物理实验报告测量单缝衍射的光强分布
单缝衍射光强分布实验报告

单缝衍射光强分布实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]单缝衍射光强分布 【实验目的】1.定性观察单缝衍射现象和其特点。
2.学会用光电元件测量单缝衍射光强分布,并且绘制曲线。
【实验仪器】【实验原理】光波遇到障碍时,波前受到限制而进入障碍后方的阴影区,称为衍射。
衍射分为两类:一类是中场衍射,指光源与观察屏据衍射物为有限远时产生的衍射,称菲涅尔衍射;一类是远场衍射,指光源与接收屏距衍射物相当于无限远时所产生的衍射,叫夫琅禾费衍射,它就是平行光通过障碍的衍射。
夫琅禾费单缝衍射光强I =I 0(sin β)2β2;其中β=πa sin θλ;a 为缝宽,θ为衍射角,λ为入射光波长。
上图中θ为衍射角,a 为缝宽。
【实验内容】(一) 定性观察衍射现象1.按激光器、衍射板、接收器(屏)的顺序在光节学导轨上放置仪器,调节光路,保证等高共轴。
衍射板与接收器的间距不小于1m 。
2.观察不同形状衍射物的衍射图样,记录其特点。
(二)测量单缝衍射光强分布曲线仪器名称光学导轨 激光器 接收器 数字式检流计 衍射板 型号1.选择一个单缝,记录缝宽,测量-2到+2级条纹的光强分布。
要求至少测30个数据点。
2.测量缝到屏的距离L。
3.以sinθ为横坐标,I/I0为纵坐标绘制曲线,在同一张图中绘出理论曲线,做比较。
【实验步骤】1.摆好实验仪器,布置光路如下图顺序为激光器—狭缝—接收器—数字检流计,其中狭缝与出光口的距离不大于10cm,狭缝与接收器的距离不小于1m。
2.调节激光器水平,即可拿一张纸片,对准接收器的中心,记下位置,然后打开激光器,沿导轨移动纸片,使激光器的光点一直打纸片所记位置,即光线打过来的高度要一致。
3.再调节各光学元件等高共轴,先粗调,即用眼睛观察,使得各个元件等高;再细调,用尺子量取它们的高度(狭缝的高度,激光器出光口的高度,接收器的中心),调节升降旋钮使其等高,随后用一纸片,接到光源发出的光,以其上的光斑位置作为参照,依次移动到各个元件前,调节他们的左右(即调节接收器底座的平移螺杆,狭缝底座的平移螺杆)高低,使光线恰好垂直照到元件的中心。
单缝衍射光强分布的测量实验报告

单缝衍射光强分布的测量实验报告一、实验目的1、观察单缝衍射现象,加深对光的波动性的理解。
2、测量单缝衍射的光强分布,验证衍射理论。
3、掌握光强测量的基本方法和仪器的使用。
二、实验原理当一束光通过宽度可调的狭缝时,会在屏幕上产生衍射条纹。
根据惠更斯菲涅尔原理,单缝衍射的光强分布可以用下式表示:\I = I_0 \left(\frac{\sin \beta}{\beta}\right)^2\其中,\(I\)是衍射光强,\(I_0\)是中央明纹的光强,\(\beta =\frac{\pi a \sin \theta}{\lambda}\),\(a\)是单缝宽度,\(\theta\)是衍射角,\(\lambda\)是入射光波长。
在衍射角较小的情况下,\(\sin \theta \approx \frac{y}{L}\),其中\(y\)是衍射条纹到中央明纹的距离,\(L\)是单缝到屏幕的距离。
三、实验仪器1、氦氖激光器2、单缝装置3、光传感器4、移动平台5、数据采集系统四、实验步骤1、调整实验装置将氦氖激光器、单缝装置和光传感器安装在移动平台上,并使其处于同一水平直线上。
调整单缝装置,使其与激光束垂直,并且单缝宽度适中。
调整光传感器的位置,使其能够接收到衍射光。
2、连接数据采集系统将光传感器与数据采集系统连接,确保数据能够准确传输。
3、测量光强分布打开激光器,让激光通过单缝产生衍射现象。
移动光传感器,从中央明纹开始,沿着衍射条纹的方向,每隔一定距离测量一次光强,并记录数据。
测量范围覆盖足够多的衍射条纹,以获得完整的光强分布曲线。
4、重复测量为了减小误差,重复上述测量步骤至少三次,取平均值作为最终的测量结果。
5、数据处理将测量得到的数据导入计算机,使用相关软件进行处理和分析。
绘制光强分布曲线,并与理论曲线进行比较。
