高一数学必修五三角函数练习题

合集下载

高中数学必修一第五章三角函数必须掌握的典型题(带答案)

高中数学必修一第五章三角函数必须掌握的典型题(带答案)

高中数学必修一第五章三角函数必须掌握的典型题单选题1、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .3答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B2、设函数f(x)=2sin (ωx +φ)−1(ω>0),若对于任意实数φ,f(x)在区间[π4,3π4]上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .[83,163)B .[4,163)C .[4,203)D .[83,203) 答案:B分析:t =ωx +φ,只需要研究sint =12的根的情况,借助于y =sint 和y =12的图像,根据交点情况,列不等式组,解出ω的取值范围. 令f(x)=0,则sin (ωx +φ)=12 令t =ωx +φ,则sint =12则问题转化为y =sint 在区间[π4ω+φ,3π4ω+φ]上至少有两个,至少有三个t ,使得sint =12,求ω的取值范围.作出y =sint 和y =12的图像,观察交点个数,可知使得sint =12的最短区间长度为2π,最长长度为2π+23π, 由题意列不等式的:2π≤(3π4ω+φ)−(π4ω+φ)<2π+23π 解得:4≤ω<163.故选:B小提示:研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t =ωx +φ),转化为研究y =sint 的图像和性质较为方便.3、cos 2π12−cos 25π12=( ) A .12B .√33C .√22D .√32 答案:D分析:由题意结合诱导公式可得cos 2π12−cos 25π12=cos 2π12−sin 2π12,再由二倍角公式即可得解. 由题意,cos 2π12−cos 25π12=cos 2π12−cos 2(π2−π12)=cos 2π12−sin 2π12=cos π6=√32. 故选:D.4、已知α ∈(0,π),且3cos 2α−8cos α=5,则sin α=( ) A .√53B .23 C .13D .√59 答案:A分析:用二倍角的余弦公式,将已知方程转化为关于cosα的一元二次方程,求解得出cosα,再用同角间的三角函数关系,即可得出结论.3cos2α−8cosα=5,得6cos 2α−8cosα−8=0,即3cos 2α−4cosα−4=0,解得cosα=−23或cosα=2(舍去),又∵α∈(0,π),∴sinα=√1−cos 2α=√53. 故选:A.小提示:本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.5、已知f (x )=2√3sinwxcoswx +2cos 2wx ,(w >0),若函数在区间(π2,π)内不存在对称轴,则w 的范围为( )A .(0,16]∪[13,34]B .(0,13]∪[23,34] C .(0,16]∪[13,23]D .(0,13]∪[23,56]答案:C分析:先通过三角恒等变换将f (x )化简成正弦型函数,再结合正弦函数性质求解即可. 函数化简得f (x )=√3sin2wx +cos2wx +1=2sin (2wx +π6)+1, 由2wx +π6=kπ+π2(k ∈Z ),可得函数的对称轴为x =kπ+π32w(k ∈Z ), 由题意知,kπ+π32w≤π2且(k+1)π+π32w≥π,即k +13≤w ≤3k+46,k ∈Z ,若使该不等式组有解, 则需满足k +13≤3k+46,即k ≤23,又w >0,故0≤3k+46,即k >−43,所以−43<k ≤23,又k ∈Z ,所以k =0或k =1,所以w ∈(0,16]∪[13,23].6、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A 、B 、C 为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有( ) (1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB 的长; (3)曲线Γ是等宽曲线且宽为弧AB 的长; (4)在曲线Γ和圆的宽相等,则它们的周长相等; (5)若曲线Γ和圆的宽相等,则它们的面积相等.A .1个B .2个C .3个D .4个 答案:B分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,根据定义逐项判断即可得出结论. 若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12, (1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键.7、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( )A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4), 因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D8、已知函数f(x)=sin2x +√3cos2x 的图象向左平移φ个单位长度后,得到函数g(x)的图象,且g(x)的图象关于y 轴对称,则|φ|的最小值为( ) A .π12B .π6C .π3D .5π12 答案:A分析:首先将函数f (x )化简为“一角一函数”的形式,根据三角函数图象的平移变换求出函数g(x)的解析式,然后利用函数图象的对称性建立φ的关系式,求其最小值. f(x)=sin2x +√3cos2x =2sin (2x +π3),所以g(x)=f(x +φ)=2sin [2(x +φ)+π3] =2sin (2x +2φ+π3),由题意可得,g(x)为偶函数,所以2φ+π3=kπ+π2(k ∈Z), 解得φ=kπ2+π12(k ∈Z),又φ>0,所以φ的最小值为π12.故选:A. 多选题9、若函数f (x )=√2sinxcosx +√2cos 2x −√22,则下列说法正确的是( ) A .函数y =f (x )的图象可由函数y =sin2x 的图象向右平移π4个单位长度得到 B .函数y =f (x )的图象关于直线x =−3π8对称 C .函数y =f (x )的图象关于点(−3π8,0)对称D .函数y =x +f (x )在(0,π8)上为增函数 答案:BD分析:由三角函数的恒等变换化简f (x )=sin (2x +π4),再由三角函数的平移变换可判断A ;求出f (−3π8)=−1可判断B 、C ;先判断y =f (x )在(0,π8)上为增函数,即可判断y =x +f (x )在(0,π8)的单调性.由题意,f (x )=√2sinxcosx +√2cos 2x −√22=√22sin2x +√22cos2x =sin (2x +π4).函数y =sin2x 的图象向右平移π4个单位长度可得到f (x )=sin2(x −π4)=sin (2x −π2)=−cos2x ,故A 错误;f (−3π8)=sin [2×(−3π8)+π4]=−1,所以函数y =f (x )的图象关于直线x =−3π8对称,故B 正确,C 错误; 函数y =x 在(0,π8)上为增函数,x ∈(0,π8)时,2x +π4∈(π4,π2),故函数f (x )在(0,π8)上单调递增,所以函数y =x +f (x )在(0,π8)上为增函数,故D 正确. 故选:BD .10、已知函数f (x )=sinxcosx −cos 2x ,则( ) A .函数f (x )在区间(0,π8)上为增函数B .直线x =3π8是函数f (x )图像的一条对称轴C .函数f (x )的图像可由函数y =√22sin2x 的图像向右平移π8个单位得到 D .对任意x ∈R ,恒有f (π4+x)+f (−x )=−1 答案:ABD解析:首先利用二倍角的正弦与余弦公式可得f (x )=√22sin (2x −π4)−12,根据正弦函数的单调递增区间可判断A ;根据正弦函数的对称轴可判断B ;根据三角函数图像的平移变换的原则可判断C ;代入利用诱导公式可判断D. f (x )=12sin2x −1+cos2x2=√22sin (2x −π4)−12.当x ∈(0,π8)时,2x −π4∈(−π4,0),函数f (x )为增函数,故A 中说法正确;令2x −π4=π2+kπ,k ∈Z ,得x =3π8+kπ2,k ∈Z ,显然直线x =3π8是函数f (x )图像的一条对称轴,故B 中说法正确;函数y =√22⋅sin2x 的图像向右平移π8个单位得到函数y =√22⋅sin [2(x −π8)]=√22sin (2x −π4)的图像,故C 中说法错误; f (π4+x)+f(−x)=√22sin (2x +π4)−12+√22sin (−2x −π4) −12=√22sin (2x +π4)−√22sin (2x +π4)−1=−1,故D 中说法正确. 故选:ABD.小提示:本题是一道三角函数的综合题,考查了二倍角公式以及三角函数的性质、图像变换,熟记公式是关键,属于基础题.11、若角α的终边在直线y =−2x 上,则sinα的可能取值为( ) A .√55B .−√55C .2√55D .−2√55答案:CD分析:利用三角函数的定义,分情况讨论sinα的可能取值. 设角α的终边y =−2x 上一点(a,−2a ), 当a >0时,则r =√5a ,此时sinα=y r=−2√55, 当a <0时,则r =−√5a ,此时sinα=y r=2√55, 故选:CD 填空题12、若cos 2θ=14,则sin 2θ+2cos 2θ的值为____. 答案:138##158分析:利用二倍角公式后,代入求解.∵cos2θ=14,∴sin2θ+2cos2θ=1−cos2θ2+1+cos2θ=32+12cos2θ=32+12×14=138.所以答案是:138.13、求值:sin10°−√3cos10°cos40°=____________.答案:−2分析:应用辅助角公式及诱导公式化简求值即可.sin10°−√3cos10°cos40°=2(12sin10°−√32cos10°)cos40°=2sin(10°−60°)cos40°=−2sin50°cos40°=−2.所以答案是:−214、函数f(x)=sinx−√3cosx的严格增区间为________.答案:[2kπ−π6,2kπ+5π6],k∈Z分析:利用辅助角公式将f(x)化为f(x)=2sin(x+π3),然后由三角函数单调区间的求法,求得函数f(x)的单调区间.依题意f(x)=sinx−√3cosx=2sin(x−π3),由2kπ−π2≤x−π3≤2kπ+π2,k∈Z,解得2kπ−π6≤x≤2kπ+5π6,k∈Z,所以f(x)单调递增区间为[2kπ−π6,2kπ+π6](k∈Z).所以答案是:[2kπ−π6,2kπ+5π6](k∈Z)解答题15、设函数f(x)=sinx+cosx(x∈R).(1)求函数y=[f(x+π2)]2的最小正周期;(2)求函数y=f(x)f(x−π4)在[0,π2]上的最大值.答案:(1)π;(2)1+√22.分析:(1)由题意结合三角恒等变换可得y=1−sin2x,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得y=sin(2x−π4)+√22,再由三角函数的图象与性质即可得解.(1)由辅助角公式得f(x)=sinx+cosx=√2sin(x+π4),则y=[f(x+π2)]2=[√2sin(x+3π4)]2=2sin2(x+3π4)=1−cos(2x+3π2)=1−sin2x,所以该函数的最小正周期T=2π2=π;(2)由题意,y=f(x)f(x−π4)=√2sin(x+π4)⋅√2sinx=2sin(x+π4)sinx=2sinx⋅(√22sinx+√22cosx)=√2sin2x+√2sinxcosx=√2⋅1−cos2x2+√22sin2x=√22sin2x−√22cos2x+√22=sin(2x−π4)+√22,由x∈[0,π2]可得2x−π4∈[−π4,3π4],所以当2x−π4=π2即x=3π8时,函数取最大值1+√22.。

(常考题)人教版高中数学必修第一册第五单元《三角函数》测试题(答案解析)

(常考题)人教版高中数学必修第一册第五单元《三角函数》测试题(答案解析)

