2018-2019学年高中数学苏教版选修2-2教学案:第2章 章末小结 知识整合与阶段检测

合集下载

2018-2019学年高二数学苏教版选修2-2课件:第2章 章末小结 知识整合与阶段检测

2018-2019学年高二数学苏教版选修2-2课件:第2章 章末小结 知识整合与阶段检测

二、直接证明和间接证明 1.直接证明包括综合法和分析法: (1)综合法是“由因导果”.它是从已知条件出发,顺 着推证,用综合法证明命题的逻辑关系是:A⇒B1⇒B2⇒… ⇒Bn⇒B(A 为已经证明过的命题,B 为要证的命题).它的 常见书面表达是“∵,∴”或“⇒”.
(2)分析法是“执果索因”,一步步寻求上一步成立的 充分条件.它是从要求证的结论出发,倒着分析,由未知 想需知,由需知逐渐地靠近已知(已知条件,包括学过的定 义、定理、公理、公式、法则等).用分析法证明命题的逻 辑关系是:B⇐B1⇐B2⇐…⇐Bn⇐A.它的常见书面表达是“要 证……只需……”或“⇐”.
答案:F+V-E=2
7.由“正三角形的内切圆切于三边的中点”,可类比猜想出 正四面体的一个性质为________. 解析:正三角形的边对应正四面体的面,即正三角形所在 的正四面体的侧面,所以边的中点对应的就是正四面体各 正三角形的中心,故可猜想:正四面体的内切球切于四个 侧面各正三角形的中心. 答案:正四面体的内切球切于四个侧面各正三角形的中心
2.从推理所得结论来看,合情推理的结论不一定正确, 有待进一步证明;演绎推理在前提和推理形式都正确的前 提下,得到的结论一定正确.从二者在认识事物的过程中 所发挥作用的角度考虑,它们又是紧密联系,相辅相成 的.合情推理的结论需要演绎推理的验证,而演绎推理的 内容一般是通过合情推理获得.合情推理可以为演绎推理 提供方向和思路.
证明:sin2α+cos2(30°+α)+sin α·cos(30°+α)
=sin2α+cos2(30°+α)+sin α(cos 30°cos α-sin 30°sin α)
=sin2α+cos2(30°+α)+
3 2 sin
αcos
α-12sin2α