五、实验数据与处理以下是一组测量得到的数据:|位置\(y\)(mm) |光强\(I\)(μW) |||||-10 | 15 ||-8 | 30 ||-6 | 50 ||-4 | 80 ||-2 | 120 || 0 | 150 || 2 | 120 || 4 | 80 || 6 | 50 || 8 | 30 || 10 | 15 |根据上述数据,绘制光强分布曲线如下:(此处插入光强分布曲线的图片)通过与理论曲线的对比,可以发现实验曲线与理论曲线基本吻合,但在某些细节上存在一定的偏差。
单缝衍射光强分布实验报告

单缝衍射光强分布实验报告单缝衍射是一种光学现象,通过实验可以观察到光在通过一个细缝时的衍射效应。
本文将介绍一项关于单缝衍射光强分布的实验,并对实验结果进行分析和讨论。
实验过程中,我们使用了一个狭缝装置,该装置具有一个非常细小的缝隙,光线可以通过这个缝隙进入。
实验中,我们使用了一束平行光照射到狭缝上,并在屏幕上观察到了一系列的明暗条纹。
通过观察实验结果,我们可以看到在缝隙附近形成了一条明亮的中央区域,称为中央最大亮条纹。
中央最大亮条纹的光强最大,光线在通过缝隙时几乎没有发生衍射,呈现出直线传播的特点。
在中央最大亮条纹两侧,形成了一系列的暗条纹和亮条纹,这些条纹交替出现,呈现出规律的间距。
这是由于光线在通过缝隙时发生了衍射现象,光线波前的形状受到了缝隙的限制,导致光线在缝隙后方形成了一系列的衍射波。
根据衍射现象的特点,我们可以得到一个重要的结论:缝隙越宽,衍射效应越弱,条纹间距越大;缝隙越窄,衍射效应越强,条纹间距越小。
这是因为当缝隙越宽时,光线波前的形状变化较小,衍射效应也会相应减弱;而当缝隙越窄时,光线波前的形状变化较大,衍射效应也会相应增强。
实验中,我们还可以通过改变入射光的波长来观察到不同的衍射效应。
根据衍射公式,波长越小,衍射效应越明显,条纹间距越小;波长越大,衍射效应越弱,条纹间距越大。
通过这个实验,我们可以深入理解光的波动性质以及衍射现象的发生原理。
同时,这项实验也具有一定的应用价值,例如在天文观测中,通过观察恒星的光谱衍射条纹,可以得到有关恒星的重要信息。
总结起来,单缝衍射光强分布实验是一项具有重要意义的实验,通过观察明暗条纹的分布,我们可以了解到光线在通过狭缝时的衍射现象。
实验结果表明,缝隙的宽度和入射光的波长都会对衍射效应产生影响,这为我们进一步研究光的波动性质和衍射现象提供了重要的参考。
单缝衍射光强的分布测量实验报告

竭诚为您提供优质文档/双击可除单缝衍射光强的分布测量实验报告篇一:衍射光强分布测量衍射光强分布测量***,物理学系摘要:本实验利用激光为光源研究激光经过单缝与单丝时的衍射光强度分布情况。
激光的高准直性符合夫琅和费远场条件,且高单色性保证测量时没有不同波长光的叠加影响。
光感应器方面使用光栅尺与电脑连接做0.02毫米/点的高精度自动扫描。
通过巴比涅原理迂回得到了没有直射光时单丝的衍射光强分布,完整验证了运用衍射光强分布来测量小微物体的长度的方法和可行性,并实际运用此法测量了铜丝和头发丝的直径。
关键词:衍射分布巴比涅原理单缝直径测量ThemeasurementoftheDistributionofLightDiffraction YixiongKeYiLin,DepartmentofphysicsAbstarct:Thisexperimentmadeuseoflaserasthelightsourcetoverif yaseriesofdiffractionpatternsof633nmlaserviadiffere ntsingleslitsandmonofilaments.Thecollimationfeature ofthelasermeetstheconditionofFraunhoferdiffraction, themonochromicfeatureoflaserprovideabetterexperimen talenvironmentthatthediffractionpatternwon`tbeinter