单缝衍射的光强分布(完整版+空白打印版+真实实验数据)
单缝和单丝衍射光强分布实验报告

单缝和单丝衍射光强分布实验报告单缝和单丝衍射光强分布实验报告引言:光学是一门研究光的传播、变化和作用的科学,而衍射则是光学中一个重要的现象。
本实验旨在通过观察单缝和单丝的衍射现象,了解光的波动性质以及衍射的规律。
实验装置:实验装置主要包括光源、单缝/单丝装置、屏幕和测量仪器。
光源采用一束单色光(如红光),单缝/单丝装置则包括一个狭缝或一个细丝,屏幕用于接收衍射光,并在屏幕上形成衍射图样。
测量仪器可用于测量衍射图样的光强分布。
实验过程:1. 实验前准备:a. 准备光源、单缝/单丝装置、屏幕和测量仪器。
b. 调整光源和单缝/单丝装置的位置,使其与屏幕保持适当的距离。
c. 确保实验环境光线较暗,以便更好地观察衍射现象。
2. 单缝衍射实验:a. 将单缝装置放置在光源和屏幕之间,并调整单缝的宽度。
b. 观察屏幕上的衍射图样,并记录下各个位置的光强。
c. 根据实测数据,绘制出单缝衍射的光强分布曲线。
3. 单丝衍射实验:a. 将单丝装置放置在光源和屏幕之间,并调整单丝的位置。
b. 观察屏幕上的衍射图样,并记录下各个位置的光强。
c. 根据实测数据,绘制出单丝衍射的光强分布曲线。
实验结果与分析:通过实验观察和数据记录,我们得到了单缝和单丝衍射的光强分布曲线。
从实验结果中我们可以得出以下结论:1. 单缝衍射:a. 在中央峰附近,光强最大,随着距离中央峰的增加,光强逐渐减小。
b. 出现一系列的衍射极小值,即暗条纹,这些极小值的位置与单缝的宽度有关。
c. 衍射极小值的位置满足衍射公式:sinθ = mλ/d,其中θ为衍射角,m为整数,λ为波长,d为单缝宽度。
2. 单丝衍射:a. 衍射图样呈现出一组明暗相间的环形条纹,中央亮环被称为中央峰。
b. 环形条纹的亮度逐渐减弱,直至消失。
c. 单丝衍射的光强分布符合夫琅禾费衍射公式:I = I0 (J1(x)/x)^2,其中I为光强,I0为中央峰的光强,J1为一阶贝塞尔函数,x为无量纲参数。
实验 单缝衍射的光强分布

2. 菲涅耳假设和光强度 物理学家菲涅耳假设:波在传播的过程中,从同一波阵面上
的各点发出的子波是相干波 , 经传播而在空间某点相遇时 ,产
生相干叠加 , 这就是著名的惠更斯 - 菲涅耳原理。如图 3-91所示,单缝AB所在处的波阵面上各点发出的子波, 在空间某点
P 所引起的光振动振幅的大小与面元面积成正比 , 与面元到空
(2) 测量时,从一侧衍射条纹的第三个暗纹中心开始 , 记 下此时的鼓轮读数, 同方向转动鼓轮, 中途不要改变转动方向。
每移动1mm,读取一次数字万用表读数 ,一直测到另一侧的第三
个暗纹中心。
注意: “挡光”测量衍射光强I值时, 接收屏必须一直挡住 导光管, 仅在每次读数时移去, 读完后立即挡住。以避免硅光 电池因疲劳而出现非线性光电转换, 并能延长硅光电池的使用
a
(2) 暗纹。当u=±kπ, k=1,2,3, …,即 a sin / k或
asinΦ=±kλ时,有I=0。且任何两相邻暗条纹间的衍射角的差值 ,即暗条纹是以P0点为中心等间隔左右对称分布的。 a
(3) 次级明纹。在两相邻暗纹间存在次级明纹,它们的
间某点的距离成反比,并且随单缝平面法线与衍射光的夹角(衍 射角 ) 增大而减小。计算单缝所在处波阵面上各点发出的子波 在P点引起的光振动的总和 , 就可以得到P点的光强度。 可见, 空间某点的光强, 本质上是光波在该点振动的总强度。
图 3 - 9 - 1 单缝衍射示意图
设单缝的宽度AB=a, 单缝到接收屏之间置一个透镜L2, 衍
寿命。
4. 单缝宽度a的测量 由于L>1m,因此衍射角很小, sin X K ,有暗纹生成 L 条件:
a sin 2k
单缝衍射光强的分布测量实验报告

竭诚为您提供优质文档/双击可除单缝衍射光强的分布测量实验报告篇一:衍射光强分布测量衍射光强分布测量***,物理学系摘要:本实验利用激光为光源研究激光经过单缝与单丝时的衍射光强度分布情况。