一、选择题1.下列函数中,既是奇函数,又在区间()0,1上是增函数的是( ) A .32()f x x = B .13()f x x -= C .()sin 2f x x =D .()22x x f x -=-2.已知曲线C 1:y =2sin x ,C 2:2sin(2)3y x π=+,则错误的是( )A .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平行移动6π个单位长度,得到曲线C 2 B .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平行移动56π个单位长度,得到曲线C 2 C .把C 1向左平行移动3π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 D .把C 1向左平行移动6π个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线C 2 3.sin 3π=( )A .12B .12-C .2D . 4.将函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 的图像的所有对称轴中,离原点最近的对称轴为( ) A .24x π=-B .4πx =-C .524x π=-D .12x π=5.若把函数sin y x =的图象沿x 轴向左平移3π个单位,然后再把图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数()y f x =的图象,则()y f x =的解析式为( ) A .sin 23y x π⎛⎫=+⎪⎝⎭B .2sin 23y x π⎛⎫=+⎪⎝⎭C .1sin 23y x π⎛⎫=+⎪⎝⎭D .12sin 23y x π⎛⎫=+⎪⎝⎭6.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性D .函数()f x 的值域为R7.已知函数()()2sin ,0,2f x x x x π=∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,则()f x 的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,4⎡⎤⎢⎥⎣⎦π C .0,3π⎡⎤⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦8.设1cos 3x =-,则cos2x =( )A .13B .3C .79D .79-9.设129sin 292a =-,b =22tan161tan 16c =+,则有( ) A .a b c >> B .b c a >>C .c a b >>D .c b a >>10.已知1cos 2α=,322παπ<<,则sin(2)πα-=( )A .B .12C .12-D 11.已知函数()()()cos >0,0<<f x x ωθωθπ=+的最小正周期为π,且()()0f x f x -+=,若tan 2α=,则()f α等于( )A .45-B .45C .35D .3512.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .35二、填空题13.角θ的终边经过点(1,3)P -,则sin 6πθ⎛⎫+= ⎪⎝⎭____________. 14.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______.15.若()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,则()()tan 06g x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为______.16.如下图所示,某农场有一块扇形农田,其半径为100m ,圆心角为3π,现要按图中方法在农田中围出一个面积最大的内接矩形用于种植,则围出的矩形农田的面积为___________2m .17.已知tan 2α=,则cos2=α__.18.已知α,β,且()()1tan 1tan 2αβ-+=,则αβ-=______. 19.若0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,则m 的取值范围为_______________. 20.已知sin θ+cos θ=15,则tan θ+cos sin θθ的值是____________________. 三、解答题21.已知函数()()30,22f x x ππωϕωϕ⎛⎫=+>-≤<⎪⎝⎭的图象关于直线3x π=对称,且图象上相邻两个最高点的距离为π. (1)求ω和ϕ的值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()y f x =的最大值和最小值. 22.已知函数()cos f x x =.(1)已知α,β为锐角,()5f αβ+=,4tan 3α=,求cos2α及()tan βα-的值;(2)函数()()321g x f x =+,若关于x 的不等式()()()2133g x a g x a ≥+++有解,求实数a 的最大值.23.已知函数()21()2cos 1sin 2cos 42=-+f x x x x . (1)求()f x 的最小正周期;(2)求()f x 的最大和最小值以及相应的x 的取值;(3)若,2παπ⎛⎫∈⎪⎝⎭,且()4f α=,求α的值. 24.已知sin ,2sin 212a x x π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,2cos ,sin 112b x x π⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭且()f x a b =⋅ (1)求函数()y f x =的单调减区间和对称轴; (2)若关于x 的不等式()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,求m 的取值范围.25.已知函数()sin (sin )1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间. 26.已知函数()()sin 0,2f x x ϕωϕπω⎛⎫=->≤ ⎪⎝⎭的最小正周期为π. (1)求ω的值及()6g f ϕπ⎛⎫= ⎪⎝⎭的值域; (2)若3πϕ=,sin 2cos 0αα-=. 求()fα的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】A.根据32()f x x ==[0,)+∞判断;B. 由幂函数的性质判断;C.由函数sin y x =的性质判断;D.由指数函数2x y =的性质判断. 【详解】A. 32()f x x ==[0,)+∞,不关于原点对称,所以函数是非奇非偶,故错误;B. 由幂函数知()1133()()f x x xf x ---=-=-=-是奇函数,在()0,1是减函数,故错误;C. 因为()()sin 2sin 2()f x x x f x -=-=-=-,所以()f x 是奇函数,在0,4π⎛⎫⎪⎝⎭上是增函数,在,14π⎛⎫⎪⎝⎭上减函数,故错误;D. 因为()()2222()xx x x f x f x ---=-=--=-,所以()f x 是奇函数,因为2,2x x y y -==-是增函数,()22x x f x -=-在区间()0,1上是增函数,故正确;故选:D2.D解析:D 【分析】利用函数()sin +y A x ωϕ=的图象变换规律对各个选项进行检验即可. 【详解】A. 1C 上各点横坐标缩短到原来的12倍,得到2sin 2y x =,再向左平移6π个单位长度,得到2sin 2+=2sin 2+63y x x ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,正确;B. 1C 上各点的横坐标缩短到原来的12倍,得到2sin 2y x =,再向右平移56π个单位长度,得到5552sin 2=2sin 2=2sin 222sin 26333y x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=---+=+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,正确; C. 1C 向左平移3π个单位长度,得到2sin +3y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+3y x π⎛⎫= ⎪⎝⎭,正确; D. 1C 向左平移6π个单位长度,得到2sin +6y x π⎛⎫= ⎪⎝⎭,再把各点横坐标缩短到原来的12倍,得到2sin 2+6y x π⎛⎫= ⎪⎝⎭,错误. 故选:D3.C解析:C 【分析】根据特殊角对应的三角函数值,可直接得出结果. 【详解】sin32π=. 故选:C.4.A解析:A 【分析】利用三角函数的伸缩变换和平移变换,得到()22sin 43g x x π⎛⎫=+⎪⎝⎭,然后令24,32x k k Z πππ+=+∈求解. 【详解】 将函数()2sin 23f x x π⎛⎫=+⎪⎝⎭图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,2sin 43y x π⎛⎫=+ ⎪⎝⎭,再将所得图像向左平移12π个单位得到函数()22sin 43g x x π⎛⎫=+⎪⎝⎭, 令24,32x k k Z πππ+=+∈, 解得,424k x k Z ππ=-∈, 所以在()g x 的图像的所有对称轴中,离原点最近的对称轴为24x π=-,故选:A5.C解析:C 【分析】根据三角函数图象平移、伸缩的公式,结合题中的变换加以计算,可得函数()y f x =的解析式. 【详解】 解:将函数sin y x =的图象沿x 轴向左平移3π个单位,得到函数sin()3y x π=+的图象; 将sin()3y x π=+的图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到1sin()23y x π=+的图象.∴函数sin y x =的图象按题中变换得到函数()y f x =的图象,可得1()sin 23y f x x π⎛⎫==+ ⎪⎝⎭.故选:C .6.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B7.A解析:A 【分析】根据三角恒等变换公式化简()f x ,结合x 的范围,可得选项. 【详解】因为()()2sin ,0,2f x x x x π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,所以 ()()222sin sin cos +3cos f x x xx x x x +==222cos +12cos 2+22sin 2+26x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72+,666x πππ∈⎡⎤⎢⎥⎣⎦,所以由2+662x πππ≤≤,解得06x π≤≤, 所以()f x 的单调递增区间是06,π⎡⎤⎢⎥⎣⎦,故选:A.8.D解析:D 【分析】利用二倍角的余弦公式可得解. 【详解】1cos 3x =-,2212723cos 22cos 11199x x ⎛⎫=-== ⎪⎝⎭∴=----故选:D.9.B解析:B 【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,a b c ,然后由正弦函数的单调性得出结论. 【详解】129si sin(6029)si 3n 2912n a =︒-︒=︒=-, b =sin 33==︒,2222sin162tan16cos162sin16sin 161tan 161c cos16sin 32os 16c ===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b <<. 故选:B . 【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.10.D解析:D 【分析】由已知利用同角三角函数基本关系式可求sin α的值,进而根据诱导公式即可求解. 【详解】解:因为1cos 2α=,322παπ<<,所以sin α==, 所以sin(2)sin παα-=-=. 故选:D .11.A解析:A 【分析】利用三角函数的周期性和奇偶性得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,进而求出()f α 【详解】 由2ππω=,得2ω=,又()()0f x f x -+=,()()()cos cos 2f x x x ωθθ=+=+为奇函数,()2k k Z πθπ∴=+∈,,又0θπ<<,得2πθ=,()cos 2sin 22f x x x π⎛⎫∴=+=- ⎪⎝⎭,又由tan 2α=,可得()2222sin cos 2tan 4sin 2sin cos tan 15f αααααααα-=-==-=-++ 故选:A 【点睛】关键点睛:解题关键在于通过三角函数性质得到()cos 2sin 22f x x x π⎛⎫=+=- ⎪⎝⎭,难度属于基础题12.C解析:C 【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P , 所以34sin ,cos 55αα====, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C二、填空题13.【分析】利用正弦函数定义求得再由正弦函数两角和的公式计算【详解】由题意所以故答案为:解析:12-【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】由题意sin 2θ=,1cos 2θ=,所以,1sin cos 62πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-14.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 15.【分析】先由的最小正周期求出的值再由的最小正周期公式求的最小正周期【详解】的最小正周期为即则所以的最小正周期为故答案为:解析:8π 【分析】 先由()f x 的最小正周期,求出ω的值,再由()tan y x ωϕ=+的最小正周期公式求()g x 的最小正周期. 【详解】()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,即24ππω=,则8ω=所以()tan 86g x x π⎛⎫=+ ⎪⎝⎭的最小正周期为8T π=故答案为:8π16.【分析】设利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长表示出矩形的面积为借助于三角函数辅助角公式求出最大值即可【详解】解:如图:做的角平分线交于设则在中由正弦定理可知:则所以矩形农田的面 解析:()1000023-【分析】设EOA θ∠=,利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长,表示出矩形的面积为()2sin 302sin S R R θθ=-⋅,借助于三角函数辅助角公式求出最大值即可. 【详解】解:如图:做AOB ∠的角平分线交BE 于D ,设EOA θ∠=,则()22sin 30DE R θ=-,150OFE ∠=,在OFE △中,由正弦定理可知:sin sin150EF Rθ= ,则2sin EF R θ= 所以矩形农田的面积为:()22sin 302sin 4sin sin(30)S R R R θθθθ=-⋅=- 22132sin 2cos 232R R θθ⎛⎫=+- ⎪ ⎪⎝⎭()222sin 2603R R θ=+-当()sin 2601θ+=时,即15θ=时,S 有最大值为()223R-又100R =,所以面积的最大值为()1000023-. 故答案为:()1000023-.【点睛】本题考查在扇形中求矩形面积的最值,属于中档题. 思路点睛:(1)在扇形中求矩形的面积,关键是设出合适的变量,一般情况下是以角度为变量; (2)合理的把长和宽放在三角形中,利用角度表示矩形的长和宽; (3)对三角函数合理变形,从而求出面积.17.【分析】利用余弦的倍角公式和三角函数的基本关系式即可求解【详解】由又由故答案为:解析:35【分析】利用余弦的倍角公式和三角函数的基本关系式,即可求解. 【详解】由tan 2α=,又由22222222cos sin cos 2cos sin cos sin 1tan 1431tan 145ααααααααα--===-++-=-==+. 故答案为:35. 18.【分析】将原式打开变形然后根据正切的差角公式求解【详解】即即即故答案为:【点睛】本题考查正切的和差角公式的运用常见的变形形式有:(1);(2) 解析:()+4k k Z ππ-∈【分析】将原式打开变形,然后根据正切的差角公式求解. 【详解】()()1tan 1tan 1tan tan tan tan 2αβαβαβ-+=-+-=,即tan tan 1tan tan βααβ-=+,tan tan 11tan tan βααβ-∴=+,即()tan 1βα-=,()π4k k Z βαπ∴-=+∈,即()+4k k Z παβπ-=-∈. 故答案为: ()+4k k Z ππ-∈.【点睛】本题考查正切的和差角公式的运用,常见的变形形式有: (1)()()tan tan tan tan tan tan αβαβαβαβ+=+++⋅⋅; (2)()()tan tan tan tan tan tan αβαβαβαβ-=---⋅⋅.19.【分析】根据三角函数的性质求得的最大值进而可求出结果【详解】因为由可得所以则因为恒成立所以只需故答案为:解析:)+∞【分析】根据三角函数的性质,求得sin cos x x +的最大值,进而可求出结果. 【详解】因为sin cos 4x x x π⎛⎫+=+ ⎪⎝⎭,由0,2x π⎛⎫∈ ⎪⎝⎭可得3,444x πππ⎛⎫+∈ ⎪⎝⎭,所以sin 4x π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,则(sin cos 4x x x π⎛⎫+=+∈ ⎪⎝⎭,因为0,2x π⎛⎫∀∈ ⎪⎝⎭,sin cos m x x ≥+恒成立,所以只需m ≥故答案为:)+∞.20.【分析】先通过已知求出再化简tanθ+即得解【详解】由sinθ+cosθ=得tanθ+故答案为:【点睛】关键点睛:解答本题的关键是把sinθ+cosθ=两边平方得到 解析:2512-【分析】先通过已知求出12sin cos 25θθ=-,再化简tan θ+cos sin θθ即得解. 【详解】 由sin θ+cos θ=15得1121+2sin cos ,sin cos 2525θθθθ=∴=-. tan θ+cos sin θθsin cos 125cos sin sin cos 12θθθθθθ=+==-.故答案为:2512- 【点睛】关键点睛:解答本题的关键是把sin θ+cos θ=15两边平方得到12sin cos 25θθ=-. 三、解答题21.(1)2ω=,6πϕ=-;(2)max ()f x =min ()f x = 【分析】(1)由图象上相邻两个最高点的距离为π得()f x 的最小正周期T π=,故2ω=,由函数图象关于直线3x π=对称得232k ππϕπ⨯+=+,k Z ∈,再结合范围得6πϕ=-;(2)由(1)得()26f x x π⎛⎫=- ⎪⎝⎭,进而得52666x πππ-≤-≤,再结合正弦函数的性质即可得答案. 【详解】(1)因为()f x 的图象上相邻两个最高点的距离为π, 所以()f x 的最小正周期T π=,从而22Tπω==. 又因为()f x 的图象关于直线3x π=对称,所以232k ππϕπ⨯+=+,k Z ∈,又22ππϕ-≤<,所以2236ππϕπ=-=-. 综上,2ω=,6πϕ=-.(2)由(1)知()26f x x π⎛⎫=- ⎪⎝⎭.当0,2x π⎡⎤∈⎢⎥⎣⎦时,可知52666x πππ-≤-≤.故当226x ππ-=,即3x π=时,max ()f x =当266x ππ-=-,即0x =时,min ()2f x =-. 【点睛】本题解题的关键在于先根据0,2x π⎡⎤∈⎢⎥⎣⎦得52666x πππ-≤-≤,进而结合正弦函数的性质,采用整体思想求解,考查运算求解能力,是中档题. 22.(1)7cos 225α=-,()2tan 11βα-=;(2)a 的最大值为3. 【分析】(1)利用二倍角公式,求出cos2α,然后分别求出()cos αβ+,sin()αβ+,进而求出()tan αβ+,最后,利用()()tan tan 2βααβα-=+-求解即可(2)由()()[]3213cos212,4g x f x x =+=+∈-,得关于x 的不等式()()()2133g x a g x a ≥+++有解,化简得,即()()()213g x a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解即可【详解】解:(1)∵4tan 3α=,∴222222cos sin cos 2cos sin cos sin ααααααα-=-=+2222411tan 73251tan 413αα⎛⎫- ⎪-⎝⎭===-+⎛⎫+ ⎪⎝⎭,∵α,β为锐角,即α,0,2πβ⎛⎫∈ ⎪⎝⎭, ∴()20,απ∈,()0,αβπ+∈.22422tan 243tan 21tan 7413ααα⨯===--⎛⎫- ⎪⎝⎭, ∵()cos f x x =,∴()()cos 5f αβαβ+=+=-, ∴()sin αβ+==,∴()()()sin tan 2cos αβαβαβ++==-+, ∴()()()()242tan tan 227tan tan 2241tan tan 211127αβαβααβααβα-++--=+-===+++⨯. 综上,7cos 225α=-,()2tan 11βα-=. (2)()()[]3213cos212,4g x f x x =+=+∈-, 关于x 的不等式()()()2133g x a g x a ≥+++有解,即()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,则[]1,7t ∈,()()231t a t -≥+有解,即916a t t+≤+-有解, max97a t t ⎛⎫+≤+ ⎪⎝⎭,设()9h t t t =+,则()h x 在[)1,3上单调递减,在(]3,7上单调递增,则()(){}max9max 1,710t h h t ⎛⎫+== ⎪⎝⎭, ∴3a ≤,故实数a 的最大值为3. 【点睛】关键点睛:(1)利用二倍角公式,以及正切函数的两角和差公式求解; (2)通过化简,把问题转化为()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解;主要考查学生的转化化归思想以及运算能力,属于中档题 23.(1)2π;(2)函数()f x 的最大值为2,此时+,162k x k Z ππ=∈;函数()fx 的最小值为,此时3+,162k x k Z ππ=-∈;(3)3148πα=或4748π.(1)化简函数解析式为最简形式,利用公式求出周期 (2)根据正弦的性质可求得函数最值和相应的x 的取值; (3)根据限定范围和正弦函数的取值可求得答案. 【详解】(1),因为()()212cos 1sin 2cos 42f x x x x =-+1cos 2sin 2cos 42x x x =+()sin 124cos4x x +=)4x π=+,所以()f x )4x π=+, 所以()f x 的最小正周期为242ππ=,(2)由(1)得()f x )24x π=+,所以当sin(4)14x π+=时,函数()f x 的最大值为2,此时4+2,42x k k Z πππ+=∈,即+,162k x k Z ππ=∈;当sin(4)14x π+=-时,函数()f x 的最小值为2-,此时4+2,42x k k Z πππ+=-∈,即3+,162k x k Z ππ=-∈;所以函数()f x ,此时+,162k x k Z ππ=∈;函数()f x 的最小值为,此时3+,162k x k Z ππ=-∈;(3)因为(,)2παπ∈,所以9174(,)444πππα+∈.因为()4f α=,所以())244f παα=+=,即1sin(4)42πα+=. 所以17446ππα+=或256π,故3148πα=或4748π. 24.(1)单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z ;对称轴为23k x ππ=+,k ∈Z ;(2)()1,+∞.(1)根据平面向量数量积的坐标运算及三角恒等变换公式将函数化简,再结合正弦函数的性质计算可得;(2)由(1)可令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭,依题意可得()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值.根据正弦函数的性质计算可得; 【详解】解:(1)()()22sin cos 2sin 11212a b x x x f x ππ⎛⎫⎛⎫=⋅=+++- ⎪ ⎪⎝⎭⎝⎭ 2sin 22cos sin 2cos 2166x x x x ππ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭12cos 21sin 2126x x x π⎛⎫=--=-- ⎪⎝⎭ 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以()f x 的单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k ∈Z 再令262x k πππ-=+,解得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+,k ∈Z (2)令()()sin 261g f x x x π⎛⎫-== ⎝+⎪⎭因为()1f x m +<在0,3π⎡⎤⎢⎥⎣⎦上恒成立,所以()m g x >在0,3π⎡⎤⎢⎥⎣⎦上的最大值. 因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()max 13x g g π⎛⎫== ⎪⎝⎭ 所以1m ,于是m 的取值范围是()1,+∞ 【点睛】本题解答的关键是三角恒等变换及三角函数的性质的应用,利用恒等变换公式及辅助角公式()sin cos a x b x x ϕ+=+,其中(tan baϕ=) 25.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==,(2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.26.(1)2ω=,()g ϕ的值域为1,12⎡⎤-⎢⎥⎣⎦;(2)()410f α=+. 【分析】(1)由函数()f x 的最小正周期可求得ω的值,求得()sin 3g πϕϕ⎛⎫=- ⎪⎝⎭,结合ϕ的取值范围可求得()g ϕ的值域;(2)求得tan 2α=,利用二倍角的正、余弦公式以及弦化切思想可求得()f α的值.【详解】(1)由于函数()()sin 0,2f x x ϕωϕπω⎛⎫=->≤⎪⎝⎭的最小正周期为π,则22πωπ==,()()sin 2f x x ϕ∴=-,()sin 63g f ππϕϕ⎛⎫⎛⎫∴==- ⎪ ⎪⎝⎭⎝⎭,22ππϕ-≤≤,5636πππϕ∴-≤-≤,所以,()1sin ,132g πϕϕ⎛⎫⎡⎤=-∈- ⎪⎢⎥⎝⎭⎣⎦; (2)sin 2cos 0αα-=,可得tan 2α=,3πϕ=,所以,()()21sin 2sin 22sin cos 2cos 13222f πααααααα⎛⎫=-=-=-- ⎪⎝⎭22222sin cos tan sin cos 2sin cos 2tan 12αααααααααα=-+=+=+++==【点睛】求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤:第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式.第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).。

