四边形的性质
四边形性质

四边形性质定义:平行四边形:两组对边分别平行的四边形是平行四边形.矩形:有一个内角是直角的平行四边形是矩形.菱形:有一组邻边相等的平行四边形叫做菱形.正方形:有一组邻边相等的矩形叫做正方形梯形:一组对边平行且另一组对边不平行的四边形是梯形等腰梯形;对角线相等的梯形是等腰梯形.1、多边形的内外角和与外角和n边形内角和等于(n-2)·180°;任意多边形的外角和都等于360°.2、中心对称图形(1)如果一个图形绕着它的中心点旋转180°后能与原图形重合,那么这个图形叫做中心对称图形,这个中心点叫做对称中心。
(2)图形上对称点的连线被对称中心平分;O EDC BA练习:1.在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:B .1:2:2:1C .1:1:2:2D .2:1:2:12.□ABCD 的周长为36 cm ,AB =75BC ,则较长边的长为( ) A .15 cm B .7.5 cm C .21 cm D .10.5 cm 3.以不在一条直线上的三点A 、B 、C 为顶点的平行四边形共有( )A.1个B.2个C.3个D.4个 4.菱形的周长为12 cm ,相邻两角之比为5∶1,那么菱形对边间的距离是( )A.6 cmB.1.5 cmC.3 cmD.0.75 cm 5.菱形的边长是2 cm ,一条对角线的长是23 cm,则另一条对角线的长是( )A. 4 cmB.3 cmC.2 cmD.32 cm6.四边形的四个内角的度数比是2∶3∶3∶4,则这个四边形是( )A.等腰梯形B.直角梯形C.平行四边形D.不能确定7.在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于E ,且AE =AD ,BC =3AD ,则∠B 等于( )A.30°B.45°C.60°D.135° 8.菱形、矩形、正方形既是中心对称图形,又是轴对称图形,它们的对称中心只有一个,而对称轴的个数依次是( )A .1,1,1B .2,2,2C .2,2,4D .4,2,49.四边形ABCD 中,AD =BC ,BD 为对角线,∠ADB =∠CBD ,则AB 与CD 的关系是_______ 10.在□ABCD 中,∠A +∠C =270°,则∠B =______,∠C =______.11.若菱形的两条对角线的比为3∶4,且周长为20 cm,则它的一组对边的距离等于_______cm,它的面积等于______ cm 2.12.E 是正方形ABCD 内一点,如果△ABE 为等边三角形,那么∠DCE= ; 13.已正方形的边和长为a ,则对角线长为 ;若已知正方形的一条对角线是b ,则边长为 ; 14.已知矩形的周长为72cm,一边中点与对边的两个端点连线的夹角为直角,则此矩形的长边长为________ cm,短边长为___________ cm.15.矩形ABCD 的对角线AC 的垂直平分线与边AD,BC 分别交于E,F,则四边形AFCE 是____________. 16.在梯形ABCD 中,AD ∥BC ,∠B =90°,∠C =45°,CD =10 cm ,BC =2AD ,则梯形的面积为_______. 17.已知六边形ABCDEF 是中心对称图形,AB =1,BC =2,CD =3,那么EF =_______. 18.若一个多边形的内角和为1080°,则这个多边形的边数是_____________.19.如果一个多边形的每个内角都相等,且每个内角是它邻补角的一半,则它的边数是_____. 20.每个内角都比外角大36°的多边形是___________边形.21.在梯形ABCD 中,AD ∥BC ,AC ⊥BD ,若AD =2,BC =8,BD =6,求:(1)对角线AC 的长;(2)梯形ABCD 的面积.22.如图4.4-3,在矩形ABCD 中,AE ⊥BD 于E,∠DAE:∠EAB=3:1,求∠EAC 的度数.23.如图,已知□ABCD 中,点E 、F 分别在AD 、BC 上,且EF 垂直平分对角线AC ,垂足为O ,求证:四边形AECF 是菱形。