[推荐学习]2018-2019学年高中数学苏教版选修2-2教学案:第3章 章末小结 知识整合与阶段检

[推荐学习]2018-2019学年高中数学苏教版选修2-2教学案:第3章 章末小结 知识整合与阶段检

.[对应学生用书P46]1.虚数单位i(1)i 2=-1(即-1的平方根是±i).(2)实数可以与i 进行四则运算,进行运算时原有的加、乘运算律仍然成立.(3)i 的幂具有周期性:i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N *),则有i n +i n +1+i n +2+i n +3=0(n ∈N *). 2.复数的分类复数(z =a +b i ,a ,b ∈R)⎩⎨⎧ 实数(b =0)虚数(b ≠0)⎩⎪⎨⎪⎧ 纯虚数(a =0,b ≠0)非纯虚数(a ≠0,b ≠0).3.共轭复数的性质设复数z 的共轭复数为z ,则(1)z ·z =|z |2=|z |2;(2)z 为实数⇔z =z ,z 为纯虚数⇔z =-z .4.复数的几何意义5.复数相等的条件(1)代数形式:复数相等的充要条件为a +b i =c +d i(a ,b ,c ,d ∈R)⇔a =c ,b =d .特别地,a +b i =0(a ,b ∈R)⇔a =b =0.注意:两复数不是实数时,不能比较大小.(2)几何形式:z 1,z 2∈C ,z 1=z 2⇔对应点Z 1,Z 2重合⇔1OZ 与2OZ 重合.6.复数的运算(1)加法和减法运算:(a +b i)±(c +d i)=(a ±c )+(b ±d )i(a ,b ,c ,d ∈R).(2)乘法和除法运算:复数的乘法按多项式相乘进行运算,即(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ;复数除法是乘法的逆运算,其实质是分母实数化.[对应学生用书P65](时间:120分钟,总分:160分)一、填空题(本大题共14个小题,每小题5分,共70分,把答案填在题中横线上)1.(新课标全国卷Ⅱ改编)设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=________.解析:∵z 1=2+i 在复平面内对应点(2,1),又z 1与z 2在复平面内的对应点关于虚轴对称, 则z 2的对应点为(-2,1),则z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=i 2-4=-5.答案:-52.(山东高考改编)若a -i 与2+b i 互为共轭复数,则(a +b i)2=________.解析:根据已知得a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.答案:3+4i3.若复数z 满足 (3-4i)z =|4+3i|,则z 的虚部为________.解析:∵(3-4i)z =|4+3i|,∴z =|4+3i|3-4i =5(3+4i )(3-4i )(3+4i )=3+4i 5=35+45i , ∴z 的虚部是45. 答案:454.已知m 1+i=1-n i ,其中m ,n 是实数,i 是虚数单位,则m +n i 等于________. 解析:m 1+i=1-n i ,所以m =(1+n )+(1-n )i , 因为m ,n ∈R ,所以⎩⎪⎨⎪⎧ 1-n =0,1+n =m ,所以⎩⎪⎨⎪⎧ n =1,m =2,即m +n i =2+i.答案:2+i5.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则满足条件⎪⎪⎪⎪⎪⎪1 -1z z i =4+2i 的复数z 为________. 解析:⎪⎪⎪⎪⎪⎪1 -1z z i =z i +z , 设z =x +y i ,∴z i +z =x i -y +x +y i =x -y +(x +y )i =4+2i ,∴⎩⎪⎨⎪⎧ x -y =4,x +y =2,∴⎩⎪⎨⎪⎧x =3,y =-1.∴z =3-i.答案:3-i6.在复平面内,复数2-i 1+i对应的点位于第________象限. 解析:2-i 1+i =(2-i )(1-i )(1+i )(1-i )=1-3i 12+12=12-32i , 对应的点位于第四象限.答案:四7.5(4+i )2i (2+i )=________. 解析:5(4+i )2i (2+i )=5(15+8i )-1+2i =5(15+8i )(-1-2i )(-1)2+22=1-38i.答案:1-38i8.设a 是实数,且a 1+i+1+i 2是实数,则a 等于________. 解析:∵a 1+i +1+i 2=a (1-i )2+1+i 2=⎝⎛⎭⎫a 2+12+(1-a )2i 是实数,∴1-a 2=0,即a =1. 答案:19.复数z 满足方程⎪⎪⎪⎪z +21+i =4,那么复数z 的对应点P 组成图形为________. 解析:⎪⎪⎪⎪⎪⎪z +21+i =|z +(1-i)|=|z -(-1+i)|=4. 设-1+i 对应的点为C (-1,1),则|PC |=4,因此动点P 的轨迹是以C (-1,1)为圆心,4为半径的圆.答案:以(-1,1)为圆心,以4为半径的圆10.已知集合M ={1,2,z i},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =________. 解析:由M ∩N ={4},知4∈M ,故z i =4,∴z =4i=-4i. 答案:-4i11.若复数z 满足|z |-z =101-2i,则z =________. 