高中数学 第五章 三角函数检测试题(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

高中数学 第五章 三角函数检测试题(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

第五章检测试题时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题每小题5分,共60分 1.已知cos ⎝ ⎛⎭⎪⎫3π2+σ=-35,且σ是第四象限角,则cos(-3π+σ)的值为( B )A.45 B .-45C .±45D.35解析:∵cos ⎝⎛⎭⎪⎫3π2+σ=sin σ=-35,且σ是第四象限角,∴cos σ=45.∴cos(-3π+σ)=-cos σ=-45.2.计算sin135°cos15°-cos45°sin(-15°)的值为( D ) A.12B.33 C.22D.32解析:原式=cos45°cos15°+si n45°sin15°=cos(45°-15°)=cos30°=32.故选D.3.函数y =2sin ⎝⎛⎭⎪⎫π6-2x (x ∈[0,π])为增函数的区间是( C )A.⎣⎢⎡⎦⎥⎤0,π3 B.⎣⎢⎡⎦⎥⎤π12,7π12C.⎣⎢⎡⎦⎥⎤π3,5π6D.⎣⎢⎡⎦⎥⎤5π6,π 解析:y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝⎛⎭⎪⎫2x -π6,原函数的单调递增区间就是y =2sin2x -π6的单调递减区间,即2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,k π+π3≤x ≤k π+5π6,k ∈Z ,对比各选项,令k =0,得选项C 正确.4.函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,若其图象向右平移π3个单位后关于y 轴对称,则( B )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=4,φ=π6D .ω=2,φ=-π6解析:T =2πω=π,所以ω=2.函数f (x )=sin(2x +φ)的图象向右平移π3个单位得函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ-2π3的图象关于y 轴对称,所以φ-2π3=π2+k π,k ∈Z ,所以φ=76π+k π,k ∈Z .因为|φ|<π2,所以φ=π6,故选B.5.函数f (x )=A sin(ωx +φ)+b 的图象如图,则S =f (0)+f (1)+…+f (2 016)等于( C )A .0B .503C .2 017D .2 012解析:由题意知,函数f (x )=12sin π2x +1,周期T =4.S =f (0)+f (1)+…+f (2 016)=504[f (0)+f (1)+f (2)+f (3)]+1=504×4+1=2017.选C.6.已知sin2π+θtan π+θtan 3π-θcos ⎝ ⎛⎭⎪⎫π2-θtan -π-θ=1,则3sin 2θ+3sin θcos θ+2cos 2θ的值是( A ) A .1 B .2 C .3 D .6解析:∵sin2π+θtan π+θtan 3π-θcos ⎝ ⎛⎭⎪⎫π2-θtan -π-θ=sin θtan θtan -θ-sin θtan π+θ=-sin θtan θtan θ-sin θtan θ=tan θ=1, ∴3sin 2θ+3sin θcos θ+2cos 2θ =3sin 2θ+3cos 2θsin 2θ+3sin θcos θ+2cos 2θ=3tan 2θ+3tan 2θ+3tan θ+2=3+31+3+2=1,故选A. 7.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( C ) A.33 B .-33 C.539D .-69解析:根据条件可得α+π4∈⎝ ⎛⎭⎪⎫π4,34π,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,所以sin ⎝ ⎛⎭⎪⎫α+π4=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63,所以cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=13×33+223×63=539.8.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( C )A.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z B.⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z C.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z D.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z 解析:f (x )=3sin ωx +cos ωx =2sin(ωx +π6),由已知得周期T =π.∴ω=2,即f (x )=2sin(2x +π6).由2k π-π2≤2x +π6≤2k π+π2(k ∈Z )得k π-π3≤x ≤k π+π6(k ∈Z ).9.在区间⎣⎢⎡⎦⎥⎤-3π2,3π2X 围内,函数y =tan x 与函数y =sin x 的图象的交点的个数为( C )A .1B .2C .3D .4解析:在同一坐标系中,首先作出y =sin x 与y =tan x 在⎣⎢⎡⎦⎥⎤-π2,π2内的图象,需明确x ∈⎝⎛⎭⎪⎫0,π2时,有sin x <x <tan x (利用单位圆中的正弦线、正切线结合面积大小的比较就可证明),然后作出x ∈⎣⎢⎡⎦⎥⎤-3π2,3π2的两函数的图象,如图所示,由图象可知它们有3个交点.10.若ω>0,函数y =cos ⎝⎛⎭⎪⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx的图象重合,则ω的最小值为( B )A.112B.52C.12D.32解析:y =cos ⎝ ⎛⎭⎪⎫ωx +π3向右平移π3个单位长度可得y =cos ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π3+π3=cos ⎝ ⎛⎭⎪⎫ωx +π3-ωπ3=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫ωx +π3-ωπ3=sin ⎝ ⎛⎭⎪⎫ωx +56π-ωπ3. 因为函数y =cos ⎝ ⎛⎭⎪⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx 图象重合,所以ωx +5π6-ωπ3=ωx +2k π(k ∈Z ).又ω>0,所以当k =0时,ω取最小值为52,故选B.11.将函数f (x )=12sin2x sin π3+cos 2x cos π3-12sin(π2+π3)的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,则函数g (x )在[0,π4]上的最大值和最小值分别为( C )A.12,-12B.14,-14C.12,-14D.14,-12解析:f (x )=12×32sin2x +12cos 2x -12sin 5π6=34sin2x +12cos 2x -14 =34sin2x +12×1+cos2x 2-14=12sin(2x +π6), 所以g (x )=12sin(4x +π6).因为x ∈[0,π4],所以4x +π6∈[π6,7π6],所以当4x +π6=π2时,g (x )取得最大值12;当4x +π6=7π6时,g (x )取得最小值-14.12.设函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( D )A .π B.3π4C.3π2 D.7π4解析:由题意x ∈⎣⎢⎡⎦⎥⎤0,9π8,则2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π2,画出函数的大致图象,如图所示.由图可得,当22≤a <1时,方程f (x )=a 恰有三个根. 由2x +π4=π2得x =π8;由2x +π4=3π2得x =5π8.由图可知,点(x 1,a )与点(x 2,a )关于直线x =π8对称;点(x 2,a )和点(x 3,a )关于x =5π8对称,所以x 1+x 2=π4,x 2+x 3=5π4,所以2x 1+3x 2+x 3=2(x 1+x 2)+(x 2+x 3)=7π4,故选D.第Ⅱ卷(非选择题,共90分)二、填空题每小题5分,共20分13.已知一扇形的半径为2,面积为4,则此扇形圆心角的绝对值为2弧度. 解析:设扇形圆心角的绝对值为α弧度,则4=12α·22,所以α=2.14.已知cos(α-π6)+sin α=435,则sin(α+7π6)的值为-45.解析:由已知得32cos α+32sin α=435, 所以12cos α+32sin α=45,即sin(α+π6)=45,因此,sin(α+7π6)=-sin(α+π6)=-45.15.已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,无最大值,则ω=143.解析:由题意知x =π6+π32=π4为函数的一条对称轴,且ω·π4+π3=2k π-π2(k ∈Z ),得ω=8k -103(k ∈Z ).①又π3-π6≤2πω(ω>0),∴0<ω≤12.② 由①②得k =1,ω=143.16.关于函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6,有下列命题: ①y =f (x )的最大值为2; ②y =f (x )的最小正周期是π;③y =f (x )在区间⎣⎢⎡⎦⎥⎤π24,13π24上是减函数;④将函数y =2cos2x 的图象向右平移π24个单位后,与已知函数的图象重合.其中正确命题的序号是①②③④. 解析:f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6 =cos ⎝ ⎛⎭⎪⎫2x -π3+sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x +π6 =cos ⎝ ⎛⎭⎪⎫2x -π3-sin ⎝ ⎛⎭⎪⎫2x -π3 =2⎣⎢⎡⎦⎥⎤22cos ⎝ ⎛⎭⎪⎫2x -π3-22sin ⎝ ⎛⎭⎪⎫2x -π3=2cos ⎝ ⎛⎭⎪⎫2x -π3+π4 =2cos ⎝⎛⎭⎪⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①②正确.又当x ∈⎣⎢⎡⎦⎥⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎢⎡⎦⎥⎤π24,13π24上是减函数,故③正确.由④得y =2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π24 =2cos ⎝⎛⎭⎪⎫2x -π12,故④正确. 三、解答题写出必要的计算步骤,只写最后结果不得分,共70分17.(10分)函数f 1(x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的一段图象过点(0,1),如图所示.(1)求函数f 1(x )的表达式;(2)将函数y =f 1(x )的图象向右平移π4个单位,得函数y =f 2(x )的图象,求y =f 2(x )的最大值,并求出此时自变量x 的取值集合.解:(1)由题图知,T =π,于是ω=2πT=2.将y =A sin2x 的图象向左平移π12,得y =A sin(2x +φ)的图象,于是φ=2×π12=π6.将(0,1)代入y =A sin ⎝ ⎛⎭⎪⎫2x +π6,得A =2. 故f 1(x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)依题意,f 2(x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=-2cos ⎝ ⎛⎭⎪⎫2x +π6.当2x +π6=2k π+π(k ∈Z ),即x =k π+5π12(k ∈Z )时,y max =2.x 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+5π12,k ∈Z. 18.(12分)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4,x ∈R . (1)求函数f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π8,π2上的最小值和最大值,并求出取得最值时的x 的值.解:(1)∵f (x )=2cos ⎝⎛⎭⎪⎫2x -π4,∴函数f (x )的最小正周期为T =2π2=π.由-π+2k π≤2x -π4≤2k π(k ∈Z ),得-3π8+k π≤x ≤π8+k π(k ∈Z ).故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ). (2)∵f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡-π8,⎦⎥⎤π8上为增函数,在区间⎣⎢⎡⎦⎥⎤π8,π2上为减函数, 又f ⎝ ⎛⎭⎪⎫-π8=0,f ⎝ ⎛⎭⎪⎫π8=2,f ⎝ ⎛⎭⎪⎫π2=-1,∴函数f (x )在区间⎣⎢⎡⎦⎥⎤-π8,π2上的最大值为2,此时x =π8;最小值为-1,此时x =π2.19.(12分)设函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3+sin 2x .(1)求函数f (x )的最大值和最小正周期;(2)设A ,B ,C 为△ABC 的三个内角,若cos B =13,f ⎝ ⎛⎭⎪⎫C 2=-14,且C 为锐角,求sin A .解:(1)f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3+sin 2x=cos2x ·cos π3-sin2x ·sin π3+1-cos2x2=12cos2x -32sin2x -12cos2x +12=12-32sin2x , ∴当2x =-π2+2k π(k ∈Z ),即x =k π-π4(k ∈Z )时,f (x )max =1+32.T =2π2=π. 故f (x )的最大值为1+32,最小正周期为π.(2)由f ⎝ ⎛⎭⎪⎫C 2=-14,即12-32sin C =-14, 解得sin C =32. 又C 为锐角,∴C =π3.由cos B =13,得sin B =223.∴sin A =sin[π-(B +C )]=sin(B +C )=sin B ·cos C +cos B ·sin C =223×12+13×32=22+36.20.(12分)已知函数f (x )=A sin(ωx +φ)+B ⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的一系列对应值如下表:(2)根据(1)的结果,若函数y =f (kx )(k >0)的周期为2π3,当x ∈⎣⎢⎡⎦⎥⎤0,π3时,方程f (kx )=m 恰有两个不同的解,某某数m 的取值X 围.解:(1)设f (x )的最小正周期为T , 得T =11π6-⎝ ⎛⎭⎪⎫-π6=2π,由T =2πω,得ω=1.又⎩⎪⎨⎪⎧B +A =3,B -A =-1,解得⎩⎪⎨⎪⎧A =2,B =1.令ω·5π6+φ=π2+2k π(k ∈Z ),即5π6+φ=π2+2k π(k ∈Z ), 又|φ|<π2,∴φ=-π3,∴f (x )=2sin ⎝⎛⎭⎪⎫x -π3+1.(2)∵函数y =f (kx )=2sin ⎝ ⎛⎭⎪⎫kx -π3+1的周期为2π3,又k >0,∴k =3, 令t =3x -π3,∵x ∈⎣⎢⎡⎦⎥⎤0,π3,∴t ∈⎣⎢⎡⎦⎥⎤-π3,2π3.如图,sin t =s 在⎣⎢⎡⎦⎥⎤-π3,2π3上有两个不同的解,则s ∈⎣⎢⎡⎭⎪⎫32,1.∴方程f (kx )=m 在x ∈⎣⎢⎡⎦⎥⎤0,π3时恰好有两个不同的解,则m ∈[3+1,3),即实数m 的取值X 围是[3+1,3).21.(12分)已知函数f (x )=23sin x cos x +2sin 2x .(1)若f (x )=0,x ∈⎝ ⎛⎭⎪⎫-π2,π,求x 的值;(2)将函数f (x )的图象向左平移π3个单位长度,再将图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g (x )的图象,若y =h (x )与y =g (x )的图象关于直线x =π4对称,求函数h (x )在⎝ ⎛⎦⎥⎤-π6,2π3上的值域.解:f (x )=23sin x cos x +2sin 2x=3sin2x +1-cos2x =2sin ⎝⎛⎭⎪⎫2x -π6+1.(1)由f (x )=0,得2sin ⎝ ⎛⎭⎪⎫2x -π6+1=0, ∴sin ⎝⎛⎭⎪⎫2x -π6=-12,∴2x -π6=-π6+2k π或2x -π6=-5π6+2k π,k ∈Z .又∵x ∈⎝ ⎛⎭⎪⎫-π2,π,∴x =-π3或0或2π3.(2)将函数f (x )的图象向左平移π3个单位长度,可得函数图象的解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3-π6+1=2sin2x +π2+1=2cos2x +1,再将图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g (x )=2cos x +1.又y =h (x )与y =g (x )的图象关于直线x =π4对称,∴h (x )=g ⎝ ⎛⎭⎪⎫π2-x =2sin x +1. ∵x ∈⎝ ⎛⎦⎥⎤-π6,2π3,∴sin x ∈⎝ ⎛⎦⎥⎤-12,1.故函数h (x )的值域为(0,3].22.(12分)已知函数f (x )=3sin ωx cos ωx +cos 2ωx +b +1.(1)若函数f (x )的图象关于直线x =π6对称,且ω∈[0,3],求函数f (x )的单调递增区间;(2)在(1)的条件下,当x ∈⎣⎢⎡⎦⎥⎤0,7π12时,函数f (x )有且只有一个零点,某某数b 的取值X 围.解:(1)函数f (x )=3sin ωx cos ωx +cos 2ωx +b +1=32sin2ωx +1+cos2ωx2+b +1=sin ⎝⎛⎭⎪⎫2ωx +π6+32+b .∵函数f (x )的图象关于直线x =π6对称,∴2ω·π6+π6=k π+π2,k ∈Z ,且ω∈[0,3],∴ω=1.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),解得k π-π3≤x ≤k π+π6(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ). (2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+32+b .∵x ∈⎣⎢⎡⎦⎥⎤0,7π12,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,4π3.当2x +π6∈⎣⎢⎡⎦⎥⎤π6,π2,即x ∈⎣⎢⎡⎦⎥⎤0,π6时,函数f (x )单调递增;当2x +π6∈⎣⎢⎡⎦⎥⎤π2,4π3,即x ∈⎣⎢⎡⎦⎥⎤π6,7π12时,函数f (x )单调递减.又f (0)=f ⎝ ⎛⎭⎪⎫π3, ∴当f ⎝ ⎛⎭⎪⎫π3>0≥f ⎝ ⎛⎭⎪⎫7π12或f ⎝ ⎛⎭⎪⎫π6=0时,函数f (x )有且只有一个零点, 即sin 4π3≤-b -32<sin 5π6或1+32+b =0,∴b ∈⎝ ⎛⎦⎥⎤-2,3-32∪⎩⎨⎧⎭⎬⎫-52 .。

高中数学新教材必修第一册第五章 三角函数 5.3 诱导公式(南开题库含详解)

高中数学新教材必修第一册第五章  三角函数 5.3  诱导公式(南开题库含详解)