四边形的性质

四边形的性质四边形是指有四条边的几何图形。
它具有一些固有的性质和特征,这些特征决定了四边形的形状和结构。
在本文中,我们将讨论四边形的一些基本性质。
1. 四边形的定义四边形是由四条线段组成的图形。
它的特点是有四个顶点、四条边和四个内角。
四边形的各个顶点和边可以组成不同的形状,如矩形、正方形、平行四边形等。
2. 内角和外角的性质四边形的内角和外角具有特定的性质。
任意四边形的内角之和是360度。
也就是说,四边形的四个内角相加等于360度。
此外,四边形的外角之和也是360度,这意味着四边形的四个外角相加等于360度。
3. 对角线的性质四边形的对角线是连接四边形的两个不相邻顶点的线段。
它具有一些重要的性质。
首先,对角线的个数取决于四边形的类型。
对于一般的四边形,有两条对角线;矩形和正方形有两条相等且互相平分的对角线;平行四边形有一条对角线将其分为两个全等的三角形。
4. 平行四边形的性质平行四边形是特殊的四边形,它有一些独特的性质。
首先,平行四边形的对边是平行且相等的。
其次,平行四边形的内角相邻补角相等。
最后,平行四边形的对角线相交于一点,并且这个点将对角线平分。
5. 矩形的性质矩形是一种特殊的平行四边形。
它具有许多独特的性质。
首先,矩形的对边是平行且相等的。
其次,矩形的内角都是直角(90度)。
第三,矩形的对角线长度相等,且相互平分。
6. 正方形的性质正方形是矩形的一种特殊情况。
它具有所有矩形的性质,并且具有一些额外的性质。
首先,正方形的四条边和四个内角都是相等的。
其次,正方形的对角线长度相等且相互平分。
第三,正方形的每条对角线垂直平分另一条对角线。
总结:四边形是由四条边组成的几何图形,具有多种形状和结构。
通过研究四边形的性质,我们了解到四边形的内角和外角性质,对角线的特征,以及平行四边形、矩形和正方形这些特殊类型的四边形所具有的独特性质。
在几何学中,四边形是一个重要的概念,它在我们的日常生活和实际应用中得到广泛的应用。
四边形性质及应用

四边形性质及应用四边形是平面几何学中的基本图形之一,它由四条线段组成,这四条线段依次连接起来形成一个封闭的图形。
四边形广泛应用于建筑设计、地理测量、计算机图形学等领域。
它具有以下特点和性质:1. 边的性质:四边形有四条边,它们可以是直线段,也可以是曲线段。
四边形的边有两对对边,即相对的两条边平行且长度相等,正是由于这一性质,四边形在实际应用中具有较好的稳定性。
2. 角的性质:四边形有四个角,它们的和为360度。
而对边角是相等的,即相对的两个角的度数相等,同时曲线边所围的角是该曲线的内角,而直线边所围的角是该直线的外角。
3. 对角线的性质:四边形拥有两条对角线,它们互相交于一点,且这个交点将对角线划分为相等的两部分。
同时,对角线的长度关系也具有一定的规律,对角线之和大于两条非对角线之和。
4. 类型和特殊形状:四边形可以根据其边和角的性质分为不同的类型,常见的有四边形、平行四边形、矩形、菱形、正方形等。
每种特殊形状都有其独特的性质和应用场景。
在实际应用中,我们可以利用四边形的性质进行各种计算和测量,如测量建筑物的面积、计算电子屏幕的尺寸、设计桥梁和道路等。
下面是一些具体的应用案例:1. 建筑设计:在建筑设计中,我们经常会用到四边形的性质来计算建筑物的面积和体积。
例如,我们可以利用平行四边形的性质来计算一个房间的地板面积,或者利用矩形的性质来计算一个建筑物的体积。
2. 地理测量:在地理测量中,四边形也经常被用来进行测量和计算。
例如,我们可以利用四边形的对角线性质来计算一个地块的面积,或者利用正方形的性质来测量一个城市的面积。