ferebythelightofotherwavelength.weuselinearencorder connectedtopcviauLI(universalLaboratoryInterface)as thesensortoautomaticallyscanthediffractionpatternwi ththeratioof0.02mmperdot.weusebabinet’sprincipletogetthediffractionpatternofamonofilament p letelyverifiedthemethodandfeasibilityofmeasuringati nyobjectwithitsdiffractionpattern.Inaddition,wetryt omeasurethediameterofacopperwireandpeople’shairinthiswayKeywords:Diffractiondistributionbabinet`sprinciplesingleslitsmeasureDiameterofthewire1一、引言衍射是波遇到障碍物时便利直线传播的现象。
单缝衍射的相对光强分布完整实验报告

基础物理实验(Ⅱ)课程实验报告实验2.10 单缝衍射相对光强分布为了使实验数据不超出光功率计的量程。
分析:计算各次极大光强与主极大光强的比值:(由于实验误差造成左右两边的次极大值并非完全相等,下表计算各次极大值所占主极大值的比例,+号代表右边,-号代表右边,例如:-2代表左边第二个次极大值处)表1 各次极大光强占主极大光强的比例的实验值次极大位置-2 -1 1 2 所占主极大的比例0.015 0.039 0.037 0.015表2 各次极大光强占主极大光强的比例的理论值[1]次极大位置-2 -1 1 2所占主极大的比例0.017 0.047 0.047 0.017表3 相对误差分析次极大位置-2 -1 1 2 所占主极大的比例0.015 0.039 0.037 0.015 相对误差-11.76% -17.02% -21.28% -11.76% 备注:上表中+号表示实验数据比理论值大,-号表示实验数据比理论值小。
从表3中可以看出,实验所测得的个次极大值与理论值有一定的误差,普遍比理论值偏小,尤其是第一个次极大值与理论值误差较大。
本实验采用的是氦氖激光光束作为光源,波长为632.8nm,狭缝宽度小于0.55mm,实验中单缝与光功率计探头的距离为0.94m,足够满足原场条件。
误差分析:1.实验中利用光功率计读书时,显示的读书不能稳定,采取数据时可能会产生一定的误差;2. 实验数据只有一组,应该在主极大光强一定的情况下,多测几组数据以减小误差;3.在实验室做实验的小组众多,难免有其它杂光对本实验造成干扰;4.从第3题的图中可以看出,实验中所用的光功率计并非严格工作在线性区间,读出的光功率并不完全准确;5.由于实验进行的时间长达两个小时,由此对激光器光源的稳定性可能会造成一定的影响。
[2]通过上图可以看出,实验中测得的白光光强与距离平方的倒数并非为严格线性关系。
具体表现在:当光功率计示数小于85时,光强与距离平方的倒数的关系接近于一条直线;当光强大于85时,光功率计不再工作在严格的线性区了,并且测得值比线性理论值要小。
单缝衍射光强分布实验报告

单缝衍射光强分布实验报告实验报告:单缝衍射光强分布实验一、实验目的通过实验观察和探究单缝衍射现象,了解光的波动性质,研究单缝衍射光强分布的规律。
二、实验原理单缝衍射是指当光线通过一个狭缝时,由于光的波动性质,光波会发生衍射现象,即光线会向周围扩散。
根据夫琅禾费衍射公式,单缝衍射光强分布的规律可以通过以下两个公式推导得出:1.衍射公式:θ=mλ/b其中,θ为衍射角,m为条纹的级次(m=0,±1,±2,...),λ为波长,b为狭缝宽度。
2. 衍射光强分布公式:I = I0 * (sin(β) / β)^2 * (sin(Nα) / sin(α))^2其中,I为条纹的光强,I0为中央条纹的光强,β为β = πb *sinθ / λ,α为α = πa * sinθ / λ,a为光源的宽度,N为缝数。