第五章三角函数 5.3 诱导公式一、选择题(共40小题;共200分)1. 已知sin(π+α)=45,且α是第四象限角,则cos(α−2π)的值是( )A. −35B. 35C. ±35D. 452. 已知sin(5π2+α)=15,那么cosα=( )A. −25B. −15C. 15D. 253. 设函数f(x)=sin(2x−π2),x∈R,则f(x)是( )A. 最小正周期为π的奇函数B. 最小正周期为π的偶函数C. 最小正周期为π2的奇函数 D. 最小正周期为π2的偶函数4. 知f(sinx)=sin3x,则f(cos10∘)的值为( )A. −12B. 12C. −√32D. √325. 如图,△ABC中,已知点D在BC上,AD⊥AC,sin∠BAC=2√23,AB=3√2,AD=3,则BD 的长为( )A. 2B. √3C. 4D. 16. 为得到函数y=cos(2x+π3)的图象,只需将函数y=sin2x的图象( )A. 向左平移5π12个长度单位 B. 向右平移5π12个长度单位C. 向左平移5π6个长度单位 D. 向右平移5π6个长度单位7. 要得到函数y=sinx的图象,只需将函数y=cos(x−π3)的图象( )A. 向右平移π6个单位 B. 向右平移π3个单位C. 向左平移π3个单位 D. 向左平移π6个单位8. 已知sin(π−α)=−2sin(π2+α),则tanα的值为( )A. 12B. 2 C. −12D. −29. 已知sin(α−π8)=45,则cos(α+3π8)=( )A. −45B. 45C. −35D. 3510. "θ=2π3"是"tanθ=2cos(π2+θ)"的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件11. 定义在R上的偶函数f(x)满足f(x+1)=−f(x),且在[−3,−2]上递减,α,β是锐角三角形的两个内角且α≠β,则下列不等式正确的是( )A. f(sinα)>f(cosβ)B. f(sinα)<f(cosβ)C. f(sinα)>f(sinβ)D. f(cosα)>f(cosβ)12. 已知函数f(x)=sin(ωx+π4)(x∈R,ω>0)的最小正周期为π,为了得到函数g(x)=cosωx 的图象,只要将y=f(x)的图象( )A. 向左平移π8个单位长度 B. 向右平移π8个单位长度C. 向左平移π4个单位长度 D. 向右平移π4个单位长度13. 已知cos(π12−θ)=13,则sin(5π12+θ)的值是( )A. 13B. 2√23C. −13D. −2√2314. 在平面直角坐标系xOy中,角θ以Ox为始边,终边与单位圆交于点(35,45),则tan(π+θ)的值为( )A. 43B. 34C. −43D. −3415. 已知α∈(0,π6),sin(α+π3)=1213,则cos(π6−α)=( )A. 512B. 1213C. −513D. −121316. 若A,B,C是△ABC的三个内角,则下列等式成立的是( )A. cos(B+C)=cosAB. tan(B+C)=tanAC. sin B+C2=sin A2D. cos B+C2=sin A217. 已知f(cosx)=cos3x,则f(sin30∘)的值为( )A. 0B. 1C. −1D. √3218. 在△ABC中,若sin(A+B−C)=sin(A−B+C),则△ABC必是( )A. 等腰三角形B. 直角三角形C. 等腰三角形或直角三角形D. 等腰直角三角形19. 已知cos(5π12+α)=13,且−π<α<−π2,则cos(π12−α)等于( )A. 2√33B. 13C. −13D. −2√2320. 为了得到函数y=sin(2x−π6)的图象,可以将函数y=cos2x的图象( )A. 向右平移π6个单位长度 B. 向右平移π3个单位长度C. 向左平移π6个单位长度 D. 向左平移π3个单位长度21. 已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数.令a=f(sin2π7),b=f(cos5π7),c=f(tan5π7),则( )A. b <a <cB. c <b <aC. b <c <aD. a <b <c22. △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c .已知 sinB +sinA (sinC −cosC )=0,a =2,c =√2,则 C = ( )A. π12B. π6C. π4D. π323. 设 A 是三角形的一个内角且 cos (π+A )=√32,那么 cos (π2+A) 的值是 ( )A. 12B. √32C. −12D. −√3224. 已知 sin (π3−θ)=12,则 cos (π6+θ)= ( )A. −√32B. −12C. 12D. √3225. 已知:sin (π2+θ)+3cos (π−θ)=sin (−θ),则 sinθcosθ+cos 2θ= ( )A. 15B. 25C. √55D. 3526. 已知 sin (x +π12)=13,则 cos (x +7π12) 的值为 ( )A. 13 B. −13C. −2√23D.2√2327. 设 a =sin5π7,b =cos2π7,c =tan 2π7,则 ( )A. a <b <cB. a <c <bC. b <c <aD. b <a <c28. 有四个关于三角函数的命题: p 1:∃A ∈R ,使得 sin 2A2+cos 2A2=12;p 2:∃A ,B ∈R ,使得 sin (A −B )=sinA −sinB ; p 3:∀x ∈[0,π],都有 √1−cos2x2=sinx 成立;p 4:sinx =cosy ⇒x +y =π2.其中假命题是 ( )A. P 1,P 4B. P 2,P 4C. P 1,P 3D. P 2,P 329. 若角 A ,B ,C 是 △ABC 的三个内角,则下列等式中,一定成立的是 ( )A. cos (A +B )=cosCB. sin (A +B )=−sinCC. cosA+C 2=sinBD. sinB+C 2=cos A230. 已知函数 f (x )=asin (πx +α)+bcos (πx +β),且 f (4)=3,则 f (2013) 的值为 ( )A. −1B. 1C. 3D. −331. 已知 f (α)=sin (π−α)cos (2π−α)cos (−π−α)tanα,则 f (−313π) 的值为 ( ) A. 12B. −13C. −12D. 1332. 已知 sin (π−θ)=−2sin (π2+θ), 则 sinθ⋅cosθ= ( )A. 25B. −25C. 25 或 −25D. −1533. 若 tan π12cos 5π12=sin 5π12−m ⋅sin π12,则实数 m 的值为 ( ) A. 2√3B. √3C. 2D. 334. 已知 sinα−cosα=13,则 cos (π2−2α)= ( ) A. −89B. 23C. 89D.√17935. 设函数 f (x )(x ∈R ) 满足 f (x −π)=f (x )+sinx ,当 0≤x ≤π,f (x )=1 时,则 f (−13π6)=( )A. 12B. −12C. 32D. −3236. 若 sin (π−α)=13,且 π2≤α≤π,则 cosα= ( )A.2√23B. −2√23 C. −4√29D.4√2937. 已知 tan (α+π4)=34,则 cos 2(π4−α)= ( )A. 725B. 925C. 1625D. 242538. 已知 θ 是第四象限角,且 sin (θ+π4)=35,则 tan (θ−π4)= ( )A. 34B. −34C. 43D. −4339. 设函数 f (x )(x ∈R ) 满足 f (x +π)=f (x )+sinx .当 0≤x <π 时,f (x )=0,则 f (23π6)=( )A. 12B. √32C. 0D. −1240. 设 a ∈R ,b ∈[0,2π].若对任意实数 x 都有 sin (3x −π3)=sin (ax +b ),则满足条件的有序实数对 (a,b ) 的对数为 ( )A. 1B. 2C. 3D. 4二、填空题(共40小题;共200分) 41. 已知 sin (x −π3)=13,则 cos (x +π6)= .42. 化简:1+sin (α−360∘)cos (α−270∘)−2cos 2α= . 43. cos17π6= .44. 计算 cos7π6的值为 .45. 若 sin (π4−α)=13,则 cos (π4+α)= .46. 已知 sin (π−α)=log 814,且 α∈(−π2,0),则 tan (2π−α) 的值为 .47. cos (−585∘)tan495∘+sin (−690∘) 的值是 . 48. tan (−556π) 的值是 .49. sin1320∘ 的值是 .50. 已知 sin40∘=a ,则 cos130∘= . 51. 已知 tan (π6−α)=√33,则 tan (56π+α)= .52. 已知 sinβ=13,sin (α+β)=1,则 sin (2α+β)= . 53. 已知 sin (x +π6)=13,那么 sin (x −5π6)+sin 2(π3−x) 的值为 . 54. 已知 α 是锐角,且 cos (α+π6)=13,则 cos (α−π3)= .55. 已知函数 f (x )=asin (πx +α)+bcos (πx +β),且 f (4)=3,则 f (2017) 的值为 .56. 设函数 f (x )(x ∈R ) 满足 f (x +π)=f (x )+sinx ,当 0≤x <π 时,f (x )=0,则f (23π6)= .57. 已知 cos (π6−α)=23,则 sin (α−2π3)= .58. 已知角 α 终边上一点 P (−4,3),则 cos(π2+α)sin (−π−α)cos(11π2−α)sin(9π2+α)的值为 .59. 已知 f (α)=sin (π+α)cos (2π−α)tan(−α+3π2)cos (−π−α),则 f (−31π3) 的值为 .60. 已知函数 f (x )=asin (πx +α)+bcos (πx +β),且 f (4)=3,求 f (2013) 的值. 61. 已知 sinα 是方程 5x 2−7x −6=0 的根,求sin(α+32π)sin(32π−α)tan 2(2π−α)tan (π−α)cos(π2−α)cos(π2+α)的值.62. 已知函数 f (x )=cos x2,给出下列等式:① f (2π−x )=f (x );② f (2π+x )=f (x );③f (−x )=−f (x );④ f (−x )=f (x ).其中恒成立的有 .(填序号) 63. √1−2cos (π+2)sin (π+2)= .64. 化简:tan1∘⋅tan2∘⋅tan3∘⋅ ⋯ ⋅tan89∘= . 65. 若 cos (π−α)=√53,且 α∈(π2,π),则 sin (π+α)= .66. 已知 α 为第二象限角,且 sinα=35,那么 tan(π+α)= . 67. 已知 cos (α−π6)=−13,那么 sin (2π3−α)= .68. 已知 α 为锐角,且 2tan (π−α)−3cos (π2+β)+5=0,tan (π+α)+6sin (π+β)=1,那么sinα 的值是 . 69. 计算:sin (−π3)+2sin4π3+3sin2π3= .70. 已知角 α 和角 β 的终边关于直线 y =x 对称,且 β=−π3,那么 sinα= . 71. 若函数 f (x )=asin2x +btanx +1,且 f (−3)=5,则 f (π+3)= . 72. 已知 f (α)=cos(π2+α)sin(3π2−α)cos (−π−α)tan (π−α),则 f (−25π3) 的值为 .73. 若sinθ+cosθsinθ−cosθ=2,则 sin (θ−5π)sin (3π2−θ)= .74. cos 21∘+cos 22∘+⋯+cos 289∘= .75. 设 a,b ∈R ,c ∈[0,2π],若对任意实数 x 都有 2sin (3x −π3)=asin (bx +c ),则满足条件的有序实数组 (a,b,c ) 的组数为 .76. 已知△ABC,若存在△A1B1C1,满足cosAsinA1=cosBsinB1=cosCsinC1=1则称△A1B1C1是△ABC的一个“友好”三角形.(i)在满足下述条件的三角形中,存在“友好”三角形的是:(请写出符合要求的条件的序号)①A=90∘,B=60∘,C=30∘;②A=75∘,B=60∘,C=45∘;③A=75∘,B=75∘,C=30∘.(ii)若△ABC存在“友好”三角形,且A=70∘,则另外两个角的度数分别为.77. 在△ABC中,a,b,c分别为内角A,B,C的对边,a+c=4,(2−cosA)tan B2=sinA,则△ABC的面积的最大值为.78. 有下列命题:①y=cosx在第一象限是减函数;②若cos(α+β)=1,则sin(2α+β)+sinβ=0;③若定义在R上的函数f(x)满足f(x+1)=−f(x),则y=f(x)是周期函数;④a⃗,b⃗⃗,c⃗是非零向量,若a⃗∥b⃗⃗,b⃗⃗∥c⃗,则a⃗∥c⃗;⑤若存在实数m,n,使得ma⃗=nb⃗⃗,则b⃗⃗与a⃗共线.其中正确命题的序号为.79. 在△ABC中,a,b,c分别是角A,B,C的对边,且cosBcosC =−b2a+c,若b=√13,a+c=4,则a的值为.80. 由sin36∘=cos54∘,可求得cos2016∘的值为.三、解答题(共20小题;共260分)81. (1)求下列三角函数值:①cos225∘;②sin25π6;③sin(−17π3);④tan(−32π3).(2)将下列三角函数化为0∘到45∘之间角的三角函数:①sin85∘;②cos35π;③tanπ3;82. 已知tan(α+π4)=13.(1)求tanα的值;(2)求2sin2α−sin(π−α)sin(π2−α)+sin2(3π2+α)的值.83. 函数f(x)=cos(πx+φ)(0<φ<π2)的部分图象如图所示.(1)求 φ 及图中 x 0 的值; (2)设 g (x )=f (x )+f (x +13),求函数 g (x ) 在区间 [−12,13] 上的最大值和最小值.84. 已知函数 f (x )=sin (x −π6)+cosx .(1)求函数 f (x ) 的最小正周期; (2)若 α 是第一象限角,且 f (α+π3)=45,求 tan (α−π4) 的值.85. 在 △ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,且满足2a−b cosB=c cosC.(1)求角 C 的值; (2)若 c =7,△ABC 的面积为 10√3,求 a +b 的值.86. 在 △ABC 中,∠A =60∘,c =37a .(1)求 sinC 的值; (2)若 a =7,求 △ABC 的面积.87. 在 △ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,已知 2cos (B −C )+1=4cosBcosC .(1)求 A ; (2)若 a =2√7,△ABC 的面积为 2√3,求 b +c .88. 已知函数 f (x )=sin (π−ωx )cosωx +cos 2ωx (ω>0) 的最小正周期为 π.(1)求 ω 的值;(2)将函数 y =f (x ) 的图象上各点的横坐标缩短到原来的 12,纵坐标不变,得到函数 y =g (x ) 的图象,求函数 g (x ) 在区间 [0,π16] 上的值域.89. 在 △ABC 中,内角 A ,B ,C 所对应的边分别为 a ,b ,c .已知 asin2B =√3bsinA .(1)求 B ; (2)若 cosA =13,求 sinC 的值.90. 已知向量 m ⃗⃗⃗=(sinx,−1),n ⃗⃗=(√3cosx,−12),函数 f (x )=m ⃗⃗⃗2+m ⃗⃗⃗⋅n ⃗⃗−2.(1)求 f (x ) 的最大值,并求取最大值时 x 的取值集合;(2)已知 a 、 b 、 c 分别为 △ABC 内角 A 、 B 、 C 的对边,且 a ,b ,c 成等比数列,角 B 为锐角,且 f (B )=1,求1tanA+1tanC的值.91. 在 △ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,设 S 为 △ABC 的面积,满足 4S =√3(a 2+b 2−c 2). (1)求角 C 的大小; (2)若 1+tanAtanB =2c b,且 AB⃗⃗⃗⃗⃗⃗⋅BC ⃗⃗⃗⃗⃗⃗=−8,求 c 的值.92. 设 x ∈R ,函数 f (x )=cos (ωx +φ)(ω>0,−π2<φ<0)的最小正周期为 π,且 f (π4)=√32.(1)求 ω 和 φ 的值;(2)在给定坐标系中作出函数 f (x ) 在 [0,π] 上的图象; (3)若 f (x )>√22,求 x 的取值范围.93. 已知 f (α)=sin (π−α)cos (2π−α)tan(−α+32π)1tan (−α−π)⋅sin (−π−α),若 cos (α−32π)=15,且 α 是第三象限的角,求 f (α) 的值.94. 已知 cos (75∘+α)=13⋅α 是第三象限角,求 cos (15∘−α)+sin (α−15∘) 的值.95. △ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c .已知 a =3,cosA =√63,B =A +π2.(1)求 b 的值; (2)求 △ABC 的面积.96. 角 α 的终边上的点 P 与 A (a,b ) 关于 x 轴对称(a ≠0,b ≠0),角 β 的终边上的点 Q 与 A 关于原点对称,求 sinαcosβ+tanαtanβ+cosαsinβ 的值.97. 已知 cos (75∘+α)=13,α 是第三象限角,求 cos (15∘−α)+sin (α−15∘) 的值.98. 每年的1月1日是元旦节,7月1日是建党节,而2013年的春节是2月10日,因为2sin11∘sin71∘sin [( )∘+30∘]=sin2013∘sin210∘ ,新年将注定不平凡,请在括号内填写一个由月份和日期构成的正整数,使得等式成立,也正好组成我国另外一个重要节日.99. 己知向量 m ⃗⃗⃗=(√3sin x4,1),n ⃗⃗=(cos x4,cos 2x4).记 f (x )=m ⃗⃗⃗⋅n ⃗⃗.(1)若 cos (2π3−x)=−12,求 f (x )=m ⃗⃗⃗⋅n ⃗⃗ 的值;(2)在锐角 △ABC 中,角 A ,B ,C 的对边分别是 a ,b ,c ,且满足 (2a −c )cosB =bcosC ,求函数 f (A ) 的取值范围.100. (1)在 △ABC 中,已知边 BC =√3,AC =√2,已知角 B =45∘,求角 A ;若该题中的条件改为边 BC =√3,AC =√2,已知角 A =60∘,求角 B ;请根据该题的解答归纳判断解三角形的一个解、两个解的依据;(2)A ,B ,C 的对边分别是 a ,b ,c ,已知 3acosA =ccosB +bcosC ,求 A 的值;(3)在 △ABC 中,内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a 2−b 2=√3bc ,sinC =2√3sinB ,求角 A ;(4)在锐角 △ABC 中,A ,B ,C 的对边分别是 a ,b ,c ,ba +ab =6cosC ,求 tanCtanA +tanCtanB 的值.答案第一部分 1. B【解析】由 sin (π+α)=45,得 sinα=−45,而 cos (α−2π)=cosα,且 α 是第四象限角, 所以 cosα=√1−sin 2α=35. 2. C【解析】因为 sin (5π2+α)=sin (2π+π2+α)=sin (π2+α)=cosα=15,所以 cosα=15. 3. B 【解析】f (x )=−cos2x .4. C 【解析】cos10∘=sin80∘,所以 f (sin80∘)=sin240∘=sin (180∘+60∘)=−sin60∘=−√32. 5. B6. A【解析】y =cos (2x +π3)=sin (2x +5π6)=sin2(x +5π12), 只需将函数 y =sin2x 的图象向左平移 5π12 个单位,可得到函数 y =cos (2x +π3) 的图象.7. A 8. D 9. A 10. A【解析】cos (π2+θ)=−sinθ,于是可得 tanθ=−2sinθ,即 cosθ=−12或 sinθ=0.显然 θ=2π3时,cosθ=−12,充分性成立;而 cos4π3=−12,必要性不成立.11. A 【解析】因为 f (x +1)=−f (x ), 所以 f (x +2)=−f (x +1)=f (x ), 所以 f (x ) 是周期为 2 的周期函数. 因为 y =f (x ) 是定义在 R 上的偶函数, 所以 f (−x )=f (x ).因为 f (x ) 在 [−3,−2] 上是减函数,所以根据偶函数图象的对称性可知函数 f (x ) 在 [2,3] 上是增函数. 根据函数的周期可知,函数 f (x ) 在 [0,1] 上是增函数. 因为 α,β 是锐角三角形的两个内角, 所以 α+β>90∘,α>90∘−β,所以 1>sinα>sin (90∘−β)=cosβ>0, 所以 f (sinα)>f (cosβ).12. A 【解析】函数 f (x )=sin (2x +π4),则 g (x )=cos2x =sin (2x +π2),为了得到函数 g (x ) 的图象,需要将 y =f (x ) 的图象向左平移 π8 个单位.13. A 【解析】sin (5π12+θ)=sin (π2−(π12−θ))=cos (π12−θ)=13. 14. A15. B 16. D 17. C 18. C19. D 【解析】cos (π12−α)=cos [π2−(5π12+α)]=sin (5π12+α). 又 −π<α<−π2, 所以 −712π<5π12+α<−π12.所以 sin (512π+α)=−2√23. 所以 cos (π12−α)=−2√23.20. B21. A 【解析】由题可得 sin 2π7=sin5π7,且 ∣cos 5π7∣<∣sin 5π7∣<∣tan 5π7∣.因为 f (x ) 是定义在 R 上的偶函数,且在区间 [0,+∞) 上是增函数,所以 b <a <c . 22. B 【解析】由题意 sin (A +C )+sinA (sinC −cosC )=0 得 sinAcosC +cosAsinC +sinAsinC −sinAcosC =0, 即 sinC (sinA +cosA )=√2sinCsin (A +π4)=0, 所以 A =3π4.由正弦定理 asinA =csinC 得 2sin3π4=√2sinC ,即 sinC =12,得 C =π6.23. C 24. C 25. D【解析】因为 sin (π2+θ)+3cos (π−θ)=cosθ−3cosθ=−2cosθ=sin (−θ)=−sinθ,所以 tanθ=2, 则 sinθcosθ+cos 2θ=sinθcosθ+cos 2θsin 2θ+cos 2θ=tanθ+1tan 2θ+1=35.26. B 【解析】因为 sin (x +π12)=13,所以 cos (x +7π12)=cos [π2+(x +π12)]=−sin (x +π12)=−13. 27. D 【解析】a =sin5π7=sin2π7,且2π7>π4,c >1>a >√22>b .28. A 【解析】p 1 为假命题;因为 sin 2A2+cos 2A2=1 恒成立,所以命题 p 1 为假命题; p 2 为真命题;因为当 A =0,B =0 时,sin (A −B )=sinA −sinB ,所以命题 p 2 为真命题; p 3 为真命题; 因为 √1−cos2x2=√sin 2x =∣sinx∣,而 x ∈[0,π],所以 sinx ≥0,所以 √1−2cos2x2=sinx ,所以命题 p 3 为真命题; p 4 为假命题; 因为 sin5π2=cos0,而5π2+0≠π2,所以命题 p 4 为假命题.29. D 30. D【解析】因为 f (4)=asin (4π+α)+bcos (4π+β)=asinα+bcosβ=3, 所以f (2013)=asin (2013π+α)+bcos (2013π+β)=asin (π+α)+bcos (π+β)=−asinα−bcosβ=−(asinα+bcosβ)=−3. 