3. 计算机图形学:在计算机图形学中,四边形是绘制图形的基本元素之一。
我们可以利用四边形的性质来绘制各种形状和图案,同时还可以利用四边形的平行性质来进行图形的变换和对称操作。
4. 组合数学:在组合数学中,四边形也是一个重要的研究对象。
例如,我们可以研究四边形的不同类型和组合方式,来解决一些组合计数问题或图论问题。
四边形知识点

四边形知识点四边形是平面几何中的一个重要概念,它具有许多特征和性质。
在本文中,我们将一步一步地介绍四边形的定义、分类和相关性质。
让我们开始吧!什么是四边形?四边形是指一个有四条边的平面图形。
它由四条线段连接的四个顶点组成,并且每个顶点都与相邻的两个顶点通过一条边相连。
四边形是平面几何中最简单的多边形之一,也是许多更复杂形状的基础。
四边形的分类四边形可以根据其边长、角度和对称性进行分类。
下面是常见的四边形分类:1.矩形:具有四条相等的边和四个直角的四边形。
矩形是一种特殊的正方形,其对角线相等且互相平分。
2.正方形:具有四条相等的边和四个直角的四边形。
正方形是一种特殊的矩形,其对角线相等且互相平分。
3.平行四边形:具有对边平行的四边形。
它的对边长度相等,且对边之间的夹角相等。
4.长方形:具有对边平行且相等的四边形。
长方形也是一种特殊的平行四边形,其所有角都是直角。
5.梯形:具有两条平行边的四边形。
梯形的非平行边可以是不等长的。
6.菱形:具有四条相等的边的四边形。
菱形的对角线相互垂直且互相平分。
四边形的性质四边形有许多有趣的性质,下面是一些常见的性质:1.内角和:四边形的内角和等于360度。
2.对角线:四边形的对角线是相邻顶点之间的直线段。
对角线可以相互平分,并且它们的交点将四边形分割成两个三角形。
3.邻边夹角:相邻边之间的夹角的和等于180度。
4.对边平行:平行四边形的对边是平行的。
5.对边长度:矩形和正方形的对边长度相等。
如何计算四边形的面积?根据四边形的类型,我们可以使用不同的方法来计算其面积:•矩形和正方形的面积等于两条相邻边的乘积。
•平行四边形的面积等于底边乘以高度。
•梯形的面积等于上底与下底的平均值乘以高度。
•菱形的面积等于对角线的乘积的一半。
总结四边形是平面几何中重要的概念,具有丰富的性质和分类。
通过学习四边形的定义、分类和性质,我们可以更好地理解几何形状和计算其面积。
希望本文能帮助您深入了解四边形知识点,并在几何学习中发挥作用!。
四边形的性质和分类

四边形的性质和分类四边形是指拥有四条边的几何图形。
在几何学中,对于四边形的性质和分类进行了广泛的研究,以便更好地理解和应用这一几何形状。
一、四边形的基本性质四边形的基本性质包括以下几个方面:1. 四边形的边数和顶点数:四边形有四条边和四个顶点。
2. 内角和:四边形的内角和等于360度。
这意味着四边形的四个内角相加等于一个圆的全角。
3. 对角线:四边形内部可以通过连接非相邻顶点得到两条对角线。
对角线的性质包括两对相对的边相交于一点,以及对角线长度相等的对称性。
4. 边长关系:四边形的边长可能相等,也可能各异。
二、四边形的分类根据不同的属性和特点,我们可以将四边形分为以下几类:1. 矩形:矩形是一种特殊的四边形,其四个内角均为直角(90度),且相对边长度相等。
矩形的对角线相等且相互平分。
2. 正方形:正方形也是一种特殊的四边形,具有矩形的所有性质,并且四条边长度相等。
3. 平行四边形:平行四边形的对边是平行的,它的对角线互相平分。
4. 梯形:梯形具有一对并不平行的边,其它两边是平行的。
5. 菱形:菱形的所有边都相等,但对角线并不相等。
6. 不规则四边形:不规则四边形指的是没有特殊性质的四边形,边长和角度均可以各异。
三、应用和重要性四边形在几何学中具有重要的应用价值和意义。
首先,四边形是计算面积的基本形状之一。
不同种类的四边形可以有不同的计算公式来求解面积,比如矩形的面积为长乘以宽。