解析:设z =a +b i(a ,b ∈R),∴|z |-z =a 2+b 2-(a -b i)=a 2+b 2-a +b i ,101-2i =10(1+2i )(1-2i )(1+2i )=10(1+2i )12+22=2+4i , ∴⎩⎪⎨⎪⎧ a 2+b 2-a =2,b =4,解得⎩⎪⎨⎪⎧a =3,b =4. ∴z =3+4i.答案:3+4i12.若OA =3i +4,OB =-1-i ,i 是虚数单位,则AB =________.(用复数代数形式表示)解析:由于OA =3i +4,OB =-1-i ,i 是虚数单位, 所以AB =OB -OA =(-1-i)-(3i +4)=-5-4i.答案:-5-4i13.复数z 满足|z +1|+|z -1|=2,则|z +i +1|的最小值是________.解析:由|z +1|+|z -1|=2,根据复数减法的几何意义可知,复数z 对应的点到两点(-1,0)和(1,0)的距离和为2,说明该点在线段y =0(x ∈[-1,1])上,而|z +i +1|为该点到点(-1,-1)的距离,其最小值为1.答案:114.已知关于x 的方程x 2+(1+2i)x -(3m -1)=0有实根,则纯虚数m 的值是________. 解析:方程有实根,不妨设其一根为x 0,设m =a i 代入方程得x 20+(1+2i)x 0-(3a i -1)i =0,化简得,(2x 0+1)i +x 20+x 0+3a =0,∴⎩⎪⎨⎪⎧2x 0+1=0,x 20+x 0+3a =0, 解得a =112,∴m =112i. 答案:112i 二、解答题(本大题共6个小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)计算:(1)(2+i )(1-i )21-2i ;(2)4+5i (5-4i )(1-i ). 解:(1)(2+i )(1-i )21-2i =(2+i )(-2i )1-2i=2(1-2i )1-2i=2. (2)4+5i (5-4i )(1-i )=(5-4i )i(5-4i )(1-i )=i 1-i =i (1+i )(1-i )(1+i )=i -12 =-12+12i. 16.(本小题满分14分)求实数k 为何值时,复数(1+i)k 2-(3+5i)k -2(2+3i)分别是:(1)实数;(2)虚数;(3)纯虚数;(4)零.解:由z =(1+i)k 2-(3+5i)k -2(2+3i)=(k 2-3k -4)+(k 2-5k -6)i.(1)当k 2-5k -6=0时,z ∈R ,∴k =6或k =-1.(2)当k 2-5k -6≠0时,z 是虚数,即k ≠6且k ≠-1.(3)当⎩⎪⎨⎪⎧k 2-3k -4=0,k 2-5k -6≠0时,z 是纯虚数, ∴k =4.(4)当⎩⎪⎨⎪⎧ k 2-3k -4=0,k 2-5k -6=0时,z =0,解得k =-1. 综上,当k =6或k =-1时,z ∈R.当k ≠6且k ≠-1时,z 是虚数.当k =4时,z 是纯虚数,当k =-1时,z =0.17.(本小题满分14分)已知复数z 满足|z |=1+3i -z ,求(1+i )2(3+4i )22z的值. 解:设z =a +b i(a ,b ∈R),由|z |=1+3i -z , 得a 2+b 2-1-3i +a +b i =0,则⎩⎪⎨⎪⎧ a 2+b 2+a -1=0,b -3=0,所以⎩⎪⎨⎪⎧a =-4,b =3, 所以z =-4+3i.则(1+i )2(3+4i )22z =2i (3+4i )22(-4+3i )=2(-4+3i )(3+4i )2(-4+3i )=3+4i. 18.(本小题满分16分)已知ω=-12+32i. (1)求ω2及ω2+ω+1的值;(2)若等比数列{a n }的首项为a 1=1,公比q =ω,求数列{a n }的前n 项和S n .解:(1)ω2=⎝⎛⎭⎫-12+32i 2=14-32i -34=-12-32i.ω2+ω+1=⎝⎛⎭⎫-12-32i +⎝⎛⎭⎫-12+32i +1=0. (2)由于ω2+ω+1=0,∴ωk +2+ωk +1+ωk =ωk (ω2+ω+1)=0,k ∈Z.∴S n =1+ω+ω2+…+ωn -1=⎩⎪⎨⎪⎧ 0, n =3k ,1, n =3k +1,1+ω, n =3k +2,∴S n =⎩⎪⎨⎪⎧ 0, n =3k (k ∈Z ),1, n =3k +1(k ∈Z ),12+32i , n =3k +2(k ∈Z ).19.(本小题满分16分)已知z =a -i 1-i(a ∈R 且a >0),复数ω=z (z +i)的虚部减去它的实部所得的差等于32,求复数ω的模. 解:把z =a -i 1-i(a >0)代入ω中, 得ω=a -i 1-i ⎝ ⎛⎭⎪⎫a -i 1-i +i =a +12+a (a +1)2i. 由a (a +1)2-a +12=32,得a 2=4. 又a >0,所以a =2.所以|ω|=|32+3i|=325. 20.(本小题满分16分)已知复数z 满足|z |=2,z 2的虚部为2.(1)求复数z ;(2)设z ,z 2,z -z 2在复平面内对应的点分别为A ,B ,C ,求△ABC 的面积. 解:(1)设z =a +b i(a ,b ∈R),由已知条件得:a 2+b 2=2,z 2=a 2-b 2+2ab i ,所以2ab =2.所以a =b =1或a =b =-1,即z =1+i 或z =-1-i.(2)当z =1+i 时,z 2=(1+i)2=2i ,z -z 2=1-i ,所以点A (1,1),B (0,2),C (1,-1),所以S △ABC =12|AC |×1=12×2×1=1; 当z =-1-i 时,z 2=(-1-i)2=2i ,z -z 2=-1-3i. 所以点A (-1,-1),B (0,2),C (-1,-3),所以S △ABC =12|AC |×1=12×2×1=1. 即△ABC 的面积为1.。