31. C 【解析】因为 f (α)=sinαcosα−cosαtanα=−cosα,所以 f (−313π)=−cos (−313π)=−cos (10π+π3)=−cos π3=−12.32. B 【解析】由已知等式得 sinθ=−2cosθ, 所以 sin 2θ+cos 2θ=5cos 2θ=1,所以 cos 2θ=15,故 sinθcosθ=−2cos 2θ=−25. 33. A34. C 【解析】因为 sinα−cosα=13,所以两边平方,可得:1−2sinαcosα=19, 可得:1−sin2α=19,所以 cos (π2−2α)=sin2α=89.35. C36. B 【解析】因为 sin (π−α)=sinα=13,且 π2≤α≤π,则 cosα=−√1−sin 2α=−2√23. 37. B 【解析】因为 tan (α+π4)=34,所以cos 2(π4−α)=sin 2(α+π4)=sin 2(α+π4)sin 2(α+π4)+cos 2(α+π4)=11+cos 2(α+π4)sin 2(α+π4)=11+1tan 2(α+π4)=11+169=925.38. D 【解析】因为 θ 是第四象限角,所以 −π2+2kπ<θ<2kπ,则 −π4+2kπ<θ+π4<π4+2kπ,k ∈Z ,又 sin (θ+π4)=35, 所以 cos (θ+π4)=√1−sin 2(θ+π4)=45.所以 cos (π4−θ)=sin (θ+π4)=35,sin (π4−θ)=cos (θ+π4)=45.所以tan (θ−π4)=−tan (π4−θ)=−sin(π4−θ)cos(π4−θ)=−4535=−43.39. A 【解析】f (23π6)=f (17π6)+sin 17π6=f (11π6)+sin11π6+sin17π6=f (5π6)+sin5π6+sin11π6+sin17π6=0+12−12+12=12.40. B【解析】sin (3x −π3)=sin (3x −π3+2π)=sin (3x +5π3),(a,b )=(3,5π3),又 sin (3x −π3)=sin [π−(3x −π3)]=sin (−3x +4π3),(a,b )=(−3,4π3),注意到 b ∈[0,2π],只有这两组. 第二部分 41. −13 42. 略 43. −√32【解析】cos 17π6=cos (3π−π6)=−cos π6=−√32. 44. −√32【解析】cos 7π6=cos (π+π6)=−cos π6=−√32. 45. 13【解析】因为 sin (π4−α)=13,所以 cos (π4+α)=sin (π2−(π4+α))=sin (π4−α)=13. 46.2√55【解析】sin (π−α)=sinα=log 814=−23,因为α∈(−π2,0),所以cosα=√1−sin2α=√53,所以tan(2π−α)=tan(−α)=−tanα=−sinαcosα=2√55.47. √248. −√3349. −√3250. −a51. −√3352. 1353. 59【解析】因为sin(x−5π6)=sin(x+π6−π)=−sin(x+π6)=−13,sin2(π3−x)=sin2[π2−(x+π6)]=cos2(x+π6)=1−sin2(x+π6)=89,所以原式=−13+89=59.54. 2√2355. −3【解析】因为f(4)=asin(4π+α)+bcos(4π+β)=asinα+bcosβ=3,所以f(2017)=asin(2017π+α)+bcos(2017π+β) =asin(π+α)+bcos(π+β)=−asinα−bcosβ=−3.56. 12【解析】由已知,得f (23π6)=f (17π6)+sin 17π6=f (11π6)+sin11π6+sin17π6=f (5π6)+sin5π6+sin11π6+sin17π6=0+12+(−12)+12=12.57. −23【解析】因为 (π6−α)+(α−2π3)=−π2, 所以 α−2π3=−π2−(π6−α).所以sin (α−2π3)=sin [−π2−(π6−α)]=−sin [π2+(π6−α)]=−cos (π6−α)=−23.58. −34【解析】因为 tanα=y x =−34, 所以cos(π2+α)sin (−π−α)cos(11π2−α)sin(9π2+α)=−sinα⋅sinα−sinα⋅cosα=tanα=−34.59. 12【解析】原式=−sinαcosαcotα−cosα=cosα,则 f (α)=cosα,所以 f (−31π3)=cos (−31π3)=cos 31π3=cos π3=12.60. −3【解析】∵f (4)=asin (4π+α)+bcos (4π+β)=asinα+bcosβ=3.∴f (2013)=asin (2013π+α)+bcos (2013π+β)=asin (π+α)+bcos (π+β)=−asinα−bcosβ=−(asinα+bcosβ)=−3. 61. ±34 62. ④ 63. sin2−cos2 64. 1【解析】因为 tanα⋅tan (90∘−α)=1tanα⋅tanα=1, 所以tan1∘⋅tan2∘⋅ ⋯ ⋅tan89∘=(tan1∘⋅tan89∘)⋅(tan2∘⋅tan88∘)⋅ ⋯ ⋅(tan44∘⋅tan46∘)⋅tan45∘= 1. 65. −23【解析】因为 cos (π−α)=−cosα=√53, 所以 cosα=−√53. 又 α∈(π2,π), 所以 sinα=√1−cos 2α=√1−(−√53)2=23,所以 sin (π+α)=−sinα=−23. 66. −34【解析】因为 α 为第二象限角,所以 cosα=−√1−(35)2=−45,所以tan (π+α)=tanα=sinαcosα=−34.67. −13【解析】由题知sin (2π3−α)=sin [π2+(π6−α)]=sin [π2−(α−π6)]=cos (α−π6)=−13.68.3√1010【解析】由题意可知 −2tanα+3sinβ+5=0,tanα−6sinβ=1,解得 tanα=3,故 sinα=3√1010. 69. 0【解析】原式=−sin π3+2sin (π+π3)+3sin (π−π3)=−sin π3−2sin π3+3sin π3=0.70. 12【解析】因为角 α 和角 β 的终边关于直线 y =x 对称, 所以 α+β=2kπ+π2(k ∈Z ),又 β=−π3, 所以 α=2kπ+5π6(k ∈Z ),所以 sinα=12.71. −3【解析】因为 f (−3)=−(asin6+btan3)+1=5, 所以 asin6+btan3=−4,所以 f (π+3)=asin6+btan3+1=−3. 72. 12 73. 310【解析】由 sinθ+cosθsinθ−cosθ=2, 得 sinθ+cosθ=2(sinθ−cosθ),两边平方得 1+2sinθcosθ=4(1−2sinθcosθ), 故 sinθcosθ=310, 所以sin (θ−5π)sin (3π2−θ)=sinθcosθ=310.74. 892 75. 4【解析】(i )若 a =2, 若 b =3,则 c =5π3;若 b =−3,则 c =4π3.(ii )若 a =−2,若 b =−3,则 c =π3;若 b =3,则 c =2π3.共 4 组. 76. ②,45∘,65∘ .【解析】由题意,三角形 ABC 为锐角三角形,A +A 1=90∘ 或 A +A 1=180∘,B +B 1=90∘ 或 B +B 1=180∘,C +C 1=90∘ 或 C +C 1=180∘ .所以经检验②存在“友好”三角形;当 A =70∘ 时,B +C =110∘ . B 1+C 1=160∘或20∘ .不防设另外两个角中的一个角 B 的度数为 x ,则另一个角的度数为 110∘−x .所以对应的 B 1 、 C 1 分别为:B 1=90∘−x ,C 1=90∘−(110∘−x ) (舍);或 B 1=180∘−(90∘−x ),C 1=90∘−(110∘−x ) .所以 B =45∘,C =65∘ . 77. √3【解析】方法一:均值取等法,不难猜出当 a =c 时面积取最大值, 此时 A =C ⇒B =π−A −C ⇒B =π−2A .(2−cosA )tan B2=sinA ⇒(2−cosA )tan (π2−A)=sinA ⇒(2−cosA )cosAsinA =sinA ⇒2cosA =cos 2A +sin 2A =1.所以 cosA =12⇒A =60∘, 所以 a =b =c =2⇒S =√3.方法二:(2−cosA )tan B2=sinA ⇒sinA2−cosA =tan B2=sinB2cosB2=2sinB2cosB22cos2B2=sinB1+cosB⇒sinA+sinAcosB=2sinB−sinBcosA⇒(sinAcosB+sinBcosA)+sinA=2sinB⇒sin(A+B)+sinA=2sinB⇒sinC+sinA=2sinB⇒a+c=2b=4⇒b=2,a+c=4.所以cosB=a 2+c2−b22ac=(a+c)2−2ac−222ac=12−2ac2ac=6−acac.又ac≤(a+c2)2=4(当且仅当a=c时取等号),所以S=12acsinB=12ac√1−cos2B=12ac√1−(6−acac)2=12√(ac)2−(6−ac)2=12√6(2ac−6)≤12√12=√3.78. ②③④【解析】①y=cosx在(0,π2)上是减函数,但在第一象限不是减函数,例如cosπ3=12,cos13π6=√32,显然π3<13π6时,12<√32,①不正确;②因为cos(α+β)=1,所以sin(α+β)=0,所以sin(2α+β)+sinβ=sin[(α+β)+α]+sinβ=sinα+sinβ,又α+β=2kπ,k∈Z,所以α=2kπ−β,k∈Z,所以sinα+sinβ=sin(2kπ−β)+sinβ=−sinβ+sinβ=0,所以②正确;③f(x+2)=f[(x+1)+1]=−f(x+1)=−(−f(x))=f(x),所以2是f(x)的周期,③正确;④因为a⃗∥b⃗⃗,b⃗⃗∥c⃗,所以存在非零实数m,n有a⃗=mb⃗⃗,b⃗⃗=nc⃗,所以a⃗=(mn)c⃗,所以a⃗∥c⃗,④正确;⑤若m=n=0,则必有ma⃗=nb⃗⃗=0,而a⃗与b⃗⃗可以不共线,⑤不正确.79. 1或3【解析】cosBcosC =−b2a+c,即有−2acosB=bcosC+ccosB,即−2sinAcosB=sinBcosC+cosCsinB=sin(B+C)=sinA,即有cosB=−12,由于B为三角形的内角,则B=2π3,又b2=a2+c2−2accosB,即有13=a2+c2+ac,又a+c=4,解得,a=1,c=3或a=3,c=1.80. −√5+14【解析】由sin36∘=cos54∘得2sin18∘cos18∘=cos(36∘+18∘),化简整理得4sin218∘+2sin18∘−1=0,解得sin18∘=−2+√22+162×4=√5−14,所以cos2016∘=cos(6×360∘−144∘)=cos(144∘)=−cos36∘=2sin218∘−1=−√5+1.第三部分81. (1)①cos225∘=cos(180∘+45∘)=−cos45∘=−√22.②sin25π6=sin(π6+4π)=sinπ6=12.③sin(−17π3)=sin(π3−3×2π)=sinπ3=√32.④tan(−32π3)=tan(−11π+π3)=tanπ3=√3.(2)①sin85∘=sin(−5∘+90∘)=cos5∘.②cos35π=cos(π2+π10)=−sinπ10=−sin18∘.③tanπ3=tan(−π6+π2)=cotπ6=sin30∘.82. (1)因为tan(α+π4)=tanα+11−tanα=13,所以tanα=−12.(2)原式=2sin2α−sinαcosα+cos2α=2sin2α−sinαcosα+cos2αsin2α+cos2α=2tan2α−tanα+1tan2α+1=2×(−12)2−(−12)+1(−12)2+1=85.83. (1)由题图得f(0)=√32,所以cosφ=√32,因为0<φ<π2,故φ=π6.由于f(x)的最小正周期等于2,所以由题图可知1<x0<2,故7π6<πx0+π6<13π6.由f(x0)=√32得cos(πx0+π6)=√32,所以πx0+π6=11π6,x0=53.(2)因为f(x+13)=cos[π(x+13)+π6]=cos(πx+π2)=−sinπx,所以g(x)=f(x)+f(x+13)=cos(πx+π6)−sinπx=cosπxcosπ6−sinπxsinπ6−sinπx=√32cosπx−32sinπx=√3sin(π6−πx).当x∈[−12,13]时,−π6≤π6−πx≤2π3.所以−12≤sin(π6−πx)≤1,故π6−πx=π2,即x=−13时,g(x)取得最大值√3;当π6−πx=−π6,即x=13时,g(x)取得最小值−√32.84. (1)f(x)=sin(x−π6)+cosx=sinxcosπ6−cosxsinπ6+cosx=√32sinx+12cosx=sinxcosπ6+cosxsinπ6=sin(x+π6).所以函数f(x)的最小正周期为2π.(2)因为f(α+π3)=45,所以sin(α+π3+π6)=45.所以sin(α+π2)=45.所以cosα=45.因为α是第一象限角,所以sinα=√1−cos2α=35.所以tanα=sinαcosα=34.所以tan (α−π4)=tanα−tanπ41+tanα⋅tanπ4=34−11+34×1=−17.85. (1) 由题意得 (2a −b )cosC −ccosB =0. 即 (2sinA −sinB )cosC −sinCcosB =0,整理得 2sinAcosC =sinBcosC +sinCcosB =sin (B +C )=sinA , 因为 0<A <π, 所以 sinA ≠0. 所以 cosC =12. 又因为 0<C <π, 所以 C =π3.(2) 由 S △ABC =12absinC =12absin π3=10√3 得 ab =40, 由(1)知 cosC =12,所以由余弦定理得 c 2=a 2+b 2−2abcosC =(a +b )2−3ab =(a +b )2−3×40, 即 49=(a +b )2−3×40,(a +b )2=169. 故 a +b =13.86. (1) ∠A =60∘,c =37a , 由正弦定理可得 sinC =37sin∠A =37×√32=3√314. (2) a =7,则 c =3,c <a , 所以 C <∠A ,C 为锐角, 由(1)可得 cosC =1314, 所以sinB =sin (∠A +C )=sin∠AcosC +cos∠AsinC=√32×1314+12×3√314=4√37,所以 S △ABC =12acsinB =12×7×3×4√37=6√3.87. (1) 2cosBcosC +2sinBsinC +1=4cosBcosC ,cosBcosC −sinBsinC =12,cos (B +C )=12,cosA =−12, 所以 A =2π3.(2) S =12bcsinA 得 bc =8,a 2=b 2+c 2−2bccosA ,28=(b +c )2−bc ,b +c =6. 88. (1) 由 f (x )=sin (π−ωx )cosωx +cos 2ωx , 得 f (x )=sinωxcosωx +cos 2ωx =12sin2ωx +1+cos2ωx2=√22sin (2ωx +π4)+12,所以 T =2π2ω=π,得 ω=1. (2) 由(1)知 f (x )=√22sin (2x +π4)+12, 所以 g (x )=√22sin (2×2x +π4)+12=√22sin (4x +π4)+12,因为 0≤x ≤π16,所以 π4≤4x +π4≤π2, 所以 √22≤sin (4x +π4)≤1, 所以 g (x )∈[1,√2+12]. 89. (1) 在 △ABC 中,由 a sinA=b sinB,可得 asinB =bsinA ,又由 asin2B =√3bsinA ,得 2asinBcosB =√3bsinA =√3asinB . 又 sinB ≠0,得 cosB =√32,从而 B =π6. (2) 由 cosA =13,得 sinA =2√23,则 sinC=sin [π−(A +B )]=sin (A +B )=sin (A +π6)=√3sinA +1cosA =2√6+16.90. (1)f (x )=(m ⃗⃗⃗+n ⃗⃗)⋅m ⃗⃗⃗−2=sin 2x +1+√3sinxcosx +12−2=1−cos2x2+√32sin2x −12=√32sin2x −12cos2x=sin (2x −π6)故 f (x )max =1,此时 2x −π6=2kπ+π2,k ∈Z ,得 x =kπ+π3,k ∈Z , 取最大值时 x 的取值集合为 {x∣ x =kπ+π3,k ∈Z}. (2) f (B )=sin (2B −π6)=1,因为 0<B <π2, 所以 −π6<2B −π6<5π6,所以 2B −π6=π2,B =π3.由 b 2=ac 及正弦定理得 sin 2B =sinAsinC 于是1tanA +1tanC =cosAsinA+cosC sinC =sinCcosA+cosCsinAsinAsinC=sin (A+C )sin 2B=1sinB =2√33.91. (1) 因为根据余弦定理得 a 2+b 2−c 2=2abcosC ,△ABC 的面积 S =12absinC ,所以由 4S =√3(a 2+b 2−c 2) 得 4×12absinC =2√3abcosC , 化简得 sinC =√3cosC ,可得 tanC =sinCcosC =√3, 因为 0<C <π, 所以 C =π3.(2) 因为 1+tanAtanB =2cb,所以 1+sinAcosB sinBcosA =cosAsinB+sinAcosBcosAsinB =2c b,可得 sin (A+B )cosAsinB =2cb,即 sinCcosAsinB =2cb .所以由正弦定理得 sinC cosAsinB=2sinC sinB,解得 cosA =12,结合 0<A <π,得 A =π3.因为 △ABC 中,C =π3,所以 B =π−(A +C )=π3,因此,AB⃗⃗⃗⃗⃗⃗⋅BC ⃗⃗⃗⃗⃗⃗=−BA ⃗⃗⃗⃗⃗⃗⋅BC ⃗⃗⃗⃗⃗⃗=−∣BA ⃗⃗⃗⃗⃗⃗∣⋅∣BC ⃗⃗⃗⃗⃗⃗∣cosB =−12c 2, 因为 AB⃗⃗⃗⃗⃗⃗⋅BC ⃗⃗⃗⃗⃗⃗=−8, 所以 −12c 2=−8,解之得 c =4(舍负). 92. (1) ∵ 函数 f (x ) 的最小正周期 T =2πω=π,∴ω=2,∴f (π4)=cos (2×π4+φ)=cos (π2+φ)=−sinφ=√32. 又 −π2<φ<0, ∴φ=−π3.(2) 由(1)知 f (x )=cos (2x −π3),列表如下:xπ65π122π311π12π2x −π3−π30π2π3π25π3f (x )1210−1012f (x ) 在 [0,π] 上的图象如图所示:(3) ∵f (x )>√22,即 cos (2x −π3)>√22, ∴2kπ−π4<2x −π3<2kπ+π4(k ∈Z ),则 2kπ+π12<2x <2kπ+7π12(k ∈Z ),即 kπ+π24<x <kπ+7π24(k ∈Z ).∴x 的取值范围是 {x∣ kπ+π24<x <kπ+7π24,k ∈Z}. 93. 略94. sin (15∘−α)=cos (75∘+α)=13 .于是 sin (α−15∘)=−sin (15∘−α)=−13.因为 α 是第三象限角,所以 15∘−α∈(15∘,105∘),结合 sin (15∘−α)=13 可知,15∘−α 在第一象限,于是 cos15∘=√1−(13)2=2√23 .所以 cos (15∘−α)+sin (α−15∘)=2√2−13. 95. (1) 因为 cosA =√63, 所以 sinA =√1−69=√33, 因为 B =A +π2.所以 sinB =sin (A +π2)=cosA =√63, 由正弦定理知 a sinA=b sinB , 所以 b =a sinA⋅sinB =√33√63=3√2. (2) 因为 sinB =√63,B =A +π2>π2所以 cosB =−√1−69=−√33,sinC =sin (π−A −B )=sin (A +B )=sinAcosB +cosAsinB =√33×(−√33)+√63×√63=13,所以 S =12a ⋅b ⋅sinC =12×3×3√2×13=3√22. 96. 略. 97. 略. 98. 101【解析】sin2013∘=sin (33∘+11×180∘)=−sin33∘,sin210∘=−sin30∘=12 .2sin11∘sin71∘sin [( )∘+30∘]=sin2013∘sin210∘ 可化为 4sin11∘sin71∘sin [( )∘+30∘]=sin33∘ , 根据结论:4sinx ⋅sin (60∘−x )⋅sin (60∘+x )=sin3x , 令 x =11∘ ,则有 4sin11∘sin71∘sin49∘=sin33∘ , 因此 sin49∘=sin131∘=sin [( )∘+30∘] , 故依题意得:101 .99. (1) 由 cos (2π3−x)=−12,得2π3−x =2kπ+2π3,k ∈Z ,即 x =−2kπ,k ∈Z .f (x )=m ⃗⃗⃗⋅n ⃗⃗=√3sin x 4cos x 4+cos 2x4=√32sin x 2+12cos x 2+12=sin (x2+π6)+12.所以当 x =−2kπ,k ∈Z 时,f (x )=1 或 f (x )=0. (2) 因为 (2a −c )cosB =bcosC ,由正弦定理,得 (2sinA −sinC )cosB =sinBcosC , 所以 2sinAcosB −sinCcosB =sinBcosC , 即 2sinAcosB =sin (B +C ). 因为 A +B +C =π,所以 sin (B +C )=sinA ,且 sinA ≠0, 从而 cosB =12,即 B =π3, 所以 A +C =2π3.因为 △ABC 锐角三角形,所以 0<A <π2,且 0<C <π2,即 0<2π3−A <π2,解得 π6<A <π2,则 π4<A 2+π6<5π12,所以 √22<sin (A2+π6)<√6+√24. 又因为 f (x )=m ⃗⃗⃗⋅n ⃗⃗=sin (x2+π6)+12, 所以 f (A )=sin (A2+π6)+12.故函数 f (A ) 的取值范围是 (√2+22,√6+√2+24). 100. (1) ①由正弦定理可得:√3sinA =√2sin45∘,可得 sinA =√32,因为 a >b ,所以 A =60∘ 或 120∘.② BC =√3,AC =√2,A =60∘,由正弦定理可得:√3sin60∘=√2sinB,解得 sinB =√22,因为 a >b ,所以B =45∘.综上可得:已知 a >b ,A 为锐角,则 B 为锐角,B 有一解.已知 a >b ,B 为锐角,b <asinB 时,无解;b =asinB 时,A =90∘;asinB <b <a 时,A 有两解. (2) 由正弦定理可得:3sinAcosA =sinCcosB +sinBcosC =sin (B +C )=sinA , 因为 sinA ≠0,所以 cosA =13,所以 A =arccos 13.(3) 因为 sinC =2√3sinB ,由正弦定理可得:c =2√3b ,又 a 2−b 2=√3bc ,所以 a 2=b 2+6b 2=7b 2,即 a =√7b . 所以 cosA =b 2+c 2−a 22bc=2222b×23b=√32,又 A ∈(0,π),所以 A =π6.。

