷、过电压、低电压、低周波、瓦斯、超温、控制与测量回路断线等),能够自动、迅速、有选择性且可靠的发出跳闸命令将故障切除或发出各种相应信号,从而减少故障和不正常现象所造成的停电范围和电气设备的损坏程度,保证电力系统安全稳定的运行。
本次的课程设计是针对电力系统110KV电网(环网)线路继电保护的设计,涉及的内容比较广泛,几乎综合了大学期间本专业所学的所有相关课程,既然是继电保护,就必然涉及到了强电与弱电的相互配合,故也串行了电子、通信、自动化等相关专业的知识。
正因为其涉及的知识面广,故对于即将毕业的我们是一次很好的实习机会,也是一次培养对知识的综合运用的机会,更是一种挑战。
本设计是对电力系统110KV电网线路进行继电保护初步设计,首先对继电保护的现状、发展和趋势以及继电保护在电力系统中的作用作了简要的介绍;然后详细介绍了运行方式的选择,变压器中性点的接地方式,短路电流的计算,电流保护、差动保护和距离保护等多种线路保护的具体整定方法及计算,并对输电网络做了较详细的分析;最后介绍了电网线路的自动重合闸装置的配置原则。
1.1 系统运行方式的确定:(1)一个发电厂有两台机组时,一般应考虑全停方式,一台检修,另一台故障;当有三台以上机组时,则选择其中两台容量较大机组同时停用的方式。
对水电厂,还应根据水库运行方式选择。
(2)一个发电厂、变电站的母线上无论接几台变压器,一般应考虑其中容量最大的一台停用。
1.2 变压器中性点接地选择原则(1)发电厂、变电所低压侧有电源的变压器,中性点均要接地。
(2)自耦型和有绝缘要求的其它变压器,其中性点必须接地。
(3)T接于线路上的变压器,以不接地运行为宜。
(4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再断开,这种情况不按接地运行考虑。
1.3 线路运行方式选择原则(1)一个发电厂、变电站线线上接有多条线路,一般考虑选择一条线路检修,另一条线路又故障的方式。
(2)双回路一般不考虑同时停用1.4 流过保护的最大、电小短路电流计算方式的选择(1)相间保护对单侧电源的辐射形网络,流过保护的最大短路电流出现在最大运行方式;而最小短路电流,则出现在最小运行方式。
对于双电源的网络,一般(当取Z1=Z2时)与对侧电源的运行方式无关,可按单侧电源的方法选择。
(2)零序电流保护对于单侧电源的辐射形网络,流过保护的最大零序短路电流与最小零序电流,其选择方法可参照相间短路中所述,只需注意变压器接地点的变化。
对于双电源的网络及环状网,同样参照相间短路中所述,其重点也是考虑变压器接地点的变化。
选取流过保护的最大负荷电流的原则选取流过保护的最大负荷电流的原则如下:(1)备用电源自动投入引起的增加负荷。
(2)并联运行线路的减少,负荷的转移。
(3)环状网络的开环运行,负荷的转移。
(4)对于双侧电源的线路,当一侧电源突然切除发电机,引起另一侧增加负荷。
2 电网各个元件参数计算及负荷电流计算基准值选择基准功率:SB =100MV·A,基准电压:VB=115kv。
基准电流:IB=SB/1.732 VB=100×103/1.732×115=0.502KA;基准电抗:ZB =VB/1.732 IB=115×103/1.732×502=132.25Ω;电压标幺值:E=E(2)=1.05 电网各元件等值电抗计算(1) 线路AC等值电抗计算正序以及负序电抗:XLAC = XACLAC=0.402×1=0.402ΩXLAC*= XAC/ ZB=0.402/132.25=0.003零序电抗:XLAC0= 3XLAC=1.206ΩXLAC0*= XLAC0/ ZB=1.206/132.25=0.009(2) 线路AS2等值电抗计算正序以及负序电抗:XLAS2= XAS2LAS2=0.402×5=2.01ΩXLAS2*= XLAS2/ ZB=2.01/132.25=0.015零序电抗:XLAS20= 6.03ΩXL20*= 3*0.015=0.045 (3) 线路AB等值电抗计算正序以及负序电抗:XLAB = XABLAB=0.37×3=1.11ΩXLAB*= XLAB/ ZB=1.11/132.25=0.008零序电抗:XLAB0=3×1.11=3.33ΩXLAB0*= XLAB0/ ZB=3.33/132.25=0.024(4)线路BS1等值电抗计算正序以及负序电抗:XLBS1= XBS1LBS1=0.37×6=2.22ΩXLBS1*= XLBS1/ ZB=2.22/132.25=0.017零序电抗:XLBS0=3×2.22=6.66ΩXLBS0*= XLABS0/ ZB=6.66/132.25=0.051变压器等值电抗计算(1) 变压器T1、T2等值电抗计算XT1= XT2=(UK%/100)×(VN2/ SN)≈98.76ΩXT1*= XT2*=XT1/ ZB=98.76/132.25=0.747(2) 变压器T3/T4等值电抗计算XT3= XT4= (UK%/100)×(VN2/ SN)≈62.98ΩXT3*= XT3*= XT3/ ZB=62.98/132.25=0.476(3) 变压器T6、T7等值电抗计算XT6= XT7=(UK%/100)×(VN2/ SN)≈39.95ΩXT6*=XT5*=0.302发电机等值电抗计算发电机G1、G2电抗标幺值计算XG1= XG2=0.711*132.25=94.03ΩXG1* = XG2*=0.711最大负荷电流计算(1) A母线最大负荷电流计算最大负荷电流计算(拆算到110KV)IfhA ·max = PfhAmaxVav2 / 1.732 U=25/1.732×115≈0.1569KA;(2) B母线最大负荷电流计算最大负荷电流计算(拆算到110KV)IfhB·max = PfhBmaxVav2 / 1.732 U=63/1.732×115≈0.3954KA短路电流计算短路计算的目的a、选择电气设备的依据;b、继电保护的设计和整定;c、电气主接线方案的确定;d、进行电力系统暂态稳定计算,研究短路对用户工作的影响;3 短路电流计算3.1 短路电流计算步骤1.确定计算条件,画计算电路图1)计算条件:系统运行方式,短路地点、短路类型和短路后采取的措施。
2)运行方式:系统中投入的发电、输电、变电、用电设备的多少以及它们之间的连接情况。
根据计算目的确定系统运行方式,画相应的计算电路图。
选电气设备:选择正常运行方式画计算图;短路点取使被选择设备通过的短路电流最大的点。
继电保护整定:比较不同运行方式,取最严重的。
2.画等值电路,计算参数;分别画各段路点对应的等值电路。
3.网络化简,分别求出短路点至各等值电源点之间的总电抗由于短路电流计算是电网继电保护配置设计的基础,因此分别考虑最大运行方式时各线路未端短路的情况,最小运行方下时各线路未端短路的情况。
电网等效电路图如图3.1所示图3.1电网等效电路图3.2各短路点的短路计算D1短路流经保护501的短路计算:图3.2 d1短路的等值网络图最大运行方式的短路:KAI I X EIX X X X X X X X X b d ff d g t t g g t t g ff 723.044.144.1729.0))((1)1(122112211)1(=====+++++=*最小运行方式下的两相短路:)2()2(ff X =729.0))((22112211)1(=+++++=g t t g g t t g ff X X X X X X X X X72.0)2()2()1(*)2(1=+=ff ff f X X EIKA I I I b f f 362.0*)2(1)2(1==由于最小运行方式下河最小运行方式下的短路电流等值图相同,可得最小运行方式下的两相短路的电流为最大运行方式的短路电流的一半。
D2短路流经保护502的短路计算:图3.3 d2短路的等值网络图最大运行方式的短路:KAI I X EI X X X X X X X X X X b d ff d LAC g t t g g t t g ff 720.0434.1434.1732.0))((2)1(222112211)1(=====++++++=*最小运行方式下的两相短路:由501同理可得:KA I I d f 36.0212)2(2== 两相短路的零序电流:图3.4 两相短路的零序电流等值网络图KAI I I X E I X X X X X X X X X X X X X X X X X X X X X X X X b ff ff ff ff TCTB TA TCTB TA ff LAC T T T T TCT T T T TA LAB T T T T TB36.265.52/02.0383.03238.0175.0008.03151.03)0()0()0()0()0(212143346565=====++==⨯++==+==⨯+=⨯++=**D3短路流经保护503的短路计算:图3.5 d2短路的等值网络图最大运行方式的短路:KAI I X EI X X X X X X X X X X X b d ff d LAS LAC g t t g g t t g ff 706.0406.1406.1747.0))((3)1(3222112211)1(=====+++++++=*最小运行方式下的两相短路:同上KA I I d f 353.0213)2(3== 两相短路的零序电流:图3.6 两相短路的零序电流等值网络图KAI I I X E I X X X X X X X X X X X X X X X X X X X X X X X X X b ff ff ff ff LAS TCTB TA TCTB TA ff LAC T T T T TCLAB T T T T TB T T T T TA 109.815.16/065.03383.03175.0008.03151.03238.0)0()0()0()0(2)0(212165654334=====+++==⨯++==⨯+=⨯++==+=**D4短路流经保护502的短路计算: 最大运行方式的短路:图3.7 最大运行方式下d4短路的等值网络图KAI I X EI X X X X X X X X X X X b d ff d T LAC g t t g g t t g ff 543.008.108.197.02/))((4)1(4322112211)1(=====+++++++=*图 3.8 最小运行方式下d4短路的等值网络图208.1))((322112211*)1()*2()2(=+++++++==T LAC t g