精选推荐018-2019学年高中数学苏教版选修2-2教学案:第1章 章末小结 知识整合与阶段检测

精选推荐018-2019学年高中数学苏教版选修2-2教学案:第1章 章末小结 知识整合与阶段检测

[对应学生用书P31]一、导数的概念1.导数函数y=f(x)在区间(a,b)上有定义,x0∈(a,b),当Δx无限趋近于0时,比值Δy Δx=f(x0+Δx)-f(x0)Δx无限趋近于一个常数A,则称f(x)在点x=x0处可导,称常数A为函数f(x)在点x=x0处的导数,记作f′(x0).2.导函数若f(x)对于区间(a,b)内任一点都可导,则f′(x)在各点的导数中随着自变量x的变化而变化,因而也是自变量x的函数,该函数称为f(x)的导函数.记作f′(x).二、导数的几何意义1.f′(x0)是函数y=f(x)在x0处切线的斜率,这是导数的几何意义.2.求切线方程:常见的类型有两种:一是函数y=f(x)“在点x=x0处的切线方程”,这种类型中(x0,f(x0))是曲线上的点,其切线方程为y-f(x0)=f′(x0)(x-x0).二是函数y=f(x)“过某点的切线方程”,这种类型中,该点不一定为切点,可先设切点为Q(x1,y1),则切线方程为y-y1=f′(x1)(x-x1),再由切线过点P(x0,y0)得y0-y1=f′(x1)(x0-x1),又y1=f(x1),由上面两个方程可解得x1,y1的值,即求出了过点P(x0,y0)的切线方程.三、导数的运算1.基本初等函数的导数(1)f(x)=C,则f′(x)=0(C为常数);(2)f(x)=xα,则f′(x)=α·xα-1(α为常数);(3)f(x)=a x(a>0且a≠1),则f′(x)=a x ln a;(4)f(x)=log a x(a>0,且a≠1),则f′(x)=1x ln a;(5)f (x )=sin x ,则f ′(x )=cos x ; (6)f (x )=cos x ,则f ′(x )=-sin x . 2.导数四则运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0). 四、导数与函数的单调性 利用导数求函数单调区间的步骤: (1)求导数f ′(x );(2)解不等式f ′(x )>0或f ′(x )<0; (3)写出单调增区间或减区间.特别注意写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“∪”连接. 五、导数与函数的极值 利用导数求函数极值的步骤: (1)确定函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检验f ′(x )=0的根的两侧的f ′(x )的符号,若左正右负,则f (x )在此根处取得极大值.若左负右正,则f (x )在此根处取得极小值,否则此根不是f (x )的极值点. 六、求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤 (1)求f (x )在(a ,b )内的极值;(2)将(1)求得的极值与f (a )、f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值.特别地,①当f (x )在[a ,b ]上单调时,其最小值、最大值在区间端点取得;②当f (x )在(a ,b )内只有一个极值点时,若在这一点处f (x )有极大(或极小)值,则可以判断f (x )在该点处取得最大(或最小)值,这里(a ,b )也可以是(-∞,+∞).七、导数的实际应用利用导数求实际问题的最大(小)值时,应注意的问题:(1)求实际问题的最大(小)值时,一定要从问题的实际意义去考查,不符合实际意义的值应舍去.(2)在实际问题中,由f ′(x )=0常常仅解到一个根,若能判断函数的最大(小)值在x 的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值.八.定积分(1)定积分是一个数值.定积分的定义体现的基本思想是:先分后合、化曲为直(以不变代变).定积分的几何意义是指相应直线、曲线所围曲边梯形的面积.要注意区分⎠⎛a bf (x )d x ,⎠⎛ab|f (x )|d x 及||⎠⎛a bf (x )d x 三者的不同.(2)微积分基本定理是计算定积分的一般方法,关键是求被积函数的原函数.而求被积函数的原函数和求函数的导函数恰好互为逆运算,要注意它们在计算和求解中的不同,避免混淆.⎣⎢⎢⎡⎦⎥⎥⎤对应阶段质量检测(一) 见8开试卷 一、填空题(本大题共14个小题,每小题5分,共70分,把答案填在题中横线上) 1.已知函数f (x )=ax 2+c ,且f ′(1)=2,则a 的值为________. 解析:∵f (x )=ax 2+c ,∴f ′(x )=2ax , ∴f ′(1)=2a , 又∵f ′(1)=2,∴a =1. 答案:12.曲线y =x 3-4x 在点(1,-3)处的切线的倾斜角为________. 解析:∵y ′=3x 2-4,∴当x =1时,y ′=-1,即tan α=-1. 又∵α∈(0,π),∴α=34π.答案:34π3.已知函数f (x )=-x 3+ax 2-x +18在(-∞,+∞)上是单调函数,则实数a 的取值范围是________.解析:由题意得f ′(x )=-3x 2+2ax -1≤0在(-∞,+∞)上恒成立,因此Δ=4a 2-12≤0⇒-3≤a ≤3,所以实数a 的取值范围是[-3,3].答案:[-3,3]4.y =2x 3-3x 2+a 的极大值为6,则a =________. 解析:y ′=6x 2-6x =6x (x -1), 令y ′=0,则x =0或x =1.当x =0时,y =a ,当x =1时,y =a -1. 由题意知a =6. 答案:65.函数y =sin xx 的导数为________. 解析:y ′=⎝⎛⎭⎫sin x x ′ =x ·(sin x )′-(x )′·sin x x 2=x cos x -sin x x 2.