2022秋新教材高中数学第五章三角函数章末检测新人教A版必修第一册

2022秋新教材高中数学第五章三角函数章末检测新人教A版必修第一册

第五章章末检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点P(tan α,cos α)在第三象限,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】由tan α<0,cos α<0,所以角α的终边在第二象限.2.函数y=的周期是( )A.2πB.πC. D.【答案】C 【解析】函数y===tan 2x的周期为.故选C.3.已知tanα=2,则=( )A.B.C.4D.5【答案】D4.如果角θ的终边经过点,那么sin+cos(π-θ)+tan(2π-θ)=( )A.-B.C.D.-【答案】B 【解析】易知sin θ=,cos θ=-,tan θ=-,原式=cos θ-cos θ-tan θ=.5.在平面直角坐标系中,点P(sin 100°,cos 200°)位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】因为sin 100°>0,cos 200°=cos(180°+20°)=-cos 20°<0,所以点P(sin 100°,cos 200°)位于第四象限.故选D.6.若函数f(x)=2sin(ωx+φ)对任意x都有f=f(-x),则f=( )A.2或0B.0C.-2或0D.-2或2【答案】D 【解析】由f=f(-x)得直线x==是f(x)图象的一条对称轴,所以f=±2.故选D.7.函数y=sin的单调递减区间为( )A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【答案】D8.已知函数f(x)=sin(ωx+φ)的图象在y轴右侧的第一个最高点为P,在原点右侧与x轴的第一个交点为Q,则f的值为( )A.1B.C.D.【答案】C 【解析】由题意,得=-,所以T=π,所以ω=2,则f(x)=sin(2x+φ).将点P的坐标代入f(x)=sin(2x+φ),得sin=1,所以φ=+2kπ(k∈Z).又|φ|<,所以φ=,即f(x)=sin(x∈R),所以f=sin=sin=.故选C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列计算正确的选项有( )A.sin 158°cos 48°+cos 22°sin 48°=1B.sin 20°cos 110°+cos 160°sin 70°=1C.=D.cos 74°sin 14°-sin 74°cos 14°=-【答案】CD 【解析】对于A,sin 158°cos 48°+cos 22°sin 48°=sin 22°cos 48°+cos 22°sin 48°=sin(22°+48°)=sin 70°≠1,故A错误;对于B,sin 20°cos 110°+cos 160°sin 70°=sin 20°(-cos 70°)+(-cos 20°)sin 70°=-(sin 20°cos 70°+cos 20°sin 70°)=-sin(20°+70°)=-1,故B错误;对于C,==tan(45°+15°)=tan 60°=,故C正确;对于D,cos 74°sin 14°-sin 74°cos 14°=sin(14°-74°)=-sin 60°=-,故D正确.故选CD.10.已知函数f(x)=sin x·sin-的定义域为[m,n](m<n),值域为,则n-m的值不可能是( )A.B.C.D.【答案】CD 【解析】f(x)=sin x·sin-=sin x-=sin2x+sin x cos x-=·+sin 2x-=sin 2x-cos 2x=sin.因为函数的值域为,所以不妨令2n- = ,则2m- 的最小值为-,最大值为-,即当n= 时,m的最小值为-,最大值为- .所以n-m的范围为.所以n-m的值不可能是C或D.故选CD.11.将函数y=sin(2x+φ)的图象沿x轴向左平移个单位长度后,得到一个偶函数的图象,则φ的可能取值为( )A.-B.C.0D.-【答案】AB 【解析】将函数y=sin(2x+φ)的图象沿x轴向左平移个单位长度后,得到y=sin的图象,由于所得函数为一个偶函数,则+φ=kπ+,k∈Z,故当k=0时,φ=;当k=-1时,φ=-.故选AB.12.已知函数f(x)=A sin(ωx+φ)(其中A>0,ω>0,0<|φ|<π)的部分图象如图所示,则下列结论正确的是( )A.函数f(x)的图象关于直线x=对称B.函数f(x)的图象关于点对称C.函数f(x)在区间上单调递增D.函数y=1与y=f(x)的图象的所有交点的横坐标之和【答案】BCD 【解析】由图可知,A=2,=-=,所以T==π,则ω=2.又2×+φ=π,所以φ=,满足0<|φ|<π,则f(x)=2sin.因为f=-1,所以f(x)的图象不关于直线x =对称.因为f=0,所以f(x)的图象关于点对称.由x∈,得2x+∈,则f(x)在区间上单调递增.由f(x)=2sin=1,得sin=,所以2x+=+2kπ或2x+=+2kπ,k∈Z.取k=0,得x=0或;取k=1,得x=π或.所以函数y=1与y=f(x)的图象的所有交点的横坐标之和为+π+=.故选BCD.三、填空题:本题共4小题,每小题5分,共20分.13.已知2sin θ+3cos θ=0,则tan(3π+2θ)=________.【答案】 【解析】由同角三角函数的基本关系式,得tan θ=-,从而tan(3π+2θ)=tan 2θ===.14.已知扇形弧长为20 cm,圆心角为100°,则该扇形的面积为________cm2.【答案】 【解析】由弧长公式l=|α|r,得r==,所以S扇形=lr=×20×=(cm2).15.(2020年冀州区校级高一期中)已知θ为第二象限角,若tan=,则sin-sin(θ-3π)=________.【答案】 【解析】由tan=,得=,解得tan θ=-.又θ为第二象限角,所以联立解得sin θ=,cos θ=-.所以sin-sin(θ-3π)=-cos θ+sin θ=.16.(2020年洛阳高一期中)已知函数f(x)=sin x+2cos x在x0处取得最小值,则f(x)的最小值为________.【答案】- 【解析】f(x)=sin x+2cos x==sin(x+α),其中cos α=,sin α=,所以当x=2kπ-α-,k∈Z时,函数f(x)取得最小值为-.四、解答题:本题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知函数f(x)=sin-2sin x cos x.(1)求f(x)的最小正周期;(2)当x∈时,求f(x)的值域.解:f(x)=sin-2sin x cos x=-sin 2x=sin 2x-cos 2x-sin 2x=sin.(1)f(x)的最小正周期T==π.(2)因为x∈,所以2x-∈.所以f(x)的值域为.18.已知角α是第三象限角,tan α=.(1)求sin α,cos α的值;(2)求的值.解:(1)tan α==,sin2α+cos2α=1,故或而角α是第三象限角,则sin α<0,cos α<0,故(2)=====.∵tan α=,∴=-3.19.已知函数f(x)=sin2+cos +sin. (1)求f的值;(2)求函数f(x)在上的值域.解:f(x)=sin2+cos+sin=+2sin=-cos+2cos=4cos2-cos-.(1)f=4cos2-cos-=.(2)设t=cos,x∈,所以t∈.则原函数化为g(t)=4t2-t-,t∈,所以f(t)∈.20.已知函数f(x)=sin(π-ωx)cos ωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)将函数y=f(x)图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在区间上的最小值.解:(1)f(x)=sin(π-ωx)cos ωx+cos2ωx=sin ωx cos ωx+=sin 2ωx+cos 2ωx +=sin+.因为ω>0,依题意得=π,所以ω=1.(2)由(1)知f(x)=sin+.由题意,知g(x)=f(2x)=sin+.当0≤x≤时,≤4x+≤,所以≤sin≤1,所以1≤g(x)≤.故函数y=g(x)在区间上的最小值为1.21.已知函数f(x)=cos2x+sincos-(x∈R).(1)求f(x)在区间上的最大值和最小值;(2)若f=,求sin 2α的值.解:f(x)=cos2x+sincos-=+-====sin.(1)因为x∈,所以2x+∈,所以sin∈,则f(x)max=,f(x)min=-.(2)由f=,得sin=,所以sin=.所以sin 2α=cos=1-2sin2=1-2×=.22.已知x0,x0+是函数f(x)=cos2-sin2ωx(ω>0)的两个相邻的零点.(1)求f的值;(2)若关于x的方程f(x)-m=1在x∈上有两个不同的解,求实数m的取值范围.解:(1)f(x)=-=====sin.由题意可知,f(x)的最小正周期T=π,所以=π,所以ω=1.故f(x)=sin.所以f=sin=sin=.(2)原方程可化为×sin=m+1,即2sin=m+1.设y=2sin,0≤x≤,当x=0时,y=2sin=;当x=时,y的最大值为2.要使方程在x∈上有两个不同的解,需使≤m+1<2,即-1≤m<1,所以m∈[-1,1).。

高中数学新教材必修第一册第五章 三角函数 5.1 任意角和弧度制(南开题库详解)

高中数学新教材必修第一册第五章  三角函数 5.1  任意角和弧度制(南开题库详解)

第五章三角函数 5.1 任意角和弧度制一、选择题(共60小题;共300分)1. 下列结论正确的是A. 终边相同的角一定相等B. 轴上的角均可表示为C. 第一象限的角都是锐角D. 钝角一定是第二象限的角2. 如果,,则是A. 第一或第三象限角B. 第一或第二象限角C. 第二或第四象限角D. 第三或第四象限角3. 已知角,的终边相同,那么的终边在A. 轴非负半轴上B. 轴非负半轴上C. 轴非正半轴上D. 轴非正半轴上4. 在半径不等的两个圆内,弧度的圆心角A. 所对弧长相等B. 所对的弦长相等C. 所对弧长等于各自半径D. 所对弦长等于各自半径5. 下列四个选项中,与角终边相同的角是A. B. C. D.6. 与的终边相同的角是A. B. C. D.7. 下列命题正确的是A. 第一象限角一定不是负角B. 小于的角一定是锐角C. 钝角一定是第二象限角D. 终边相同的角一定相等8. 若是第二象限角,则是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角9. 的弧度数是A. B. C. D.10. 已知一个扇形的圆心角的弧度数为,则该扇形的弧长与半径的比等于A. B. C. D.11. 半径为,中心角为的弧长为A. B. C. D.12. 下列各组角中,终边相同的是A. 与,B. 与,C. 与,D. 与,13. 一个扇形的圆心角为,半径为,则此扇形的面积为A. B. C. D.14. 与角终边相同的角是A. B. C. D.15. 圆弧长度等于圆弧所在圆的内接正三角形的边长,则圆弧所对圆心角的弧度数为A. B. C. D.16. 集合中,各角的终边都在A. 轴正半轴上B. 轴正半轴上C. 轴或轴上D. 轴正半轴或轴正半轴上17. 已知扇形的半径为,周长为,则扇形的圆心角等于A. B. C. D.18. 设集合,,那么A. B. C. D.19. 把表示成的形式,使最小的的值是A. B. C. D.20. 设小于的角,锐角,第一象限的角,小于但不小于的角,那么有A. B.C. D.21. 已知为第二象限角,则所在的象限是A. 第一或第二象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限22. 下列命题正确的是A. 第一象限角一定不是负角B. 小于的角一定是锐角C. 钝角一定是第二象限角D. 终边相同的角一定相等23. 将表的分针拨快分钟,则分针旋转过程中形成的角的弧度数是A. B. C. D.24. 将化为弧度为A. B. C. D.25. 是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角26. 对于始边相同的角,下列命题正确的是A. 第一象限角必定为锐角B. 终边相同的角必定相等C. 相等的角,其终边位置必定相同D. 不相等的角,其终边位置必定不同27. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.28. 下列选项中叙述正确的是A. 三角形的内角是第一象限角或第二象限角B. 锐角是第一象限的角C. 第二象限的角比第一象限的角大D. 终边不同的角同一三角函数值不相等29. 与角的终边相同的角是A. B. C. D.30. 角的终边所在的象限是A. 第一象限B. 第二象限C. 第三象限D. 第四象限31. ,则的终边在A. 第一象限B. 第二象限C. 第三象限D. 第四象限32. 已知集合,,则等于A.B.C.D. 或33. 将分针拨慢分钟,则分钟转过的弧度数是A. B. C. D.34. 下列说法正确的是A. 第二象限的角比第一象限的角大B. 若,则C. 三角形的内角是第一象限角或第二象限角D. 不论用角度制还是弧度制度量一个角,它们与扇形所对应的半径的大小无关35. 时钟经过一小时,时针转过了A. B. C. D.36. 若一扇形的圆心角为,半径为,则扇形的面积为A. B. C. D.37. 时钟经过一小时,时针转过了A. B. C. D.38. 已知第一象限角,锐角,小于的角,那么,,之间的关系是A. B. C. D.39. 周长为,圆心角为的扇形面积为A. B. C. D.40. 已知扇形的圆心角为,半径等于,则扇形的弧长为A. B. C. D.41. 在单位圆中,面积为的扇形所对的弧长为A. B. C. D.42. 集合中的角的终边所在的范围(阴影部分)是A. B.C. D.43. 已知扇形的周长是,面积是,则扇形的圆心角的弧度数是A. 或B.C.D.44. 给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;④若,则与的终边相同;⑤若,则是第二或第三象限的角.其中正确命题的个数是A. B. C. D.45. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.46. 已知弧度的圆心角所对的弦长为,则这个圆心角所对的弧长是A. B. C. D.47. 一圆内切于圆心角为,半径为的扇形,则该圆的面积与扇形面积之比为A. B. C. D.48. 中心角为的扇形,它的弧长为,则三角形的内切圆半径为A. B. C. D.49. 若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为A. B. C. D.50. 设集合,,那么A. B. C. D.51. 下列结论中错误的是A. 若,则B. 若是第二象限角,则为第一象限或第三象限角C. 若角的终边过点,则D. 若扇形的周长为,半径为,则其中心角的大小为弧度52. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.53. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.54. 设,下列终边相同的角是A. 与B. 与C. 与D. 与55. 在一块顶角为,腰长为的等腰三角形钢板废料中裁剪扇形,现有如图所示两种方案,则A. 方案一中扇形的周长更长B. 方案二中扇形的周长更长C. 方案一中扇形的面积更大D. 方案二中扇形的面积更大56. 已知第一象限角,锐角,小于的角,那么,,关系是A. B. C. D.57. 设集合,集合,则.A. B. C. D.58. 下列命题中正确的是A. 若,则是第一或第三象限角B. 若,则C. 若,则与的终边相同D. 若角的终边在坐标轴上,则,59. 已知,则是A. 第一象限或第二象限的角B. 第二象限或第四象限的角C. 第一象限或第三象限的角D. 第二象限或第三象限的角60. 若是第二象限角,那么和都不是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角二、填空题(共30小题;共150分)61. 若角,则角的终边在第象限.62. 与角终边相同的角的集合是,它们中最小的正角是,最大的负角是,它们是第象限角.63. 某蒸汽机上的飞轮直径为,每分钟按顺时针方向旋转转,则飞轮每秒钟转过的弧度数是;轮周上的一点每秒钟经过的弧长为.64. 设,且角的终边与角的终边相同,则.65. 如图所示,用集合表示终边在阴影部分的角的集合为.66. 已知扇形的半径为,圆心角为弧度,则该扇形的面积为.67. 有下列四个结论:①角和的终边重合,则,;②角和的终边关于原点对称,则,;③角和的终边关于轴对称,则,;④角和的终边关于轴对称,则,.其中正确的有.(填序号)68. 若是第四象限,则是第象限角.69. 如果把化为(,)的形式,那么,.70. 已知角的终边经过点,且为第三象限角,则的取值范围是.71. 在集合中,属于区间的角的集合是.72. 终边与角的终边互相垂直的角的集合是.73. 若角的终边与角的终边关于直线对称,且,则.74. 已知扇形的面积为,扇形圆心角的弧度数是,那么扇形的周长为.75. 巳知一扇形的圆心角,那么此扇形的面积与其内切圆的面积之比为.76. 如图,已知扇形的圆心角为,半径为,则扇形中所含弓形的面积是.77. 已知扇形的周长为,那么当扇形的半径为时,扇形的面积最大.78. 已知圆心角为的扇形的弧长为,则它的内切圆半径是.79. 若某扇形的面积是,它的周长是,则该扇形圆心角的弧度数为.80. 若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.81. 若将时钟拨慢,则时针转了;若将时钟拨快,则分针转了.82. 下列说法:①终边相同的角一定相等;②第二象限角大于第一象限角;③的角是第一象限角;④小于的角是钝角,直角或锐角.⑤弧度是的圆心角所对的弧;⑥弧度是长度等于半径的圆弧所对圆心角;⑦弧度等于.其中正确的序号为(把正确的序号都写出来).83. 给出下列命题:第二象限角大于第一象限角;三角形的内角是第一象限角或第二象限角;不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;若,则与的终边相同;若,则是第二或第三象限的角.其中不正确的命题是.84. 若扇形的圆心角为,弧长为,则扇形的半径为.85. 如图,点,,是圆上的点,且,,则劣弧的长为.86. ()终边在直线上的角的集合是.()若角的终边与角的终边相同,则在内终边与角的终边相同的角的个数为.87. 用弧度制表示终边在直线上的角的集合是.88. 有下列四个结论:①角和角的终边重合,则,;②角和角的终边关于原点对称,则,;③角和角的终边关于轴对称,则,;④角和角的终边关于轴对称,则,.其中正确的有.(填序号)89. 圆的半径为,为圆周上一点,现将如图放置的边长为的正方形(实线所示,正方形的顶点与点重合)沿圆周逆时针滚动,点第一次回到点的位置,则点走过的路径的长度为.90. 如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为.三、解答题(共10小题;共130分)91. 已知,若的终边与角的终边重合,求角.92. 试求出终边在如图所示阴影区域内的角的集合.93. 已知,求,并指出的终边位置.94. 今天是周日,那天后是周几?过多少天是周二?在数轴上表达:如图,周二是那些天?如何统一表达?95. (1)写出与下列各角终边相同的角的集合,并把中适合不等式的元素写出来:①;②(2)试写出终边在直线上的角的集合,并把中适合不等式的元素写出来.96. 已知扇形的圆心角是,半径是,弧长为.(1)若,,求扇形的面积;(2)若扇形的周长为,求扇形面积的最大值,并求此时扇形圆心角的弧度数.97. 如图,动点,从点出发,沿着圆周做匀速运动.点按逆时针方向每秒转,点按顺时针方向每秒转,求点,第一次相遇时所用的时间及点,各自走过的弧长.98. 己知弦长为,它所对的圆心角,求所夹的扇形面积以及所对的弓形的周长.99. 设是第二象限角,试比较,,的大小.100. 如图,在扇形中,,弧长为,求此扇形内切圆的面积.答案第一部分1. D2. A3. A4. C5. C6. D7. C8. A9. A10. C11. D12. D13. A 【解析】因为扇形的圆心角为,半径为,所以扇形的面积.14. D15. C16. C17. B18. B19. C20. D21. C22. C23. C 【解析】将表的分针拨快应按顺时针方向旋转,为负角.故A、B不正确,又因为拨快分钟,故转过的角的大小应为圆周的 .故所求角的弧度数为 .24. B25. B26. C27. A 【解析】设扇形的弧长为,扇形所在圆的半径为,由题意得解得.扇形28. B29. A30. C【解析】由,知角和角终边相同,在第三象限.31. C32. D33. C【解析】钟表的指针按顺时针方向转动,角为负角..36. B 【解析】,所以扇形37. B 【解析】钟表的指针按顺时针方向转动,角为负角.38. A39. A40. A41. B42. C 【解析】当时,;当时,,应选C.43. A44. A 【解析】由于第一象限角不小于第二象限角,故①错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于,但与的终边不相同,故④错;当,时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.45. A【解析】由题意得解得所以.46. C 【解析】由题设,圆弧的半径,所以圆心角所对的弧长.47. B48. B49. D 【解析】如图,等边三角形是半径为的圆的内接三角形,则线段所对的圆心角,作,垂足为,在中,,,所以,,所以,由弧长公式得.50. B51. C52. B53. B【解析】因为为顶角为,腰长为的等腰三角形,所以,,,所以方案一中扇形的周长,方案二中扇形的周长,方案一中扇形的面积,方案二中扇形的面积.56. B 【解析】因为第一象限角,小于的角,锐角,所以.集合57. D 【解析】集合,所以.58. D 【解析】当时,,但不是第一或第三象限角,所以A不正确;当,时,,所以B不正确;当,时,,但是与的终边不相同,所以C不正确;D 正确.59. C 【解析】提示:由已知,所以,即.故是第一象限或第三象限的角.60. B【解析】因为是第二象限角,所以,,所以,,所以是第一或第三象限角,而是第三象限角,所以是第四象限角.第二部分61. 二62. ;,;,;,三63. ,64.65.【解析】由题图知,终边落在射线上的角为,以为终边的角与角的终边相同,所以终边落在图中阴影部分的角的集合为.66.【解析】根据扇形的弧长公式可得,根据扇形的面积公式可得.67. ①②③④68. 三69. 略,略70.71.72. 略73.74.【解析】设扇形的半径为,则,所以,所以扇形的周长为.75.【解析】设扇形的半径为,内切圆的半径为,则,即.又扇,内切圆,所以扇内切圆.76.【解析】因为扇形(),(),所以弓形扇形().77.【解析】设扇形的圆心角为,半径为,扇形的弧长.因为,,所以扇形当时,扇形的面积最大.78.【解析】如图,设内切圆半径为,则扇形的半径为,扇形弧长,解得.79.【解析】设扇形的半径为,弧长为,由题意知解得所以扇形的圆心角的弧度数为.80.【解析】设圆半径为,则圆内接正方形的对角线长为,所以正方形边长为,所以圆心角的弧度数是.81. ,【解析】将时针拨慢,时针按逆时针方向转动,转过的是正角,转过的度数为.将时针拨快,分针按顺时针方向转动,转过的是负角,转过的度数为.82. ⑥【解析】(1)明确各种角的定义,逐一判断即可.对于①,终边相同的角不一定相等,终边相同的角有无数多个,它们相差的整数倍,故①是错误的;对于②,角是第一象限角,角是第二象限角,,所以②错误;对于③,的角是指的角,其中角不是任何象限的角,为轴线角,故③错误;对于④,小于的角指满足的角,其中也包括负角和零角,故④错误.(2)弧度角的定义:把长度等于半径长的弧所对的圆心角叫做弧度的角.由此可知,只有⑥正确.⑤⑦错误.83.【解析】由于第一象限角不小于第二象限角,故错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故错;正确;由于,但与的终边不相同,故错;当,时既不是第二象限角,又不是第三象限角,故错.综上可知只有正确.84.【解析】由,解得.85.【解析】.86. ,【解析】()在内终边在直线上的角为,所以终边在直线上的角的集合为.()因为,所以,依题意,,所以,所以=,即在内与角的终边相同的角为,,共三个.87.【解析】,,,解得,又,故,,,角为,,.88. ①②③④89. .【解析】每次转动一个边长时,圆心角转过,正方形有边,所以需要转动次,回到起点.在这次中,半径为的次,半径为的次,半径为的次,点走过的路径的长度= + = .90.【解析】设,,由题意知劣弧长为,由于圆的半径为,所以.设,则,,所以的坐标为.第三部分91. 略92. 因为,所以终边在题图所示阴影区域内的角的集合为.93. 略94. 略.95. (1)①,其中适合不等式的元素为:,,;②,其中适合不等式的元素为:,,.(2)终边在直线上的角的集合其中适合不等式的元素为:,.96. (1).(2)由题意知,即,,当时,的最大值为,当时,,.即扇形面积的最大值为,此时扇形圆心角的弧度数为.97. ,得秒,走过的弧长为,走过的弧长为.98. ();().99. 因为是第二象限角,所以,,所以,,所以是第一或第三象限角(如图阴影部分).结合单位圆上的三角函数线可得,(i)当是第一象限角时,,,,从而得;(ii)当是第三象限角时,,,,从而得.综上,当是第一象限角,即,时,;当是第三象限角,即,时,.100. 设扇形的半径为,其内切圆的半径为,由已知得,.又因为,所以.所以内切圆的面积为.。