激光的高准直性符合夫琅和费远场条件,且高单色性保证测量时没有不同波长光的叠加影响。
光感应器方面使用光栅尺与电脑连接做0.02毫米/点的高精度自动扫描。
通过巴比涅原理迂回得到了没有直射光时单丝的衍射光强分布,完整验证了运用衍射光强分布来测量小微物体的长度的方法和可行性,并实际运用此法测量了铜丝和头发丝的直径。
关键词:衍射分布巴比涅原理单缝直径测量ThemeasurementoftheDistributionofLightDiffraction YixiongKeYiLin,DepartmentofphysicsAbstarct:Thisexperimentmadeuseoflaserasthelightsourcetoverif yaseriesofdiffractionpatternsof633nmlaserviadiffere ntsingleslitsandmonofilaments.Thecollimationfeature ofthelasermeetstheconditionofFraunhoferdiffraction, themonochromicfeatureoflaserprovideabetterexperimen talenvironmentthatthediffractionpatternwon`tbeinter ferebythelightofotherwavelength.weuselinearencorder connectedtopcviauLI(universalLaboratoryInterface)as thesensortoautomaticallyscanthediffractionpatternwi ththeratioof0.02mmperdot.weusebabinet’sprincipletogetthediffractionpatternofamonofilament p letelyverifiedthemethodandfeasibilityofmeasuringati nyobjectwithitsdiffractionpattern.Inaddition,wetryt omeasurethediameterofacopperwireandpeople’shairinthiswayKeywords:Diffractiondistributionbabinet`sprinciplesingleslitsmeasureDiameterofthewire1一、引言衍射是波遇到障碍物时便利直线传播的现象。
单缝衍射光强分布

实 验 报 告实验题目 单缝衍射光强分布一、实验目的及要求1. 通过对夫琅和费单缝衍射光强变化特点,加深对光的衍射现象和理论的理解,验证夫琅禾费衍射图样的若干规律。
2. 掌握用探头光电流放大器测量衍射光强分布的方法二、实验仪器(规格、型号、件数)光具座、单缝、探头及其附属支架,氦氖激光器及电源、光电流放大器。
三、实验原理及实验步骤夫琅和费单缝衍射:平行光的衍射为夫琅和费衍射,如图一所示,从光源S 发出的光经透镜L 1形成的平行光,照射在狭缝H 上,根据惠更斯一菲涅耳原理,狭缝上各点看做是新的子波源,子波源向各方向发出球面次波,这些次波叠加的结果,在透镜L 2的像方焦平面的屏上,可以得到一组平行于狭缝的明暗相间的衍射条纹。
图一中,平行于光轴的衍射光束会聚于屏幕的P 0处,是中央亮条纹的中心,其光强记为;与光轴成角方向的衍射光会聚于屏幕的处,根据计算结果得出处光强为:(1) 其中a 为狭缝宽度,λ为单色光波长。
由(1)式可得单缝衍射光强分布的特征如下:1.当u =0时=0, 处的光强是最大值,称为中央主极大。
在其他条件不变的情况下,此处光强的最大值与狭缝宽度a 的平方成正比。
2.当u =Kπ时(K=±1,±2,±3……)即时,,出现暗条纹。