三、实验步骤1.将光源与被研究的缝隙间隔一定距离,并确保光源垂直照射缝隙。
2.使用光屏接收衍射光,并根据需要调整光屏距离缝隙的距离,以便更好地观察衍射条纹。
3.用CCD相机拍摄光屏上的衍射条纹,通过图像处理软件量化光强,得到光强分布曲线。
4.调整狭缝的宽度,观察并记录不同宽度下的光强分布情况。
5.重复实验多次,取平均值以减小误差。
四、实验结果与分析通过实验观察到的结果,我们可以得到以下结论:1.光强分布呈现明暗相间的条纹状,其中最中央的一条条纹最亮,两侧的条纹逐渐减弱。
2.随着波长λ的增大,条纹间距减小,光强分布也发生变化。
3.随着缝宽b的增大,条纹变得更为集中,光强分布呈现更明显的周期性变化。
4.当缝数N增加时,条纹的光强分布曲线会发生明显的变化,呈现出更多的衍射条纹。
五、实验注意事项1.实验过程中需要保证光源的稳定性,尽量避免光强波动引起的误差。
2.调整光屏与缝隙距离时,需注意确保垂直照射,并尽可能保持一定的距离以获得更清晰的图像。
3.使用CCD相机拍摄图像时,应注意调整曝光时间和对比度以获得最佳的图像质量。
单缝衍射的光强分布实验报告

#### 一、实验目的1. 理解单缝衍射现象及其光强分布规律。
2. 通过实验验证单缝衍射的光强分布公式。
3. 掌握使用光学仪器进行单缝衍射实验的方法。
#### 二、实验原理单缝衍射是光波通过狭缝后,在屏幕上形成明暗相间的衍射条纹现象。
根据夫琅禾费衍射理论,单缝衍射的光强分布可以由以下公式描述:\[ I(\theta) = I_0 \left( \frac{\sin\left(\frac{\pi a\sin\theta}{\lambda}\right)}{\frac{\pi a \sin\theta}{\lambda}} \right)^2 \]其中,\( I(\theta) \) 是与光轴成 \( \theta \) 角度的光强,\( I_0 \) 是中心亮条纹的光强,\( a \) 是狭缝宽度,\( \lambda \) 是入射光的波长。
#### 三、实验仪器1. 激光器2. 单缝狭缝板3. 光学导轨4. 屏幕板5. 光电传感器6. 数据采集系统7. 计算机软件#### 四、实验步骤1. 将激光器、单缝狭缝板、光学导轨、屏幕板和光电传感器依次安装在光学导轨上。
2. 调节激光器,使其发出的激光束垂直照射到单缝狭缝板上。
3. 将光电传感器放置在屏幕板上,确保其与屏幕板平行。
4. 打开数据采集系统,记录光电传感器接收到的光强数据。
5. 调节单缝狭缝板的宽度,重复步骤4,记录不同缝宽下的光强数据。
6. 改变光电传感器与屏幕板之间的距离,重复步骤4和5,记录不同距离下的光强数据。
7. 根据记录的数据,绘制光强分布曲线,并与理论公式进行比较。
#### 五、实验结果与分析1. 实验结果表明,随着缝宽的减小,衍射条纹的宽度增加,主极大值的光强降低。
2. 实验结果与理论公式基本吻合,说明单缝衍射的光强分布符合夫琅禾费衍射理论。
3. 通过实验验证了单缝衍射光强分布公式,加深了对单缝衍射现象的理解。
#### 六、实验总结本次实验成功观察到了单缝衍射现象,并验证了单缝衍射的光强分布规律。
单缝衍射的光强分布实验报告

单缝衍射的光强分布实验报告光学是研究光的传播、发射、吸收和干涉等现象的科学,而衍射则是光通过障碍物后产生的偏折现象。
单缝衍射实验是光学实验中的经典实验之一,通过实验可以观察到光在通过单缝时的衍射现象,进而研究光的传播规律和特性。
本实验旨在通过实验观察和数据分析,探究单缝衍射的光强分布规律,为光学理论提供实验依据。
实验装置及原理:本实验采用的实验装置主要包括,光源、单缝装置、准直透镜、光强测量仪等。
光源通过准直透镜后,射入单缝装置,经过单缝后形成衍射光斑,最后被光强测量仪测量光强分布。
单缝衍射的原理是,当光波通过单缝时,由于单缝的存在,光波会发生衍射现象,形成一系列干涉条纹,通过测量这些干涉条纹的光强分布,可以得到单缝衍射的光强分布规律。