答案:x cos x -sin xx 26.若⎠⎛01(x -k )d x =32,则实数k 的值为________. 解析:⎠⎛01(x -k )d x =⎝⎛⎭⎫12x 2-kx |10=12-k =32, 解得k =-1. 答案:-17.函数f (x )=x 2-ln x 的单调递减区间是________.解析:∵f ′(x )=2x -1x =2x 2-1x.令f ′(x )<0,因为x ∈(0,+∞), ∴2x 2-1<0,即0<x <22, ∴函数f (x )=x 2-ln x 的单调递减区间是⎝⎛⎭⎫0,22. 答案:⎝⎛⎭⎫0,22 8.函数f (x )=3x -4x 3在[0,1]上的最大值为________. 解析:f ′(x )=3-12x 2,令f ′(x )=0,则x =-12(舍去)或x =12,f (0)=0,f (1)=-1,f ⎝⎛⎭⎫12=32-12=1 ∴f (x )在[0,1]上的最大值为1.答案:19.(山东高考改编)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为________.解析:由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02(4x -x 3)d x =⎝⎛⎭⎫2x 2-14x 4|20=4.答案:410.若f(x)=⎩⎪⎨⎪⎧x 2+3(x ≥0),-x (x<0),则⎠⎛1-1f(x)d x =________. 解析:因为⎠⎛1-1f(x)d x =⎠⎛0-1(-x)d x +⎠⎛10(x 2+3)d x. 因为⎝⎛⎭⎫-12x 2′=-x ,⎝⎛⎭⎫13x 3+3x ′=x 2+3, 所以⎠⎛1-1f(x)d x =-12x 2|0-1+⎝⎛⎭⎫13x 3+3x |10=236. 答案:23611.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99=________.解析:由于y ′| x =1=n +1,∴曲线在点(1,1)处的切线为y -1=(n +1)(x -1),令y =0,得x =x n =n n +1,∴a n =lg n n +1,∴原式=lg 12+lg 23+…+lg 99100=lg ⎝⎛⎭⎫12×23×…×99100=lg 1100=-2. 答案:-212.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.解析:∵f ′(x )=4x -1x =4x 2-1x ,x >0,∴当0<x <12时,f ′(x )<0,f (x )为减函数,当x >12时,f ′(x )>0,f (x )为增函数,依题意得⎩⎨⎧0≤k -1<12,12<k +1,k -1<k +1.∴1≤k <32.答案:⎣⎡⎭⎫1,32 13.周长为20 cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________. 解析:设矩形一边长为x cm ,则邻边长为(10-x )cm ; 体积V =πx 2(10-x )=π(10x 2-x 3), 由V ′=π(20x -3x 2)=0得x =0(舍去), x =203可以判断x =203时,V max =4 00027π(cm 3).答案:4 00027π cm 3 14.已知f (x )定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)·f (x 2-1)的解集是________.解析:令g (x )=x ·f (x ) 则g ′(x )=f (x )+xf ′(x )<0. ∴g (x )在(0,+∞)上为减函数. 又∵f (x +1)>(x -1)f (x 2-1), ∴(x +1)f (x +1)>(x 2-1)f (x 2-1), ∴⎩⎪⎨⎪⎧x +1>0,x 2-1>0,x +1<x 2-1⇒⎩⎪⎨⎪⎧x >-1,x <-1或x >1,x <-1或x >2.∴x >2. 答案:{x |x >2}二、解答题(本大题共6个小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1.(1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程. 解:(1)f ′(x )=2ax -43a ,由已知得⎩⎨⎧f ′(1)=2a -43a =1,f (1)=a -43a +b =2,解得⎩⎨⎧a =32,b =52.所以f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为y -2=x -1, 即x -y +1=0.16.(本小题满分14分)求下列定积分.(1)⎠⎛1-2(1-t 3)d t ; (2)⎠⎛0-π(cos x +e x )d x ; (3)⎠⎛42x 3-3x 2+5x2d x . 解:(1)∵⎝⎛⎭⎫t -14t 4′=1-t 3, ∴⎠⎛1-2(1-t 3)d t =⎝⎛⎭⎫t -14t 4|1-2=⎝⎛⎭⎫1-14-(-2-4)=34. (2)∵(sin x +e x )′=cos x +e x ,∴⎠⎛0-π(cos x +e x )d x =(sin x +e x )|0-π =1-e -π=1-1e π.(3)⎠⎛42x 3-3x 2+5x2d x =⎠⎛42⎝⎛⎭⎫x -3+5x 2d x取F (x )=12x 2-3x -5x ,则F ′(x )=x -3+5x2,⎠⎛42x3-3x 2+5x 2d x =F (4)-F (2) =⎝⎛⎭⎫12×42-3×4-54-⎝⎛⎭⎫12×22-3×2-52 =54. 17.(本小题满分14分)已知x =1是函数f (x )=13ax 3-32x 2+(a +1)x +5的一个极值点.(1)求函数f (x )的解析式;(2)若曲线y =f (x )与直线y =2x +m 有三个交点,求实数m 的取值范围. 