其次,四边形的性质在建筑、工程和设计领域有重要的应用。
例如,在建筑设计中,规划师需要合理布局四边形的空间,以满足不同的功能和需求。
此外,四边形还与其他几何形状存在紧密的关联,在解决几何问题时起到桥梁作用。
总结:综上所述,四边形作为一种常见的几何形状,在几何学中具有重要的地位。
通过了解四边形的基本性质和分类,我们能够更好地理解和应用这一形状,从而在解决几何问题或应用领域中得到准确而切实的结果。
四边形的性质与定理

四边形的性质与定理四边形是由四条边和四个角构成的几何图形,它是我们学习几何学的基础。
在这篇文章中,我们将探讨四边形的性质与定理,以便更好地理解和应用它们。
一、四边形的基本性质1. 四边形的定义:四边形是由四个线段组成的几何图形。
2. 四边形的特点:四边形的相邻边不重合,相邻边之间有一个共同的端点。
3. 四边形的对角线:四边形有两条对角线,对角线是连接四边形的非相邻顶点的线段。
4. 四边形的内角和定理:四边形的内角和等于360度。
即四边形的四个内角之和等于360度。
二、四边形的分类四边形可分为以下几类:1. 矩形:具有四个直角(90度)的四边形。
矩形的对角线相等且相互平分。
2. 正方形:具有四个相等边和四个直角的四边形。
正方形的对角线相等且相互平分。
3. 平行四边形:具有两组平行边的四边形。
平行四边形的对角线不相等且相互平分。
4. 菱形:具有相等边长的平行四边形。
菱形的对角线互相垂直且相互平分。
三、四边形的定理1. 矩形的性质与定理:(1)矩形的对角线相等且相互平分。
(2)矩形的四个角都是直角。
(3)矩形是菱形,但菱形不一定是矩形。
(4)矩形的对角线相交于两个等分角。
2. 平行四边形的性质与定理:(1)平行四边形的对边相等且对角线不相等。
(2)平行四边形的对角线相交于两个等分角。
(3)平行四边形的相邻内角互补。
(4)平行四边形的两组对角线互相垂直。
3. 菱形的性质与定理:(1)菱形的四个边相等。
(2)菱形的对角线互相垂直。
(3)菱形的对角线相互平分。
(4)菱形的每个内角是直角的,所以是矩形。
4. 正方形的性质与定理:(1)正方形是矩形,所以具有矩形的所有性质与定理。
(2)正方形的四个边相等。
(3)正方形的四个角都是直角。
(4)正方形的对角线相等且互相平分。
综上所述,四边形具有丰富的性质与定理,熟练掌握四边形的性质与定理对于几何学的学习与应用至关重要。
通过理解四边形的分类与特点,我们能够更好地解决与四边形相关的问题,并在实际生活中运用几何学知识解决实际问题。
平面几何中的四边形性质及其分类

平面几何中的四边形性质及其分类四边形是平面几何中常见的多边形形状,具有许多独特的性质和分类。
本文将探讨四边形的性质及其分类,帮助读者更好地理解和应用平面几何中的四边形。
一、四边形的定义四边形是由四条线段组成的多边形,其特点是有四条边、四个顶点和四个内角。
四边形的边可以是直线段,也可以是弧线段。
二、四边形的性质1. 内角和四边形的内角和等于360度。
即四个内角的度数之和为360度。
这是四边形性质中一个重要的基本原理。
2. 对角线四边形的对角线是连接四边形的非相邻顶点的线段。
四边形有两条对角线。
通过对角线,我们可以进一步研究四边形的性质。
3. 等边四边形若四边形的四条边长相等,则该四边形是等边四边形。
等边四边形的特点是四条边长相等,且四个内角的度数也相等,均为90度。
4. 等腰四边形若四边形的两对对边相等,则该四边形是等腰四边形。
等腰四边形的特点是两对对边的长度相等,且相对的内角也相等。
5. 直角四边形若四边形的一对对边为垂直线段,则该四边形是直角四边形。
直角四边形的特点是其中两个相邻内角为直角,即度数为90度。
6. 平行四边形若四边形的对边互相平行,则该四边形是平行四边形。
平行四边形的特点是其中两对对边互相平行。
7. 矩形矩形是一种特殊的平行四边形,其特点是四个内角均为直角。