高中数学新教材必修第一册第五章 三角函数 5.1 任意角和弧度制(南开题库含详解)

高中数学新教材必修第一册第五章  三角函数 5.1  任意角和弧度制(南开题库含详解)

第五章三角函数 5.1 任意角和弧度制一、选择题(共40小题;共200分)1. 下列四个选项中,与角终边相同的角是A. B. C. D.2. 已知一个扇形的圆心角的弧度数为,则该扇形的弧长与半径的比等于A. B. C. D.3. 的弧度数是A. B. C. D.4. 与的终边相同的角是A. B. C. D.5. 把表示成的形式,使最小的的值是A. B. C. D.6. 与角的终边相同的角是A. B. C. D.7. 将化为弧度为A. B. C. D.8. 是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角9. 一个扇形的圆心角为,半径为,则此扇形的面积为A. B. C. D.10. 已知为第二象限角,则所在的象限是A. 第一或第二象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限11. 在单位圆中,面积为的扇形所对的弧长为A. B. C. D.12. 与角终边相同的角是A. B. C. D.13. 下列说法正确的是A. 第二象限的角比第一象限的角大B. 若,则C. 三角形的内角是第一象限角或第二象限角14. 将分针拨慢分钟,则分钟转过的弧度数是A. B. C. D.15. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.16. 已知集合,,则等于A.B.C.D. 或17. ,则的终边在A. 第一象限B. 第二象限C. 第三象限D. 第四象限18. 圆弧长度等于圆弧所在圆的内接正三角形的边长,则圆弧所对圆心角的弧度数为A. B. C. D.19. 时钟经过一小时,时针转过了A. B. C. D.20. 集合中的角的终边所在的范围(阴影部分)是A. B.C. D.21. 下列命题中:①小于的角是锐角,②第二象限角是钝角,③终边相同的角相等,④若与有相同的终边,则必有,正确的个数是A. B. C. D.22. 时钟经过一小时,时针转过了A. B. C. D.23. 设小于的角,锐角,第一象限的角,小于但不小于的角,那么有A. B.C. D.A. 轴正半轴上B. 轴正半轴上C. 轴或轴上D. 轴正半轴或轴正半轴上25. 已知扇形的半径为,周长为,则扇形的圆心角等于A. B. C. D.26. 设集合,,那么A. B. C. D.27. 若一扇形的圆心角为,半径为,则扇形的面积为A. B. C. D.28. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为A. B. C. D.29. 下列结论中错误的是A. 若,则B. 若是第二象限角,则为第一象限或第三象限角C. 若角的终边过点,则D. 若扇形的周长为,半径为,则其中心角的大小为弧度30. 给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;④若,则与的终边相同;⑤若,则是第二或第三象限的角.其中正确命题的个数是A. B. C. D.31. 设集合,集合,则.A. B. C. D.32. 若是第二象限角,那么和都不是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角33. 若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为A. B. C. D.34. 设集合,,那么A. B. C. D.35. 已知扇形的周长是,面积是,则扇形的圆心角的弧度数是A. 或B.C.D.36. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.37. 若角和角的终边关于轴对称,则角可以用角表示为A. B.C. D.38. 设,下列终边相同的角是A. 与B. 与C. 与D. 与39. 中心角为的扇形,它的弧长为,则三角形的内切圆半径为A. B. C. D.40. 一圆内切于圆心角为,半径为的扇形,则该圆的面积与扇形面积之比为A. B. C. D.二、填空题(共40小题;共200分)41. 若是第三象限的角,则是第象限角.42. 若角,则角的终边在第象限.43. 如图,射线绕顶点顺时针旋转到,再逆时针旋转到达,则的度数为.44. 将化为弧度为.45. 若是第四象限,则是第象限角.46. 已知扇形的半径为,圆心角为弧度,则该扇形的面积为.47. 已知角的终边经过点,且为第三象限角,则的取值范围是.48. 若扇形的中心角为,则扇形的内切圆的面积与扇形面积之比为.49. 终边与角的终边互相垂直的角的集合是.50. 某蒸汽机上的飞轮直径为,每分钟按顺时针方向旋转转,则飞轮每秒钟转过的弧度数是;轮周上的一点每秒钟经过的弧长为.51. 与角终边相同的角的集合是,它们中最小的正角是,最大的负角是,它们是第象限角.52. 的角化为角度制的结果为,的角化为弧度制的结果为.53. 已知扇形的周长为,圆心角为弧度,则该扇形的面积为.54. 设,且角的终边与角的终边相同,则.55. 如图所示,用集合表示终边在阴影部分的角的集合为.56. 已知,的终边所在的象限是.57. 有下列四个结论:①角和的终边重合,则,;②角和的终边关于原点对称,则,;③角和的终边关于轴对称,则,;④角和的终边关于轴对称,则,.其中正确的有.(填序号)58. 如果把化为(,)的形式,那么,.59. 在集合中,属于区间的角的集合是.60. 若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是.61. 把写成的形式为.62. 已知圆心角为的扇形的弧长为,则它的内切圆半径是.63. 如图,点,,是圆上的点,且,,则劣弧的长为.64. 如图,已知扇形的圆心角为,半径为,则扇形中所含弓形的面积是.65. 若将时钟拨慢,则时针转了;若将时钟拨快,则分针转了.66. 已知扇形的面积为,扇形圆心角的弧度数是,那么扇形的周长为.68. 巳知一扇形的圆心角,那么此扇形的面积与其内切圆的面积之比为.69. 下列说法:①终边相同的角一定相等;②第二象限角大于第一象限角;③的角是第一象限角;④小于的角是钝角,直角或锐角.⑤弧度是的圆心角所对的弧;⑥弧度是长度等于半径的圆弧所对圆心角;⑦弧度等于.其中正确的序号为(把正确的序号都写出来).70. 给出下列命题:第二象限角大于第一象限角;三角形的内角是第一象限角或第二象限角;不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;若,则与的终边相同;若,则是第二或第三象限的角.其中不正确的命题是.71. 若扇形的圆心角为,弧长为,则扇形的半径为.72. ()终边在直线上的角的集合是.()若角的终边与角的终边相同,则在内终边与角的终边相同的角的个数为.73. 若角的终边与角的终边关于直线对称,且,则.74. 有下列四个结论:①角和角的终边重合,则,;②角和角的终边关于原点对称,则,;③角和角的终边关于轴对称,则,;④角和角的终边关于轴对称,则,.其中正确的有.(填序号)75. 扇形的周长为,若这个扇形的面积为,则圆心角的大小为 .76. 已知扇形的周长为,那么当扇形的半径为时,扇形的面积最大.77. 若某扇形的面积是,它的周长是,则该扇形圆心角的弧度数为.78. 如图,在平面直角坐标系中,一单位圆的圆心的初始位置在,此时圆上一点的位置在,圆在轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为.79. 圆的半径为,为圆周上一点,现将如图放置的边长为的正方形(实线所示,正方形的顶点和点重合)沿着圆周顺时针滚动,经过若干次滚动,点第一次回到点的位置,则点走过的路径的长度为.80. 圆的半径为,为圆周上一点,现将如图放置的边长为的正方形(实线所示,正方形的顶点与点重合)沿圆周逆时针滚动,点第一次回到点的位置,则点走过的路径的长度为.三、解答题(共20小题;共260分)81. 将集合中的角(角度制)在数轴上表达出来,并表示出第一象限角,锐角,负角的区间.82. 今天是周日,那天后是周几?过多少天是周二?在数轴上表达:如图,周二是那些天?如何统一表达?83. 已知角的终边与的终边相同,求在内与终边相同的角.84. 已知,若的终边与角的终边重合,求角.85. 用弧度制表达.写出终边在下列阴影部分内的角的集合(含边界).(1)(2)86. 已知,求,并指出的终边位置.87. 集合,,试确定集合与之间的关系.88. (1)写出与下列各角终边相同的角的集合,并把中适合不等式的元素写出来:①;②(2)试写出终边在直线上的角的集合,并把中适合不等式的元素写出来.89. 试求出终边在如图所示阴影区域内的角的集合.90. 如图,三棱锥内接于一个圆锥(有公共顶点和底面,侧棱与圆锥母线重合).已知,,,,(1)求圆锥的侧面积及侧面展开图的中心角;(2)求经过圆锥的侧面到点的最短距离.91. 如图,动点,从点出发,沿着圆周做匀速运动.点按逆时针方向每秒转,点按顺时针方向每秒转,求点,第一次相遇时所用的时间及点,各自走过的弧长.92. 请回答下列问题:(1)设,,用弧度制表示它们,并指出它们各自所在的象限.(2)设,,用角度制表示它们,并在~的范围内找出终边相同的所有角.93. 己知弦长为,它所对的圆心角,求所夹的扇形面积以及所对的弓形的周长.94. 已知是第二象限的角,求,是第几象限的角.95. 设是第二象限角,试比较,,的大小.96. 如图,在扇形中,,弧长为,求此扇形内切圆的面积.97. 如图所示,点在半径为且圆心在原点的圆上,.点从点出发,依逆时针方向匀速地沿圆周旋转,已知在内转过的角度为,经过到达第三象限,经过后又回到出发点,求,并判断其是第几象限角.98. 已知扇形的圆心角是,半径是,弧长为.(1)若,,求扇形的面积;(2)若扇形的周长为,求扇形面积的最大值,并求此时扇形圆心角的弧度数.99. (1)已知扇形的周长为,面积为,求扇形的圆心角的弧度数.(2)已知扇形的周长为,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?100. 如图,一个扇形的周长为,问它的圆心角取何值时,扇形的面积最大?并求出最大值.答案第一部分1. C2. C3. A4. D5. C6. A7. B8. B9. A 【解析】因为扇形的圆心角为,半径为,所以扇形的面积.10. C11. B12. D13. D14. C15. A【解析】设扇形的弧长为,扇形所在圆的半径为,由题意得解得.扇形16. D17. C18. C19. B 【解析】钟表的指针按顺时针方向转动,角为负角.20. C【解析】当时,;当时,,应选C.21. B22. B 【解析】钟表的指针按顺时针方向转动,角为负角.23. D24. C25. B26. B.27. B 【解析】,所以扇形28. A 【解析】由题意得解得所以.29. C30. A【解析】由于第一象限角不小于第二象限角,故①错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于,但与的终边不相同,故④错;当,时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.集合31. D 【解析】集合,所以.32. B 【解析】因为是第二象限角,所以,,所以,,所以是第一或第三象限角,而是第三象限角,所以是第四象限角.33. D 【解析】如图,等边三角形是半径为的圆的内接三角形,则线段所对的圆心角,作,垂足为,在中,,,所以,,所以,由弧长公式得.34. B35. A36. B37. B38. A39. B40. B第二部分41. 四42. 二43.44.45. 三46.【解析】根据扇形的弧长公式可得,根据扇形的面积公式可得.47.48.49. 略50. ,51. ;,;,;,三52. ,53.【解析】设扇形的半径为,所以,,所以,扇形的弧长为,半径为,扇形的面积为.54.55.【解析】由题图知,终边落在射线上的角为,以为终边的角与角的终边相同,所以终边落在图中阴影部分的角的集合为.56. 一、二象限57. ①②③④58. 略,略59.60.【解析】设圆半径为,则圆内接正方形的对角线长为,所以正方形边长为,所以圆心角的弧度数是.61.62.【解析】如图,设内切圆半径为,则扇形的半径为,扇形弧长,解得.63.【解析】.64.【解析】因为扇形(),(),所以弓形扇形().65. ,【解析】将时针拨慢,时针按逆时针方向转动,转过的是正角,转过的度数为.将时针拨快,分针按顺时针方向转动,转过的是负角,转过的度数为.66.【解析】设扇形的半径为,则,所以,所以扇形的周长为.67.【解析】,,,解得,又,故,,,角为,,.68.【解析】设扇形的半径为,内切圆的半径为,则,即.又扇,内切圆,所以扇内切圆.69. ⑥【解析】(1)明确各种角的定义,逐一判断即可.对于①,终边相同的角不一定相等,终边相同的角有无数多个,它们相差的整数倍,故①是错误的;对于②,角是第一象限角,角是第二象限角,,所以②错误;对于③,的角是指的角,其中角不是任何象限的角,为轴线角,故③错误;对于④,小于的角指满足的角,其中也包括负角和零角,故④错误.(2)弧度角的定义:把长度等于半径长的弧所对的圆心角叫做弧度的角.由此可知,只有⑥正确.⑤⑦错误.70.【解析】由于第一象限角不小于第二象限角,故错;当三角形的内角为时,其既不是第一象限角,也不是第二象限角,故错;正确;由于,但与的终边不相同,故错;当,时既不是第二象限角,又不是第三象限角,故错.综上可知只有正确.71.【解析】由,解得.72. ,【解析】()在内终边在直线上的角为,所以终边在直线上的角的集合为.()因为,所以,依题意,,所以,所以=,即在内与角的终边相同的角为,,共三个.73.74. ①②③④75. 或76.【解析】设扇形的圆心角为,半径为,扇形的弧长.因为,,所以扇形当时,扇形的面积最大.77.【解析】设扇形的半径为,弧长为,由题意知解得所以扇形的圆心角的弧度数为.78.【解析】设,,由题意知劣弧长为,由于圆的半径为,所以.设,则,,所以的坐标为.79.【解析】由题意知,圆的半径,正方形的边长.由图可知,以正方形的边为弦时所对的圆心角为.正方形在圆上滚动时点的顺序依次为如图所示.当点首次回到点的位置时,正方形滚动了圈共次.设第次滚动,点的路程为,则;;;,因此,点所走过的路径的长度为.80. .【解析】每次转动一个边长时,圆心角转过,正方形有边,所以需要转动次,回到起点.在这次中,半径为的次,半径为的次,半径为的次,点走过的路径的长度= + = .第三部分81. 略.82. 略.83. 略84. 略85. (1)略.(2)略.86. 略87. 因为集合表示终边在四个象限的角平分线上角的集合,集合表示终边在坐标轴上(为偶数时)和四个象限的角平分线上(为奇数时)的角的集合,所以.88. (1)①,其中适合不等式的元素为:,,;②,其中适合不等式的元素为:,,.(2)终边在直线上的角的集合其中适合不等式的元素为:,.89. 因为,所以终边在题图所示阴影区域内的角的集合为.90. (1)因为,,,所以为底面圆的直径侧.圆锥的侧面展开图是一个扇形,设此扇形的中心角为,弧长为,则,所以,所以.(2)沿着圆锥的侧棱展开,在展开图中,,,.91. ,得秒,走过的弧长为,走过的弧长为.92. (1),所以在第二象限;,所以在第一象限.(2),与它终边相同的角可表示为,,由,得,所以,,即在~的范围内与终边相同的角是,.同理,在~范围内与终边相同的角是.93. ();().94. ①因为为第二象限角,则,,所以,,所以是第三或第四象限角,以及终边落在轴的非正半轴上的角.②,.令,则,所以为第一象限角.令,则,所以为第二象限角.令,则,所以为第四象限角.所以是第一或第二或第四象限角.95. 因为是第二象限角,所以,,所以,,所以是第一或第三象限角(如图阴影部分).结合单位圆上的三角函数线可得,(i)当是第一象限角时,,,,从而得;(ii)当是第三象限角时,,,,从而得.综上,当是第一象限角,即,时,;当是第三象限角,即,时,.96. 设扇形的半径为,其内切圆的半径为,由已知得,.又因为,所以.所以内切圆的面积为.97. 由题意,有.所以.又,即,所以,且所以或.故或.易知,故当,是第一象限角;当,是第二象限角.98. (1).(2)由题意知,即,,当时,的最大值为,当时,,.即扇形面积的最大值为,此时扇形圆心角的弧度数为.99. (1)设扇形的圆心角的弧度数为,弧长为,半径为.由题意得:解得:,当时,,此时(舍)当时,,此时,∴扇形圆心角的弧度数是.(2)设扇形的圆心角为,半径为,弧长为,面积为,.所以当时,扇形的面积最大,这个最大值是,此时.当它的半径和圆心角分别取和弧度时,才能使扇形的面积最大,最大面积是.100. 设扇形的半径为,则周长,所以..因为,当且仅当,即时等号成立.此时,所以当时,取得最大值为.。