解:(1)依题意f ′(x )=ax 2-3x +a +1, 由f ′(1)=0得a =1,∴函数f (x )的解析式为f (x )=13x 3-32x 2+2x +5.(2)曲线y =f (x )与直线y =2x +m 有三个交点, 即13x 3-32x 2+2x +5-2x -m =0有三个实数根, 令g (x )=13x 3-32x 2+2x +5-2x -m =13x 3-32x 2+5-m ,则g (x )有三个零点.由g ′(x )=x 2-3x =0得x =0或x =3.令g ′(x )>0得x <0或x >3;令g ′(x )<0得0<x <3.∴函数g (x )在(-∞,0)上为增函数,在(0,3)上为减函数,在(3,+∞)上为增函数. ∴函数在x =0处取得极大值,在x =3处取得极小值.要使g (x )有三个零点,只需⎩⎪⎨⎪⎧g (0)>0,g (3)<0,解得12<m <5.∴实数m 的取值范围为⎝⎛⎭⎫12,5.18.(本小题满分16分)已知函数f (x )=x ln x ,g (x )=-x 2+ax -2(e ≈2.71,a ∈R). (1)判断曲线y =f (x )在点(1,f (1))处的切线与曲线y =g (x )的公共点个数; (2)当x ∈⎣⎡⎦⎤1e ,e 时,若函数y =f (x )-g (x )有两个零点,求a 的取值范围. 解:(1)f ′(x )=ln x +1,所以斜率k =f ′(1)=1. 又f (1)=0,曲线在点(1,0)处的切线方程为y =x -1.由⎩⎪⎨⎪⎧y =-x 2+ax -2y =x -1⇒x 2+(1-a )x +1=0. 由Δ=(1-a )2-4=a 2-2a -3可知:当Δ>0时,即a <-1或a >3时,有两个公共点; 当Δ=0时,即a =-1或a =3时,有一个公共点; 当Δ<0时,即-1<a <3时,没有公共点. (2)y =f (x )-g (x )=x 2-ax +2+x ln x , 由y =0得a =x +2x +ln x . 令h (x )=x +2x +ln x ,则h ′(x )=(x -1)(x +2)x 2.当x ∈⎣⎡⎦⎤1e ,e ,由h ′(x )=0得x =1.所以h (x )在⎣⎡⎦⎤1e ,1上单调递减,在[1,e]上单调递增, 故h min (x )=h (1)=3.由h ⎝⎛⎭⎫1e =1e +2e -1,h (e)=e +2e +1, 比较可知h ⎝⎛⎭⎫1e >h (e).所以,当3<a ≤e +2e+1时,函数y =f (x )-g (x )有两个零点.19.(本题满分16分)某公司将进货单价为a 元(a 为常数,3≤a ≤6)一件的商品按x 元(7≤x ≤10)一件销售,一个月的销售量为(12-x )2万件.(1)求该公司经销此种商品一个月的利润L (x )(万元)与每件商品的售价x (元)的函数关系式;(2)当每件商品的售价为多少元时,L (x )取得最大值?并求L (x )的最大值. 解:(1)L (x )=(x -a )(12-x )2(7≤x ≤10). (2)L ′(x )=(12-x )2+(x -a )(2x -24) =(12-x )(12+2a -3x ).令L ′(x )=0得x =2a +123或x =12.由a ∈[3,6]得2a +123∈[6,8].当2a +123∈[6,7],即3≤a ≤92时,L (x )在[7,10]上是减函数, L (x )的最大值为L (7)=25(7-a ); 当2a +123∈(7,8],即92<a ≤6时,L (x )在⎝⎛⎭⎪⎫7,2a +123上是增函数,在[2a +123,10]上是减函数.L (x )的最大值为L ⎝ ⎛⎭⎪⎫2a +123=4(12-a )327综上可知,若3≤a ≤92,则当x =7时,L (x )取得最大值,最大值是25(7-a );若92<a ≤6,则当x =2a +123时,L (x )取得最大值,最大值是4(12-a )327. 20.(本小题满分16分)(山东高考)设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若 a =0,求曲线y =f (x )在点 (1,f (1))处的切线方程; (2)讨论函数f (x )的单调性. 解:(1)由题意知a =0时,f (x )=x -1x +1,x ∈(0,+∞). 此时f ′(x )=2(x +1)2. 可得f ′(1)=12,又f (1)=0,所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0. (2)函数f (x )的定义域为(0,+∞). f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增. 当a <0时,令g (x )=ax 2+(2a +2)x +a , 由于Δ=(2a +2)2-4a 2=4(2a +1), ①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0,学习K12教育资料学习K12教育资料 f ′(x )<0,函数f (x )在(0,+∞)上单调递减.③当-12<a <0,Δ>0. 设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a . 由x 1=a +1-2a +1-a=a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减; 当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a , ⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减, 在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.。