矩形的对边相等且平行,具有对角线对称性。
8. 菱形菱形也是一种特殊的平行四边形,其特点是四条边长相等且对角线互相垂直。
菱形具有对角线对称性,两条对角线相等且平分对角。
9. 平行四边形的应用平行四边形广泛应用于几何证明和计算中,如面积计算、直角判定等。
其性质的应用可以帮助我们解决许多几何问题。
三、四边形的分类根据四边形的不同性质和特点,我们可以将四边形分为不同的分类。
主要的分类有:1. 根据边长:等边四边形、等腰四边形、普通四边形。
2. 根据角度:直角四边形、钝角四边形、锐角四边形。
3. 根据对边关系:平行四边形、矩形、菱形。
这些分类有助于我们更好地理解和运用四边形的性质。
四边形的性质和分类

四边形的性质和分类四边形是一种几何图形,由四条边和四个顶点组成。
在数学中,四边形有着丰富的性质和分类。
本文将介绍四边形的基本定义、性质和常见分类。
一、四边形的基本定义四边形是由四条线段相连组成的几何图形。
它的特点是具有四个内角和四个外角。
四边形的边相交于顶点,形成内角,而顶点和顶点之间的直线形成外角。
二、四边形的性质1. 内角和四边形的内角和等于360度。
也就是说,四边形的四个内角之和始终为360度。
这一性质可以通过将四边形划分成两个三角形来证明。
因为三角形的三个内角和等于180度,所以两个三角形的内角和加起来等于360度。
2. 对角线四边形的对角线是连接非相邻顶点的线段。
对角线有两条,它们分别把四边形分成两个对称的三角形。
对角线的长度可以通过使用勾股定理来计算。
3. 相邻角四边形的相邻角是指共享一条边的两个角。
相邻角的和等于180度,即补角。
这一性质也可以通过将四边形划分成两个三角形来证明。
4. 平行四边形平行四边形是指具有两组平行边的四边形。
它的对边长度相等,对角线相互平分,并且内角相互补角。
平行四边形是四边形中最基本的形式之一。
5. 矩形矩形是一种特殊的平行四边形,它的所有内角都是直角,即90度。
矩形的对边相等且平行,对角线长度相等。
矩形是一种常见的四边形,也是我们日常生活中最常见的几何形状之一。
6. 正方形正方形是一种特殊的矩形,它的所有边和内角都相等。
正方形也是一种特殊的菱形,具有对角线相等且互相垂直的性质。
正方形是对称性最好的四边形,具有许多特殊性质,如面积和周长的关系等。
三、四边形的分类根据四边形的性质和特点,我们可以将其分为以下几类:1. 平行四边形平行四边形具有平行的边和相等的对角线。
常见的平行四边形有矩形、正方形、菱形等。
2. 等腰四边形等腰四边形具有两对相等的边。
根据内角的不同,等腰四边形又可分为等腰梯形、等腰平行四边形等。
3. 等边四边形等边四边形的四条边都相等。
正方形是一种特殊的等边四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.一个正多边形的内角和为720°,则这个正多边形Байду номын сангаас每一个内角等于_______.
6.在正方形ABCD的边BC的延长线上取一点E,使EC=AC,连结AE交CD于F,那么∠AFC等于_______;若AB=2,那么△ACE的面积为_______.
A.三角形B.四边形
C.五边形D.六边形
二、填空题:
1、已知矩形ABCD的一条对角线AC=12cm,则另一条对角线BD=________。
2.矩形的两条对角线的夹角为60,一条对角线与短边的和为15厘米,则短边长为_______________。
3.若四边形四个内角的比为3:4:5:6,则最小的内角为_______________
7.菱形的周长为40cm,两个相邻内角的度数的比为1:2,则菱形的面积为_______.
8.如下图,梯形ABCD中,AB∥CD,AD=BC=DC,∠A=45°,DE⊥AB于E,且DE=1,那么梯形ABCD的周长为_______,面积为_______.