由于值很小,可以近似认为暗纹出现在=K λ/a 的方向上,因而主极强两侧暗纹之间的角0I θP θP θ202sin ua sin I I ,(u )uπθ==λθP θ0I I θ=0I a sin K θ=λI 0θ=θθ图一aP o P θf 1f ''2L 1L 2SHθ间距为其他相邻暗纹之间角间距的两倍,如图二所示。
3.除中央主极大之外,相邻两暗纹之间都有一次极大。
数学计算指出,这些次极大的位置出现在u =±1.43π,±2.46π,±3.47π ……,其相对光强= 0.047;0.017;0.008……。
单缝衍射光强分布实验及不确定度计算

单缝衍射光强分布实验及不确定度计算
一、实验原理
单缝衍射实验是研究光通过窄缝的衍射现象。
当单色光照射在窄缝上时,光线会绕过窄缝并在屏幕上产生衍射条纹。
根据波动理论,这些条纹的宽度和形状可以通过衍射角和缝宽来计算。
二、实验步骤
1.准备实验器材:单缝装置、激光器(发出波长已知的单色光)、屏幕、尺子、测角
仪。
2.将激光器固定在单缝装置上,确保光束垂直照射在单缝上。
3.将屏幕放在离单缝一定距离的位置,确保屏幕上的衍射条纹清晰可见。
4.使用尺子测量单缝的宽度(精确到0.01mm)。
5.使用测角仪测量衍射条纹之间的角度(精确到0.1°)。
6.记录数据,至少进行3次实验以减小误差。
三、不确定度计算
根据实验数据,我们可以计算出衍射条纹的宽度和形状。
不确定度可以通过以下公式计算:
其中,ΔI是总不确定度,I是衍射条纹的平均光强,N是实验次数,ΔI0是激光器的光强波动范围。
四、实验结果与讨论
根据实验数据,我们可以得出衍射条纹的宽度和形状,以及它们与缝宽和波长的关系。
同时,我们还可以讨论不确定度对实验结果的影响。
实验单缝衍射光强分布研究样本

实验三单缝衍射光强分布研究一、实验简介光衍射现象是光波动性一种体现。
衍射现象存在,深刻阐明了光子运动是受测不准关系制约。
因而研究光衍射,不但有助于加深对光本性理解,也是近代光学技术(如光谱分析,晶体分析,全息分析,光学信息解决等)实验基本。
衍射导致光强在空间重新分布,运用光电传感元件探测光强相对变化,是近代技术中惯用光强测量办法之一。
二、实验目1、观测单缝衍射现象,研究其光强分布,加深对衍射理论理解;2、学会用光电元件测量单缝衍射相对光强分布,掌握其分布规律;3、学会用衍射法测量狭缝宽度。
三、实验原理1、单缝衍射光强分布当光在传播过程中通过障碍物时,如不透明物体边沿、小孔、细线、狭缝等,一某些光会传播到几何阴影中去,产生衍射现象。
如果障碍物尺寸与波长相近,那么这样衍射现象就比较容易观测到。
单缝衍射有两种:一种是菲涅耳衍射,单缝距离光源和接受屏均为限远,或者说入射波和衍射波都是球面波;另一种是夫琅禾费衍射,单缝距离光源和接受屏均为无限远或相称于无限远,即入射波和衍射波都可看作是平面波。
在用散射角极小激光器(<0.002rad)产生激光束,通过一条很细狭缝(0.1~0.3mm宽),在狭缝后不不大于0.5m地方放上观测屏,就可以看到衍射条纹,它事实上就是夫琅禾费衍射条纹,如图1所示。
当激光照射在单缝上时,依照惠更斯—菲涅耳原理,单缝上每一点都可当作是向各个方向发射球面子波新波源。
由于子波迭加成果,在屏上可以得到一组平行于单缝明暗相间条纹。
激光方向性强,可视为平行光束。
宽度为d 单缝产生夫琅禾费衍射图样,其衍射光路图满足近似条件:Dx≈≈θθsin ()d D >>产生暗条纹条件是:λθk d =sin () ,3,2,1±±±=k (1)暗条纹中心位置为:dD k x λ= (2)两相邻暗纹之间中心是明纹次极大中心。
由理论计算可得,垂直入射于单缝平面平行光经单缝衍射后光强分布规律为:220sin ββI I = λθπβsin d =(3) 式中,d 是狭缝宽,λ是波长,D 是单缝位置到光电池位置距离,x 是从衍射条纹中心位置到测量点之间距离,其光强分布如图2所示。
单缝衍射的光强分布(完整版-空白打印版-真实实验数据)

深圳大学实验报告课程名称:大学物理实验(一)实验名称:单缝衍射的光强分布学院:专业:班级:组号:指导教师:报告人:学号:实验时间:年月日星期实验地点科技楼 90 实验报告提交时间:理论上可以证明只要满足以下条件,单缝衍射就处于夫琅和费衍射区域:La 82>>λ或82a L >>λ为狭缝与屏之间的距离;λ为入射光的波长。