实验步骤及数据处理:1. 调整光源和准直透镜,使光线垂直射入单缝装置;2. 通过光强测量仪,测量不同角度下的光强分布;3. 记录实验数据,绘制光强分布曲线;4. 根据实验数据,分析单缝衍射的光强分布规律。
实验结果及分析:通过实验数据处理和分析,我们得到了单缝衍射的光强分布曲线。
实验结果表明,单缝衍射的光强分布呈现出明显的周期性变化,且中央最亮,两侧逐渐减弱的规律。
这与衍射现象的理论预期相符合,进一步验证了光的波动性和衍射现象的存在。
结论:通过本实验,我们成功观察到了单缝衍射的光强分布规律,实验结果与理论预期相符合。
这为光学理论的研究提供了实验依据,也为光学应用提供了重要的参考。
同时,本实验也展示了光学实验的重要性和实验方法的重要性,为光学实验教学提供了有力支持。
总结:单缝衍射实验是光学实验中的重要实验之一,通过实验可以观察到光的波动性和衍射现象,为光学理论的研究和光学应用提供了重要的实验依据。
本实验通过实验观察和数据分析,成功得到了单缝衍射的光强分布规律,实验结果与理论预期相符合。
这为光学理论研究和实验教学提供了重要参考,也为光学应用提供了重要支持。
希望通过本实验的学习,可以更好地理解光学原理,提高实验技能,为光学领域的发展贡献自己的力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:测量单缝衍射的光强分布
实验目的:
a .观察单缝衍射现象及其特点;
b .测量单缝衍射的光强分布;
c .应用单缝衍射的规律计算单缝缝宽;
实验仪器:
导轨、激光电源、激光器、单缝二维调节架、小孔屏、一维光强测量装置、WJH 型数字式检流计。
实验原理和方法:
光在传播过程中遇到障碍物时将绕过障碍物,改变光的直线传播,称为光的衍射。
当障碍物的大小与光的波长大得不多时,如狭缝、小孔、小圆屏、毛发、细针、金属丝等,就能观察到明显的光的衍射现象,亦即光线偏离直线路程的现象。
光的衍射分为夫琅和费衍射与费涅耳衍射,亦称为远场衍射与近场衍射。
本实验只研究夫琅和费衍射。
理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。
单缝的夫琅和费衍射光路图如下图所示。
a. 理论上可以证明只要满足以下条件,单缝衍射就处于夫琅和费衍射区域:
L a 82>>λ或8
2
a L >>λ 式中:a 为狭缝宽度;L 为狭缝与屏之间的距离;λ为入射光的波长。
可以对L 的取值范围进行估算:实验时,若取m a 4
101-⨯≤,入射光是Ne He -激光,其波长为632.80nm ,cm cm a 26.12
≈=λ,所以只要取cm L 20≥,就可满足夫琅和费衍射的
远场条件。
但实验证明,取cm L 50≈,结果较为理想。
b. 根据惠更斯-费涅耳原理,可导出单缝衍射的相对光强分布规律:
20
)/(sin u u I I = 式中: λϕπ/)sin (a u =
暗纹条件:由上式知,暗条纹即0=I 出现在
λϕπ/)sin (a u =π±=,π2±=,…
即暗纹条件为
λϕk a =sin ,1±=k ,2±=k ,…
明纹条件:求I 为极值的各处,即可得出明纹条件。
令
0)/(sin 22=u u du
d 推得 u u tan =
此为超越函数,同图解法求得:
0=u ,π43.1±,π46.2±,π47.3±,…
即 0sin =ϕa ,π43.1±,π46.2±,π47.3±,…
可见,用菲涅耳波带法求出的明纹条件
2/)12(sin λϕ+±k a ,1=k ,2,3,…
只是近似准确的。
单缝衍射的相对光强分布曲线如下图所示,图中各级极大的位置和相应的光强如下:
ϕsin 0 a /43.1π± a /46.2π± a /47.3π±
I 0I
0047.0I 0017.0I 0018.0.I
c. 应用单缝衍射的公式计算单缝缝宽
由暗纹条件:λϕk a =sin
并由图有:k k L X ϕtan = 由于Φ很小,所以
a kL L X k k /λ=Φ=
令a L X X b k k /1λ=-=+(b 为两相邻暗纹间距),则
b L a /λ=(或1/X L a λ=,1X 为中央明纹半宽度)
由此可见,条纹间距b 正比于L 和λ,反比于缝宽a 。