9.如下图,在梯形ABCD中,AD∥BC,∠ABC=90°,△BCD为正三角形,BC=8cm,则梯形ABCD的面积等于_______.
(4)如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;
(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;
(6)如果再加上条件“ ”,那么四边形ABCD一定是平行四边形;
其中正确的说法有()
A、3个B、4个C、5个D、6个
例2、在 中,AB=AC,点P是BC边上的任意一点,PE∥AC,PE∥AB,分别交AB,AC于E,F,则线段PE,PF,AB之间有什么关系?说明你的结论。
(3)两组对边分别相等的四边形是平行四边形。
(4)两组对角分别相等的四边形是平行四边形。
菱形:
1、定义:一组邻边相等的平行四边形叫做菱形。
2、性质:具有平行四边形的一切性质;菱形的四边形相等;菱形的对角线互相垂直平分,每一条对角线平分一组对角;菱形是轴对称图形。
菱形的判别方法:
(1)一组邻边相等的平行四边形是菱形。
四边形的性质
知识要点归纳:
平行四边形:
1、定义:两组对边分别平行的四边形叫平行四边形。
2、表示方法:若四边形ABCD是,平行四边,则记作“ ABCD”,读作平行四边形ABCD。
3、平行四边形不相邻的两个顶点连成的线段叫它的对角线
4、平行四边形相对的边称为对边,相对的角称为对角
5、平行四边形的性质:
(1)平行四边形两组对边分别平行。
例3、已知 的边,AB=3,AC=6,求BC边上的中线AD的取值范围。
例4、如图,D为等腰直角△ABC的直角边BC上的一点,AD的垂直平分线EF分别交AC, AD, AB于F, O, E,BC=2,若四边形AEDF为菱形,求CD的长.
例5、在菱形ABCD中,E和F分别是BC和CD上的点,且CE=CF。
(A)1 (B)180° (C)360° (D)以上都不对
11、如图,已知平行四边形ABCD中,对角线AC、BD交于点O,过点O的直线分别交AD、BC于E、F,则图中的全等三角形 共有( )
(A)2对 (B)4对 (C)6对 (D)8对
14.已知一个多边形的内角和等于它的外角和,则这个多边形是( )
(2)对角线互相垂直的四边形是菱形。
(3)四条边都相等的四边形是菱形。
矩形:
1、定义:有一个是直角的平行四边形叫做矩形。
2、性质:矩形具有平行四边形的一切性质;矩形的对角线相等;矩形的四个角都是直角;矩形是轴对称图形,有两条对称轴。
3、矩形的判别方法:
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
9.如图,矩形ABCD沿AE折叠,使D点落在BC边上的F处,如果∠BAF=60°,
则∠DAE=()
(A)15°(B)30°(C)45°(D)60°
10.将一矩形纸片对折后再对折,如图(1)、(2),然后沿图(3)中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形一定是().