人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)

人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)

一、选择题1.将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图像向左平移π6个单位,则所得图像对应的解析式为( ) A .sin 212y x π⎛⎫=+ ⎪⎝⎭B .sin 212y x π⎛⎫=- ⎪⎝⎭C .sin 26x y π⎛⎫=-⎪⎝⎭ D .sin 212x y π⎛⎫=-⎪⎝⎭ 2.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( )A .5-B .19-C .5 D .193.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进103米后到点E ,测得塔顶的仰角为4θ,则塔高为( )米.A .10B .2C .15D .1524.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43- C .53- D .45-5.若角α的终边过点(3,4)P -,则cos2=α( ) A .2425- B .725 C .2425D .725-6.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ).A .3B .12-C .32D .127.2cos 232cos()4θθθ=-,则sin 2θ=( )A .13B .23C .23-D .13-8.设31cos 29sin 2922a =-,1cos662b -=、22tan161tan 16c =+,则有( ) A .a b c >>B .b c a >>C .c a b >>D .c b a >>9.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若2sin 3α=,则()cos αβ-=( ) A .19B .459C .19-D .459-10.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 14.已知()3sin 23cos sin 1f x x x x =-⋅+,若()32f a =,则()f a -=______.15.角θ的终边经过点(1,P ,则sin 6πθ⎛⎫+= ⎪⎝⎭____________. 16.已知函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π上有且仅有3个极大值点;②()f x 在(0,2)π上有且仅有2个极小值点:③()f x 在(0,2)π上单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中结论正确的是______.(填写所有正确结论的序号).17.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______.18.将函数()cos 2f x x =图象上的所有的点向左平移4π个单位长度后,得到函数g (x )的图象,如果g (x )在区间[0]a ,上单调递减,那么实数a 的最大值为_________. 19.已知tan 34πα⎛⎫+= ⎪⎝⎭,则2sin sin 2αα+=______. 20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.22.已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min7x x π-=,求ϕ的值.23.若函数223sin cos 2cos y x x x =+. (1)求这个函数的单调递增区间.(2)求这个函数的最值及取得最值时的x 集合. 24.已知()()3sin f x x a ωϕ=++0,2πωϕ⎛⎫>< ⎪⎝⎭的图象过点,12a π⎛⎫⎪⎝⎭,且图象的相邻两条对称轴的距离为2π. (1)求函数()f x 的单调区间; (2)若()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为3,求实数a 的值. 25.已知函数()sin (sin 3cos )1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间.26.如图,扇形ABC 是一块半径为2千米,圆心角为60的风景区,P 点在弧BC 上,现欲在风景区中规划三条商业街道,要求街道PQ 与AB 垂直,街道PR 与AC 垂直,线段RQ 表示第三条街道.(1)如果P 位于弧BC 的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ 、PR 、RQ 每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据正弦型函数的图像的变换规律进行求解即可. 【详解】 将函数sin 4y x π⎛⎫=-⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的函数的解析式为:sin 24x y π⎛⎫=- ⎪⎝⎭,将sin 24x y π⎛⎫=- ⎪⎝⎭的图像向左平移π6个单位,得到的函数的解析式为:1sin[]264y x ππ⎛⎫=+- ⎪⎝⎭,化简得:sin 26x y π⎛⎫=- ⎪⎝⎭. 故选:C2.D解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算.【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 3.C解析:C 【分析】由,2,4PCA PDA PEA θθθ∠=∠=∠=,得PDE △是等腰三角形,且可求得230θ=︒,在直角PEA 中易得塔高PA . 【详解】由题知,2CPD PCD DPE PDE θθ∠=∠=∠=∠=∴30PE DE PD CD ==== ∴等腰EPD △的230θ︒=,∴460θ︒= ∴Rt PAE 中,AE =15PA =.故选:C .4.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .5.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.6.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒2=. 故选:C.7.B解析:B 【分析】由二倍角公式和差的余弦公式化简得出()2cos sin 2θθθ-=,再平方即可求出. 【详解】)22cos sin2cos()cos cos sin sin444θθθπππθθθ-=-+()cos sin cos sin2cos sinθθθθθθ+-==-,()2cos sin2θθθ∴-=,两边平方得()241sin23sin2θθ-=,解得sin22θ=-(舍去)或2sin23θ=.故选:B.【点睛】关键点睛:本题考查三角恒等变换的化简问题,解题的关键是能正确利用二倍角公式和差的余弦公式将已知等式化简为()2cos sin2θθθ-=,再平方求解.8.B解析:B【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,ab c,然后由正弦函数的单调性得出结论.【详解】129si sin(6029)si3n29122na =︒-︒=︒=-,b=sin33==︒,2222sin162tan16cos162sin16sin161tan161ccos16sin32os16c===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b<<.故选:B.【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.9.C解析:C【分析】由对称写出两角的关系,然后利用诱导公式和二倍角公式计算. 【详解】由题意2,k k Z αβππ+=+∈,即2k βππα=+-,2221cos()cos(22)cos(2)cos 22sin 12139k αβαπππααα⎛⎫-=--=-=-=-=⨯-=-⎪⎝⎭.故选:C .10.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭.因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 14.【分析】令求出再由奇函数的性质求解【详解】令易证为奇函数所以所以故答案为: 解析:12【分析】令()3sin 23cos sin g x x x x =-⋅,求出()12g a =,再由奇函数的性质求解()f a -. 【详解】令()3sin 23cos sin g x x x x =-⋅,易证()g x 为奇函数.()()312f a g a =+=,所以()12g a =,所以()()()1112f ag a g a -=-+=-+=.故答案为:1215.【分析】利用正弦函数定义求得再由正弦函数两角和的公式计算【详解】由题意所以故答案为:解析:12-【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】 由题意3sin 2θ=-,1cos 2θ=,所以,31sin sin cos 62πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-16.①④【分析】作出函数的图象根据在有且仅有5个零点再逐项判断【详解】如图所示:由图象可知在上有且仅有3个极大值点故①正确;在上可能有3个极小值点故②错误;因为函数在有且仅有5个零点所以解得故④正确;因解析:①④ 【分析】作出函数的图象,根据()f x 在[0,2]π有且仅有5个零点,再逐项判断. 【详解】 如图所示:由图象可知()f x 在(0,2)π上有且仅有3个极大值点,故①正确; ()f x 在(0,2)π上可能有3个极小值点,故②错误;因为函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点,所以2429255πππωω≤<,解得1229510ω≤<,故④正确;因为()0,2x π∈,所以,2555x πππωπω⎛⎫+∈+ ⎪⎝⎭,若()f x 在(0,2)π上单调递增,则252πππω+<,解得320ω<,不符合1229510ω≤<,故③错误;故答案为:①④ 【点睛】关键点点睛:本题的关键是作出函数的图象,根据零点的个数确定ω的范围.17.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 18.【分析】求出的平移后的解析式再利用函数在区间上是单调递减函数从而得到的最大值【详解】由题意将函数的图象向左平移个单位长度得到函数的图象因为函数在区间上是单调递减所以解得所以实数的最大值为故答案为:解析:4π【分析】求出()y g x =的平移后的解析式,再利用函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递减函数,从而得到a 的最大值.【详解】由题意,将函数()cos 2f x x =的图象向左平移4x个单位长度,得到函数()cos 2+n 4si 2g x x x π⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦的图象,因为函数()g x 在区间[0]a ,上是单调递减,所以022a π<≤,解得04a π<≤,所以实数a 的最大值为4π. 故答案为:4π. 19.1【分析】首先根据已知条件求得再结合齐次方程求得【详解】由已知得解得所以故答案为:1解析:1 【分析】首先根据已知条件求得tan α,再结合齐次方程求得2sin sin 2αα+. 【详解】 由已知得1tan 31tan αα+=-,解得1tan 2α=.所以22222211sin 2sin cos tan 2tan 4sin sin 211sin cos tan 114αααααααααα++++====+++. 故答案为:120.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,此时cos 12a ≤≤2cos 2a ≤≤,则1122cos a ≤≤12k ⎡∈⎢⎣⎦;②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即2k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣.【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝, 所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈, 所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 22.(1)37π;(2)14π. 【分析】(1)题意说明周期6T π≥,4x π=是最小值点,由最小值点得ω表达式,由6T π≥得ω的范围,从而得ω的值;(2)()()122f x g x -=∣∣说明()()12,f x g x 中一个对应最大值,一个对应最小值.对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π,由此可得. 【详解】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤.又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min314x x πϕ-+=. 即314714πππϕ=-=.【点睛】关键点点睛:本题考查三角函数的周期,解题关键是由足()()122f x g x -=得出12,x x 是函数的最值点,一个是最大值点,一个是最小值点,由此分析其其差的最小值与周期结合可得结论. 23.(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【分析】(1)根据二倍角公式和辅助角公式化简得2sin 216y x π⎛⎫=++ ⎪⎝⎭,再根据整体代换法求函数的单调递增区间即可;(2)根据三角函数的性质求解即可. 【详解】解:(1)2cos 2cos 2cos 212sin 216y x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, 因为函数sin y x =在区间2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增, 所以222,262k x k k Z πππππ-≤+≤+∈,解得,36k x k k Z ππππ-≤≤+∈,所以函数2cos 2cos y x x x =+的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)由(1)得2sin 216y x π⎛⎫=++ ⎪⎝⎭, 所以函数的最大值为max 3y =,当且仅当22,62x k k Z πππ+=+∈,即:,6x k k Z ππ=+∈时取得;函数的最小值为min 1y =-,当且仅当22,62x k k Z πππ+=-+∈,即:,3x k k Z ππ=-+∈时取得;所以函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【点睛】关键点点睛:本题解题的关键在于根据题意,结合二倍角公式和辅助角公式将已知三角函数表达式化简整理得2sin 216y x π⎛⎫=++ ⎪⎝⎭,考查运算求解能力,是中档题. 24.(1)单调递增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,单调递减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)34. 【分析】(1)根据图象上相邻两条对称轴的距离为2π可知周期为π,可确定2ω=,然后将点,12a π⎛⎫⎪⎝⎭代入求解出ϕ的值,利用整体法求解原函数的单调区间即可. (2)由(1)中的结果可知()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上的单调性,确定出()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上,得到关于a 的方程求解即可. 【详解】(1)由函数()f x 图象的相邻两条对称轴间的距离为2π, 得函数()f x 的最小正周期T π=, ∴22πωπ==.又函数()f x 的图象过点,12a π⎛⎫⎪⎝⎭,∴21212f a a ππϕ⎛⎫⎛⎫=⨯++=⎪ ⎪⎝⎭⎝⎭, ∴sin 2012πϕ⎛⎫⨯+= ⎪⎝⎭,6k πϕπ+=.∵||2ϕπ<,∴6πϕ=-,则()26f x x a π⎛⎫=-+ ⎪⎝⎭.令222262k x k πππππ-≤-≤+,解得63x k πππ-≤≤+,()k ∈Z ,3222262k x k πππππ+≤-≤+, 解得536k x k ππππ+≤≤+,()k ∈Z ∴函数()f x 的单调递增区间为,()63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,单调递减区间为5,(k )36k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)由(1)知,函数()f x 在,123ππ⎡⎤-⎢⎥⎣⎦上单调递增,在,32ππ⎛⎤⎥⎝⎦上单调递减,又3122f a π⎛⎫-=-+ ⎪⎝⎭,3f a π⎛⎫= ⎪⎝⎭,22f a π⎛⎫=+ ⎪⎝⎭,∴()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为32a a -++=∴34a =. 【点睛】本题考查三角函数图象性质的综合应用,解答时只要方法如下:(1)求解三角函数单调区间时一般采用整体代换法,将自变量部分的代数式当做一个整体,利用正弦函数、余弦函数的单调性列出不等式求解即可;(2)求解三角函数在某固定区间上的最值或值域时,关键是分析清楚原函数在所给区间上的单调性,利用单调性确定取得最大值或最小值的点,确定最值;也可以采用换元法,将函数()sin y A ωx φ=+的最值转化为求sin y A t =的最值问题,只需根据格据正弦函数的图像性质确定即可. 25.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==,(2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.26.(1)2+(千米);(2). 【分析】(1)根据P 位于弧BC 的中点,则P 位于BAC ∠的角平分线上,然后分别在,,Rt APQ Rt APR 正AQR 中求解.(2)设PAB θ∠=,060θ<<︒,然后分别在,Rt APQ Rt APR 表示 PQ ,PR ,在AQR 中由余弦定理表RQ ,再由300200400W PQ PR RQ =⨯+⨯+⨯求解.【详解】(1)由P 位于弧BC 的中点,在P 位于BAC ∠的角平分线上, 则1||||||sin 2sin30212PQ PR PA PAB ==∠=⨯︒=⨯=,||cos 2AQ PA PAB =∠== 由60BAC ∠=︒,且AQ AR =,∴QAR 为等边三角形,则||RQ AQ ==三条街道的总长||||||112l PQ PR RQ =++=++ ; (2)设PAB θ∠=,060θ︒<<︒, 则sin 2sin PQ AP θθ==,PR AP =()()sin 602sin 603cos sin θθθθ-=-=-, cos 2cos AQ AP θθ==,||||cos(60)2cos(60)cos AR AP θθθθ=-=-=+,由余弦定理可知:2222cos60RQ AQ AR AQ AR =+-,22(2cos )(cos )22cos (cos )cos 603θθθθθθ=+-⨯+=,则|RQ =设三条街道每年能产生的经济总效益W ,300200400W PQ PR RQ =⨯+⨯+⨯,3002sin sin )200θθθ=⨯+-⨯+,400sin θθ=++200(2sin )θθ=++)θϕ=++tan ϕ=,当()sin 1θϕ+=时,W 取最大值,最大值为 【点睛】方法点睛:解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档