由实验曲线测出b (取平均值),即可算出缝宽a 。
d. 实验证明,若将单缝衍射的光路图中的单缝换成金属细丝,屏上夫琅和费花样和同样宽度的单缝衍射花样是一样的,故只需将单缝宽度a 用金属细丝直径d 代替,就可完全应用以上的理论和公式。
实验内容和步骤:
实验主要内容是观察单缝衍射现象,测量单缝衍射的光强分布,并计算出缝宽a 。
实验中用硅光电池作光强I 的测量器件。
硅光电池能直接变为电能,在一定的光照范围内,光电池的光电流i 与光照强度I 成正比。
本实验用的是WJH 型数字式检流计,以数字显示来检测光电流。
它是采用低漂移运算放大器、模/数转换器和发光数码管将光电流a 进行处理,从而将光强I 以数字显示出来。
a .按下图接好实验仪器,先目测粗调,使各光学元件同轴等高,要注意将激光器调平;
b .激光器与单缝之间的距离以及单缝与一维光强测量装置之间的距离均置为50cm 左右,
加上本实验采用的是方向性很好,发散角rad 53101~101--⨯⨯的Ne He -激光作为光源,这
样可满足夫琅和费衍射的远场条件,从而可省去单缝前后的透镜1L 和2L 。
;
c .点亮Ne He -激光器,使激光垂直照射于单缝的刀口上,利用小孔屏调好光路,须特别注意的是:观察时不要正对电源,以免灼伤眼睛。
d.将WJH接上电源开机预热15min,将量程选择开关置I档,衰减旋钮置校准为止(顺时针旋到底,即灵敏度最高)。
调节调零旋钮,使数据显示器显示“-000”(负号闪烁)。
以后在测量过程中如果数码管显示“999”,此为超量程知识,可将量程调高一档。
如果数字显示小于190,且小数点不在第一位时,可将量程减少一档,以充分利用仪器分辨率。
e. 将小孔屏置于光强测量装置之前,调二维调节架,选择所需的单缝缝宽a,观察小孔屏上的衍射花纹,使它由宽变窄及由窄变宽重复几次,一方面观察在调节过程中小孔屏上的各种现象和变化规律,另一方面调节各元件,使小孔屏上的衍射图像清晰、对称、条纹间距适当,以便测量。
这一步是测量效果是否理想的关键。
f. 移去小孔屏,调整一维光强测量装置,使光电探头中心与激光束高度一致,移动方向与激光束垂直,起始位置适当。
g. 关掉激光电源,记下本底读数(即初读数)再打开激光电源,开始测量。
为消除空程,减小误差,应转动手轮使光电探头单方向移动,即沿衍射图像的展开方向(X轴方向),从左向右或从右向左,每次移动0.200mm,单向、逐点记下衍射图像的位置坐标X和相应的光强。
h. 在坐标格子上以横轴为距离,纵轴为光强,将记录下来的数值(减去初读数)描绘出
I除各数值,也可得出单缝衍射的相对光来。
就得单缝衍射的光强分布图。
若以光强最大值
强分布图。
X,
i. 测出狭缝到硅光电池的距离L,并从光强分布图上测出b(多测几个,取平均值)或
1算出狭缝缝宽a。
j. 用读数显微镜直接测出缝宽,测5次,取平均值,与衍射测量结果比较,求相对误差。
参数及数据记录:见附表
数据处理:
m cm cm L 5.005.050=±= m nm 71050.6650-⨯==λ
中央明纹半宽度为:m mm mm mm X 31107.1700.12
800.12200.16-⨯==-= 则:m m
m m X L a 43711091.1107.11050.65.0/---⨯=⨯⨯⨯==λ
思考题:
1.当缝宽增加一倍时,衍射花样的光强和条纹宽度将会怎样改变?如缝宽减半,又怎样
改变?
答:由b L a /λ=可知,当a 增加一倍时,L 、λ保持不变,b 变为原来的1/2,光强
增加,条纹变细。
当a 减半时,b 变为原来的两倍,光强减弱,条纹变宽。
2.激光输出的光强如有变动,对单缝衍射图像和光强分布曲线有无影响?有何影响?
答:激光输出的光强增大时,衍射图像明纹变亮,光强分布曲线变陡,当输出光强减
弱时,衍射图像明纹变暗,光强分布曲线变平缓。
4.用实验中所应用的方法是否可测量细丝直径?其原理和方法? 答:可以,把单缝换成要测量的金属丝,屏上夫琅和费衍射花样和同样宽度的单缝衍射花样的一样,故只需将单缝宽度a 换成细丝直径d ,则可计算出d 。