(A)平行四边形(B)矩形(C)菱形(D)正方形
(3)对角线相等的平行四边形是矩形。
正方形:
1、定义:一组邻边相等的矩形叫做正方形。
2、正方形性质:
(1)正方形具有平行四边形、矩形、菱形的一切性质;
(2)边----四边相等、邻边垂直、对边平行。
(3)角----四个角都是直角。
(4)对角线:①相等;②互相垂直平分;③每条对角线平分一组对角。
(5)是轴对称图形,有4条对称轴。
(2)请你利用,在设计一个能求 的值的几何图形。
例10、为等腰三角形,AB=AC,CD AB于D,P为BC上任意一点,过P作PE AB,PF AC,垂足为E,F,则PE+PF=CD,说说你的理由。
例11、梯形ABCD中,AD∥BC, ,AD=24cm,BC=26cm,动点P从点A开始沿AD边向D以1cm/s的速度运动,动点Q从C开始沿CB边向B以3cm/s的速度运动,P,Q分别从点A,C同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动的时间为t s,当t分别为何值时,四边形PQCD平行四边形,等腰梯形。
A.bc-ab+ac+c2B.ab-bc-ac+c2
C.a2+ab+bc-acD.b2-bc+a2-ab
7.如图,周长为68的矩形ABCD被分成了7个全等的矩形,则矩形ABCD的面积为( )
A.98B.196C.280D.284
8.以下四边形中,既是轴对称图形又是中心对称图形的是( )
A.平行四边形B.等腰三角形C.梯形D.正方形
(1)相等的梯形是等腰两腰;
(2)同一底上的两个内角相等的梯形是等腰梯形。
(3)对角线相等的梯形是等腰梯形。
多边形:
1、定义:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形;
2、多边形的内角定理:
n边形的内角和等于(n-2) ,其中n ,且n为正整数。
3、多边形的外角定理:多边形的外角和都等于 。
3、在梯形ABCD中,AD∥BC,对角线AC BD,且AC=6cm,BD=12cm,则梯形中位线的长等于()
A、7.5cmB、7cmC、6.5 cmD、6cm
作业:
一、选择题
1、关于四边形ABCD:①两组对边分别平行②两组对边分别相等③有两组角相等④对角线AC和BD相等以上四个条件中,可以判定四边形ABCD是平行四边形的有()A.1个B.2个C.3个D.4个
(1)说明 ;(2)过点C作CG∥EA交AF于H,交AD于G,若 , ,求 的度数。
例6、在边长为6cm的菱形ABCD中, ,点E为AB的中点,点F是AC上的一动点,求EF+BF的最小值。
例9在学生活动中,小明为了求 的值(结果用n表示),设计如图所示的几何图形。
(1)请你利用这个几何图形求 的值;
例12、等腰直角三角形 中,O是斜边AC的中点,P是斜边AC上的一个动点,D为BC上的一点,且PB=PD,DE AC,垂足为点E.求证:PE=BO.
例13、正方形ABCD中, 的平分线交BC于点F,DE AF,分别交AC、AF、AB于点G、H、E,O是对角线AC与BD的交点。求证;BE=2OG.
例14、知:直角梯形ABCD中,DC∥AB, ,EF是中位线,且CE EB,EG BC(G是垂足)。求证:(1) ;(2)当 时,
三、解答题:
1、如图,已知□ABCD中,点E、F分别在AD、BC上,且EF垂直平分对角线AC,垂足为O,求证:四边形AECF是菱形。
2.如图,正方形纸片ABCD的BC边上有一点E,AE=10㎝.若把纸片沿AE的中垂线折叠,使点E与点A重合,你能求出纸片上折痕MN的长吗?解释你的方法.
3.如图,正方形ABCD的对角线相交于点O,点O是正方形A′B′C′O的一个顶点,如果两个正方形的边长相等,那么正方形A′B′C′O绕点O无论怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的四分之一,你能说明这是为什么吗?
11、下列正多边形中,能够铺满地面的正多边形有()
(1)正六边形(2)正方形(3)正五边形(4)正三角形
A、1种B、2种C、3种D、4
12、如果一个四边形绕对角线的交点旋转90°,所得的图形与原来的图形重合,那么这个四边形是( )
A、平行四边形 B、矩形 C、菱形 D、正方形
13、(n+1)边形的内角和比n 边形的内角和大( )
2、梯形的分类:
a、梯形
b、特殊梯形:
①直角梯形:一条腰和底垂直的梯形叫直角梯形
②等腰梯形:两腰相等的梯形叫等腰梯形。
3、等腰梯形性质:
(1)等腰梯形两腰相等,两底平行;
(2)等腰梯形同一底上的两个内角相等,对角线相等。
(3)等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴。
4、等腰梯形的判别方法:
3、中心对称图形的基本性质:
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
4、中心对称图形与轴对称图形的关系:
(1)区别:中心对称图形是旋转对称图形的特例,是将原图形绕某点旋转 ,旋转前后能重合,而轴对称图形沿某一直线折叠(即翻转 ),直线两旁部分能重合。
(2)联系:都是指一个图形,变换后的结果都是自己的一半与另一半重合。
典型例题
例1、在四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法:
(1)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;