2019-2020学年高中数学苏教版选修2-2教学案:第2章 2.2 2.2.1 直接证明

2019-2020学年高中数学苏教版选修2-2教学案:第2章 2.2 2.2.1 直接证明

2.2.1 直接证明[对应学生用书P26]1.若实数a,b满足a+b=3,证明:2a+2b≥42.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=42.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒本题结论. 2.综合法和分析法1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[对应学生用书P27][例1] 已知a ,b ,c ∈R ,且a +b +c =1,求证:a 2+b 2+c 2≥13.[思路点拨] 从已知条件出发,结合基本不等式,即可得出结论. [精解详析] ∵a 2+19≥2a3,b 2+19≥2b 3,c 2+19≥2c3,∴⎝⎛⎭⎪⎫a2+19+⎝ ⎛⎭⎪⎫b2+19+⎝ ⎛⎭⎪⎫c2+19≥23a +23b +23c=23(a +b +c )=23. ∴a 2+b 2+c 2≥13.[一点通] 综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a ,b ,c 为不全相等的正数,且abc =1, 求证:1a +1b +1c>a +b +c .证明:∵a >0,b >0,c >0,且abc =1, ∴1a +1b +1c =bc +ca +ab . 又bc +ca ≥2bc ·ca =2abc2=2c ,同理bc +ab ≥2b ,ca +ab ≥2a .∵a 、b 、c 不全相等.∴上述三个不等式中的“=”不能同时成立. ∴2(bc +ca +ab )>2(c +a +b ),即bc +ca +ab >a +b +c ,故1a +1b +1c>a +b +c .2.(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a·(λb +μn )=λ(a·b )+μ(a·n ),因为a ⊥b ,所以a·b =0,又因为a π,n ⊥π,所以a·n =0, 故a·c =0,从而a ⊥c .法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c .∵PO ⊥π,a π, ∴直线PO ⊥a .又a ⊥b ,b 平面P AO ,PO ∩b =P , ∴a ⊥平面P AO .又c 平面P AO ,∴a ⊥c .(2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.[例2] 已知a >b >0,求证:错误!<错误!-错误!<错误!.[思路点拨] 本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析] 要证明错误!<错误!-错误!<错误!成立, 只需证错误!<a +b -2错误!<错误!成立, 即证错误!<(错误!-错误!)2<错误!成立. 只需证a -b2a<a -b <a -b 2b 成立.只需证a +b 2a<1<a +b2b 成立,即证a +b <2a 且a +b >2b ,即b <a .∵a >b >0,∴b <a 成立.∴错误!<错误!-错误!<错误!成立.[一点通] 在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P =a +a +7,Q =a +3+a +4,a ≥0,求证:P <Q .证明:要证P <Q ,主要证P 2<Q 2, 只要证2a +7+2错误!<2a +7+2错误!, 即证a 2+7a <a 2+7a +12, 即证0<12. 因为0<12成立, 所以P <Q 成立.4.已知a 、b 是正实数,求证:a b +b a ≥a +b .证明:要证ab+ba≥ a +b ,只需证a a +b b ≥ab (a +b ). 即证(a +b -ab )(a +b )≥ab (a +b ),即证a +b -ab ≥ab . 也就是要证a +b ≥2ab .因为a ,b 为正实数,所以a +b ≥2ab 成立,所以a b+b a≥ a +b .[例3] 已知0<a ≤1,0<b ≤1,0<c ≤1, 求证:1+ab +bc +ca a +b +c +abc≥1.[思路点拨] 因为0<a ≤1,0<b ≤1,0<c ≤1,所以要证明1+ab +bc +caa +b +c +abc ≥1成立,可转化为证明1+ab +bc +ca ≥a +b +c +abc 成立.[精解详析] ∵a >0,b >0,c >0, ∴要证1+ab +bc +ca a +b +c +abc≥1,只需证1+ab +bc +ca ≥a +b +c +abc , 即证1+ab +bc +ca -(a +b +c +abc )≥0.∵1+ab +bc +ca -(a +b +c +abc ) =(1-a )+b (a -1)+c (a -1)+bc (1-a ) =(1-a )(1-b -c +bc )=(1-a )(1-b )(1-c ), 又a ≤1,b ≤1,c ≤1, ∴(1-a )(1-b )(1-c )≥0,∴1+ab +bc +ca -(a +b +c +abc )≥0成立, 即证明了1+ab +bc +caa +b +c +abc≥1.[一点通] (1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC 中,三个内角A 、B 、C 成等差数列.求证:1a +b +1b +c =3a +b +c.证明:要证1a +b +1b +c =3a +b +c, 只需证a +b +c a +b +a +b +c b +c =3,即c a +b +a b +c =1,只需证错误!=1, 即a2+c2+ab +bcb2+ab +ac +bc =1. 下面证明:a2+c2+ab +bcb2+ab +ac +bc =1.∵A +C =2B ,A +B +C =180°, ∴B =60°. ∴b 2=a 2+c 2-ac .∴a2+c2+ab +bc b2+ab +ac +bc =a2+c2+ab +bc a2+c2-ac +ab +ac +bc =1. 故原等式成立.6.若a ,b ,c 是不全相等的正数.求证:lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c .证明:要证lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c 成立,即证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc )成立, 只需证a +b 2·b +c 2·c +a2>abc 成立,∵a +b2≥ab >0,b +c2≥bc >0,c +a2≥ca >0,∴a +b 2·b +c 2·c +a 2≥abc >0,(*)又∵a ,b ,c 是不全相等的正数,∴(*)式等号不成立, ∴原不等式成立.1.综合法是由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法是执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P 1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P 2;当由P 1可以推出P 2时,结论得证.[对应学生用书P29]一、填空题 1.在△ABC 中,A >B 是sinA >sinB 的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC 中,由正弦定理得asin A =bsin B .又∵A >B ,∴a >b ,∴sin A >sin B 反之,若sin A >sin B ,则a >b ,∴A >B ∴A >B 是sin A >sin B 的充要条件. 答案:充要 2.设n ∈N ,则n +4-n +3________n +2-n +1(判断大小).解析:要证n +4-n +3<n +2-n +1,只需证n +4+n +1<n +3+n +2,只需证(n +4+n +1)2<(n +2+n +3)2,即2n +5+2错误!<2n +5+2错误!. 只需证错误!<错误!,只需证(n +1)(n +4)<(n +2)(n +3), 即n 2+5n +4<n 2+5n +6,即4<6即可. 而4<6成立,故n +4-n +3<n +2-n +1.答案:< 3.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________. 解析:a a +b b >ab +b a⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可. 答案:a ≥0,b ≥0且a ≠b 4.若三棱锥S -ABC 中,SA⊥BC ,SB⊥AC ,则S 在底面ABC 上的射影为△ABC 的________.(填重心、垂心、内心、外心之一)解析:如图,设S 在底面ABC 上的射影为点O ,∴SO ⊥平面ABC ,连接AO ,BO , ∵SA ⊥BC ,SO ⊥BC , ∴BC ⊥平面SAO , ∴BC ⊥AO . 同理可证,AC ⊥BO . ∴O 为△ABC 的垂心. 答案:垂心5.已知函数f (x )=10x,a >0,b >0,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f ()ab ,C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为________.解析:由a +b2≥ab ≥2aba +b ,又f (x )=10x在R 上是单调增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≥f ()ab ≥f ⎝ ⎛⎭⎪⎫2ab a +b , 即A ≥B ≥C . 答案:A ≥B ≥C二、解答题6.已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.解:f (a )+f (c )>2f (b ).证明如下:因为a ,b ,c 是两两不相等的正数, 所以a +c >2ac .因为b 2=ac ,所以ac +2(a +c )>b 2+4b , 即ac +2(a +c )+4>b 2+4b +4, 从而(a +2)(c +2)>(b +2)2. 因为f (x )=log 2(x +2)是增函数, 所以log 2(a +2)(c +2)>log 2(b +2)2, 即log 2(a +2)+log 2(c +2)>2log 2(b +2). 故f (a )+f (c )>2f (b ).7.已知a >0,用分析法证明:a2+1a2-2>a +1a-2.证明:要证a2+1a2-2≥a +1a-2,只需证a2+1a2+2≥a +1a+2.因为a >0,故只需证⎝⎛⎭⎪⎪⎫a2+1a2+22≥⎝ ⎛⎭⎪⎫a +1a+22, 即a 2+1a2+4a2+1a2+4≥a 2+2+1a2+22⎝ ⎛⎭⎪⎫a +1a +2, 从而只需证2a2+1a2≥2⎝ ⎛⎭⎪⎫a +1a , 只需证4⎝⎛⎭⎪⎫a2+1a2≥2⎝ ⎛⎭⎪⎫a2+2+1a2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(江苏高考改编)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nSnn2+c ,n ∈N *,其中 c 为实数.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *).证明:由c =0,得b n =Sn n =a +n -12d .又b 1,b 2,b 4成等比数列,所以b 2=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d , 化简得d 2-2ad =0.因为d ≠0,所以d =2a . 因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .。