t g t g t g ff ff X X X X X X X X X X XX435.0*)1()*2()2()*2(4=+=ff ff f X X EIKA I I I b f f 218.0)*2(4)2(4==D5短路流经保护504的短路计算:图3.9 d5短路的等值网络图最大运行方式的短路:KAI I X EI X X X X X X X X X X X b d ff d LAB LAC g t t g g t t g ff 712.0419.1419.174.0))((5)1(522112211)1(=====+++++++=*最小运行方式下的两相短路:同理由501可得:KA I I d f 356.02125)2(5== 两相短路的零序电流:图3.10 两相短路的零序电流等值网络图374.0151.0238.0212165654334=+==+==+=T T T T TCT T T T TB T T T T TA X X X X X X X X X X X X X X X08.033)3(]33)3([)0(=+⨯++⨯+⨯+⨯++⨯+⨯+=TBLAB TALAC TC TALAC TC TBLAB TALAC TC TALAC TC ff X X X X X X X X X X X X X X X X X KAI I I X E I b ff ff ff ff 59.6125.13/)0()0()0()0(====**D6短路流经保护505的短路计算:图3.11 d6短路的等值网络图最大运行方式的短路:KAI I X EI X X X X X X X X X X X X b d ff d T LAB LAC g t t g g t t g ff 537.007.107.1891.02/))((6)1(6322112211)1(=====++++++++=*最小运行方式下的两相短路:KAI I I X X EIX X X X X X X X X X X XX b f f ff ff f T LAB LAC t g t g t g t g ff ff 253.0504.0042.1))((*)2(6)2(6*)1(*)2()2(*)2(6522112211*)1(*)2()2(===+==++++++++==两相短路的零序电流:图3.12 两相短路的零序电流等值网络图238.04334=+=T T T T TA X X X X X151.06565=+=T T T T TBX X X X X 383.032121=⨯++=LAC T T T T TC X X X X X XKAI I I X E I X X X X X X X X X X X X b ff ff ff ff LBS TBTAC TB TAC ff LAB TA TC TA TC TAC 024.402.8/131.03171.03)0()0()0()0(1)0(1=====++==++=**D7短路流经保护506的短路计算:图3.13 d7短路的等值网络图最大运行方式的短路:KAI I X EI X X X X X X X X X X X X b d ff d LBS LAB LAC g t t g g t t g ff 696.0387.1387.1757.0))((7)1(7122112211)1(=====++++++++=*最小运行方式下的两相短路:KAI I I X X EIX X X X X X X X X X X XX b f f ff ff f LBS LAB LAC t g t g t g t g ff ff 348.0693.0757.0))(()*2(7)2(7*)1()*2()2()*2(7222112211*)1()*2()2(===+==++++++++==流经保护各短路点的短路电流计算如表: 短路点 最大运行方式最小运行方式Xff (1) Eeq Xff (2) Xff (0) If KAXff (1) Eeq Xff (2) Xff (0) If KA d1 0.729 1.05 0.729 2.187 0.723 0.729 1.05 0.729 2.187 0.362 d2 0.732 1.05 0.732 2.196 0.720 0.732 1.05 0.732 0.720 0.36 d3 0.747 1.05 0.747 2.241 0.706 0.747 1.05 0.747 0.706 0.353 d4 0.97 1.05 0.97 2.91 0.543 1.208 1.05 1.208 3.624 0.218 d5 0.74 1.05 0.74 2.22 0.712 0.74 1.05 0.74 2.22 0.356 d6 0.891 1.05 0.891 2.673 0.5371.042 1.05 1.042 3.1260.253d7 0.757 1.05 0.7572.271 0.696 0.757 1.05 0.757 2.271 0.3484 距离保护的整定计算4.1 距离保护整定计算的方法及原理:距离保护第一段 1.动作阻抗(1)对输电线路,按躲过本线路末端短路来整定,即取AB K dzZ k Z '='⋅1图4.1 电力系统接线图2.动作时限0≈'t 秒。