的取值范围进行估算:实验时,若取m a 4101-⨯≤,入射光是应用单缝衍射的公式计算单缝缝宽 λϕk a =sin k k L ϕtan = 很小,所以a kL L X k k /λ=Φ=激光器与单缝之间的距离以及单缝与一维光强测量装置之间的距离均置为50cm 左右,本实验采用的是方向性很好,发散角rad 53101~101--⨯⨯的Ne He -激光作为光源,这样可满足夫琅和费衍射的远场条件,从而可省去单缝前后的透镜1L 和2L 。
;.点亮Ne He -激光器,使激光垂直照射于单缝的刀口上,利用小孔屏调好光路,须特别注意的是:观察时不要正对电源,以免灼伤眼睛。
WJH 接上电源开机预热15min ,将量程选择开关置I 档,衰减旋钮置校准为止(顺时针旋到底,即灵敏度最高)。
调节调零旋钮,使数据显示器显示“-000”(负号闪烁)。
以后在测量过深圳大学实验报告课程名称:大学物理实验(一)实验名称:单缝衍射的光强分布学院:专业:班级:组号: B7 指导教师:报告人:学号:实验时间: 201 年月日星期实验地点科技楼 90 实验报告提交时间:单缝衍射相对光强度曲线图。
单缝衍射的光强分布实验报告

#### 一、实验目的1. 理解单缝衍射现象及其光强分布规律。
2. 通过实验验证单缝衍射的光强分布公式。
3. 掌握使用光学仪器进行单缝衍射实验的方法。
#### 二、实验原理单缝衍射是光波通过狭缝后,在屏幕上形成明暗相间的衍射条纹现象。
根据夫琅禾费衍射理论,单缝衍射的光强分布可以由以下公式描述:\[ I(\theta) = I_0 \left( \frac{\sin\left(\frac{\pi a\sin\theta}{\lambda}\right)}{\frac{\pi a \sin\theta}{\lambda}} \right)^2 \]其中,\( I(\theta) \) 是与光轴成 \( \theta \) 角度的光强,\( I_0 \) 是中心亮条纹的光强,\( a \) 是狭缝宽度,\( \lambda \) 是入射光的波长。
#### 三、实验仪器1. 激光器2. 单缝狭缝板3. 光学导轨4. 屏幕板5. 光电传感器6. 数据采集系统7. 计算机软件#### 四、实验步骤1. 将激光器、单缝狭缝板、光学导轨、屏幕板和光电传感器依次安装在光学导轨上。
2. 调节激光器,使其发出的激光束垂直照射到单缝狭缝板上。
3. 将光电传感器放置在屏幕板上,确保其与屏幕板平行。
4. 打开数据采集系统,记录光电传感器接收到的光强数据。
5. 调节单缝狭缝板的宽度,重复步骤4,记录不同缝宽下的光强数据。
6. 改变光电传感器与屏幕板之间的距离,重复步骤4和5,记录不同距离下的光强数据。
7. 根据记录的数据,绘制光强分布曲线,并与理论公式进行比较。
#### 五、实验结果与分析1. 实验结果表明,随着缝宽的减小,衍射条纹的宽度增加,主极大值的光强降低。
2. 实验结果与理论公式基本吻合,说明单缝衍射的光强分布符合夫琅禾费衍射理论。
3. 通过实验验证了单缝衍射光强分布公式,加深了对单缝衍射现象的理解。
#### 六、实验总结本次实验成功观察到了单缝衍射现象,并验证了单缝衍射的光强分布规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学实验报告
课程名称:大学物理实验(一)
实验名称:单缝衍射的光强分布
学院:
专业:班级:
组号:指导教师:
报告人:学号:
实验时间:年月日星期
实验地点科技楼 90 实验报告提交时间:
衍射与近场衍射。
本实验只研究夫琅和费衍射。
理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。
单缝的夫琅和费衍射光路图如下图所示。
a. 理论上可以证明只要满足以下条件,单缝衍射就处于夫琅和费衍射区域:
L a 82>>λ或8
2
a L >>λ
式中:a 为狭缝宽度;L 为狭缝与屏之间的距离;λ为入射光的波长。
可以对L 的取值范围进行估算:实验时,若取m a 4
101-⨯≤,入射光是Ne He -激光,其波
长为,
cm cm a 26.12
≈=λ
,所以只要取cm L 20≥,就可满足夫琅和费衍射的远场条件。
但实验
证明,取cm L 50≈,结果较为理想。
b. 根据惠更斯-费涅耳原理,可导出单缝衍射的相对光强分布规律:
20
)/(sin u u I I
= 式中: λϕπ/)sin (a u =
暗纹条件:由上式知,暗条纹即0=I 出现在
λϕπ/)sin (a u =π±=,π2±=,…
即暗纹条件为
λϕk a =sin ,1±=k ,2±=k ,…
明纹条件:求I 为极值的各处,即可得出明纹条件。
令
0)/(sin 22=u u du
d
推得 u u tan = 此为超越函数,同图解法求得:
0=u ,π43.1±,π46.2±,π47.3±,…
即 0sin =ϕa ,π43.1±,π46.2±,π47.3±,…
可见,用菲涅耳波带法求出的明纹条件
2/)12(sin λϕ+±k a ,1=k ,2,3,…
只是近似准确的。
单缝衍射的相对光强分布曲线如下图所示,图中各级极大的位置和相应的光强如下:
ϕsin
a /43.1π± a /46.2π±
a
/47.3π±
I
0I 0047.0I
0017.0I
0018.0.I
c. 应用单缝衍射的公式计算单缝缝宽 由暗纹条件:λϕk a =sin 并由图有:k k L X ϕtan =
由于Φ很小,所以
v1.0 可编辑可修改
四、实验内容和步骤:
1. 实验主要内容是观察单缝衍射现象,测量单缝衍射的光强分布,并计算出缝宽a 。
实验中用硅光电池作光强I 的测量器件。
硅光电池能直接变为电能,在一定的光照范围内,光
电池的光电流i 与光照强度I 成正比。
本实验用的是WJH 型数字式检流计,以数字显示来检测光电流。
它是采用低漂移运算放大器、模/数转换器和发光数码管将光电流a 进行处理,从而将光强I 以数字显示出来。
a .按下图接好实验仪器,先目测粗调,使各光学元件同轴等高,要注意将激光器调平;
b .激光器与单缝之间的距离以及单缝与一维光强测量装置之间的距离均置为50cm 左右,加上
本实验采用的是方向性很好,发散角rad 53
101~10
1--⨯⨯的Ne He -激光作为光源,这样可满足
夫琅和费衍射的远场条件,从而可省去单缝前后的透镜1L 和2L 。
;
c .点亮Ne He -激光器,使激光垂直照射于单缝的刀口上,利用小孔屏调好光路,须特别注
意的是:观察时不要正对电源,以免灼伤眼睛。
d .将WJH 接上电源开机预热15min ,将量程选择开关置I 档,衰减旋钮置校准为止(顺时针
旋到底,即灵敏度最高)。
调节调零旋钮,使数据显示器显示“-000”(负号闪烁)。
以后在测量过程中如果数码管显示“999”,此为超量程知识,可将量程调高一档。
如果数字显示小于190,且小数点不在第一位时,可将量程减少一档,以充分利用仪器分辨率。
e. 将小孔屏置于光强测量装置之前,调二维调节架,选择所需的单缝缝宽a ,观察小孔屏上
的衍射花纹,使它由宽变窄及由窄变宽重复几次,一方面观察在调节过程中小孔屏上的各种现象和变化规律,另一方面调节各元件,使小孔屏上的衍射图像清晰、对称、条纹间距适当,以便测量。
1111
1212
1313
1414
1515
1616
深 圳 大 学 实 验
报 告
课程名称:大学物理实验(一) 实验名称: 单缝衍射的光强分布 学院: 专业: 班级:
组号: B7 指导教师: 报告人: 学号: 实验时间: 201 年 月 日 星期 实验地点 科 技 楼 90 实验报告提交时间:
1717
1818
1919
v1.0 可编辑可修改四、实验内容和步骤:
2020
2121
2222
2323
2424
2525
2626
v1.0 可编辑可修改单缝衍射相对光强度曲线图
2727。