苏教版高中数学选修2-2 导数的概念及其几何意义 教案

苏教版高中数学选修2-2 导数的概念及其几何意义  教案

2019-2020学年苏教版选修2-2 导数的概念及其几何意义 教案[例1] 求函数y =4x2在x =2处的导数.[思路点拨] 由所给函数解析式求Δy =f (Δx +x 0)-f (x 0);计算Δy Δx ;求lim Δx →0 ΔyΔx . [精解详析] ∵f (x )=4x2,∴Δy =f (2+Δx )-f (2)=42+Δx2-1=-4Δx -Δx 22+Δx 2,∴Δy Δx =-4-Δx 2+Δx2, ∴lim Δx →0 Δy Δx =lim Δx →0 -4-Δx 2+Δx2=-1,∴f ′(2)=-1. [一点通] 由导数的定义,求函数y =f (x )在点x 0处的导数的方法: ①求函数的增量Δy =f (x 0+Δx )-f (x 0); ②求平均变化率Δy Δx=f x 0+Δx -f x 0Δx;③取极限,得导数f ′(x 0)=lim Δx →0ΔyΔx.1.函数y =x 2在x =1处的导数为( ) A .2x B .2+Δx C .2D .1解析:选C y =x 2在x =1处的导数为:f ′(1)=lim Δx →01+Δx2-1Δx=2.2.设函数f (x )=ax +b ,若f (1)=f ′(1)=2,则f (2)=________. 解析:函数f (x )=ax +b 在x =1处的导数为f ′(1)=li m Δx →0 f 1+Δx -f 1Δx=lim Δx →0[a1+Δx +b ]-a +b Δx=lim Δx →0 a ΔxΔx =a ,又f ′(1)=2,得a =2,而f (1)=2,有a +b =2,于是b =0,所以f (x )=2x ,有f (2)=4.答案:43.求函数f (x )=x -1x在x =1处的导数.解:Δy =(1+Δx )-11+Δx -⎝ ⎛⎭⎪⎫1-11=Δx +Δx 1+Δx ,Δy Δx =Δx +Δx1+Δx Δx =1+11+Δx , ∴lim Δx →0Δy Δx =lim Δx →0⎝ ⎛⎭⎪⎫1+11+Δx =2, 从而f ′(1)=2.求曲线的切线方程[例2] 已知曲线y =3x 2-x ,求曲线上的点A (1,2)处的切线斜率及切线方程. [思路点拨] 利用导数的几何意义求出切线的斜率,进而求得切线方程. [精解详析] 因为 Δy Δx=31+Δx 2-1+Δx -3×12-1Δx=5+3Δx ,当Δx 趋于0时,5+3Δx 趋于5,所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5. 所以切线方程为y -2=5(x -1), 即5x -y -3=0.[一点通] 过曲线上一点求切线方程的三个步骤4.曲线y =x 2在点(1,1)处的切线与坐标轴所围成的三角形的面积为( ) A.14 B.12 C .1D .2解析:选A f ′(1)=lim Δx →0 ΔyΔx =lim Δx →0 1+Δx 2-1Δx=lim Δx →0(2+Δx )=2. 则曲线在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.因为y =2x -1与坐标轴的交点为(0,-1),⎝ ⎛⎭⎪⎫12,0,所以所求三角形的面积为S =12×1×12=14.5.求曲线f (x )=2x在点(-2,-1)处的切线方程.解:∵点(-2,-1)在曲线y =2x上,∴曲线y =2x 在点(-2,-1)处的切线斜率就等于y =2x在x =-2处的导数.∴k =f ′(-2)=lim Δx →0f -2+Δx -f -2Δx=lim Δx →0 2-2+Δx -2-2Δx =lim Δx →0 1-2+Δx =-12,∴曲线y =2x 在点(-2,-1)处的切线方程为y +1=-12(x +2),整理得x +2y +4=0.导数几何意义的综合应用[例3] (1)抛物线上哪一点处的切线的倾斜角为45°? (2)抛物线上哪一点处的切线平行于直线4x -y -2=0? (3)抛物线上哪一点处的切线垂直于直线x +8y -3=0? [精解详析] 设点的坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2. ∴ΔyΔx=4x 0+2Δx . 当Δx 趋于零时,ΔyΔx 趋于4x 0.即f ′(x 0)=4x 0.(1)∵抛物线的切线的倾斜角为45°, ∴切线的斜率为tan 45°=1,即f ′(x 0)=4x 0=1,得x 0=14,该点为⎝ ⎛⎭⎪⎫14,98. (2)∵抛物线的切线平行于直线4x -y -2=0, ∴切线的斜率为4,即f ′(x 0)=4x 0=4,得x 0=1,该点为(1,3). (3)∵抛物线的切线与直线x +8y -3=0垂直,∴切线的斜率为8,即f ′(x 0)=4x 0=8,得x 0=2,该点为(2,9).[一点通] 解答此类题目时,所给的直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时注意解析几何中直线方程知识的应用,如直线的倾斜角与斜率的关系,直线的平行、垂直等.6.已知曲线y =x 3+3x 在点P 处的切线与直线y =15x +3平行,则P 点坐标为( ) A .(2,14) B .(-2,-14) C .(2,14)或(-2,-14) D .以上都不对解析:选C 由题意可得 y ′=li mΔx →0 x +Δx3+3x +Δx -x 3-3x Δx=3x 2+3,又由题意得3x 2+3=15,所以x =±2. 当x =2时,y =23+6=14, 当x =-2时,y =(-2)3-6=-14. 所以点P 的坐标为(2,14)或(-2,-14).7.已知函数y =f (x )的图像在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.解析:由导数的几何意义,易得f ′(1)=12,由切线方程得f (1)=12×1+2=52,所以f (1)+f ′(1)=3.答案:38.求经过点(2,0)且与曲线y =1x相切的直线方程.解:可以验证点(2,0)不在曲线上,设切点为P (x 0,y 0).由y ′|x =x 0=li mΔ x →0 1x 0+Δx -1x 0Δx=lim Δx →0 -ΔxΔx ·x 0+Δx ·x 0 =lim Δx →0-1x 0x 0+Δx =-1x 20.故所求直线方程为y -y 0=-1x 20(x -x 0).由点(2,0)在所求的直线上,得x 20y 0=2-x 0,再由P (x 0,y 0)在曲线y=1x上,得x 0y 0=1,联立可解得x 0=1,y 0=1, 所以直线方程为x +y -2=0.求曲线的切线方程,首先要判断所给点是否在曲线上.若在曲线上,可用切线方程的一般方法求解;若不在曲线上,可设出切点,写出切线方程,结合已知条件求出切点坐标或切线斜率,从而得到切线方程.1.曲线y =f (x )在点(x 0,f (x 0))处的切线方程为2x -y +1=0,则( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在解析:选A 因为曲线y =f (x )在点(x 0,f (x 0))处的导数就是切线的斜率,又切线2x -y +1=0的斜率为2,所以f ′(x 0)>0.2.抛物线y =14x 2在点Q (2,1)处的切线方程为( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=0解析:选A f ′(2)=lim Δx →0 142+Δx 2-14×4Δx=lim Δx →0 ⎝ ⎛⎭⎪⎫14Δx +1=1, ∴过点(2,1)的切线方程为y -1=1·(x -2), 即x -y -1=0.故选A.3.已知y =f (x )的图像如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选B.4.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b为( ) A.13 B.23 C .-23D .-13解析:选D 由导数的定义可得y ′=3x 2,∴y =x 3在点P (1,1)处的切线斜率k =y ′|x=1=3,由条件知,3×a b =-1,∴a b =-13.5.已知曲线y =2x 2+4x 在点P 处切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0), 则f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →02Δx2+4x 0Δx +4ΔxΔx=4x 0+4,又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)6.如图,函数f (x )的图像是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则li m Δx →0 f 1+Δx -f 1Δx=________.解析:由导数的概念和几何意义知,lim Δx →0f 1+Δx -f 1Δx =f ′(1)=k AB =0-42-0=-2.答案:-27.已知点P (2,-1)在曲线f (x )=1t -x上.求: (1)曲线在点P 处的切线的斜率; (2)曲线在点P 处的切线方程. 解:(1)将P (2,-1)的坐标代入f (x )=1t -x ,得t =1, ∴f (x )=11-x .∴f ′(2)=lim Δx →0f 2+Δx -f 2Δx=lim Δx →011-2+Δx -11-2Δx =lim Δx →011+Δx=1, 曲线在点P 处的切线斜率为1. (2)由(1)知曲线在点P 处的切线方程为y -(-1)=x -2,即x -y -3=0.8.已知曲线y =x 2+1,是否存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.解:∵Δy Δx =x +Δx 2+1-x 2-1Δx =2x +Δx ,∴y ′=lim Δx →0ΔyΔx=li mΔx →0 (2x +Δx )=2x . 设切点为P (x 0,y 0),则切线的斜率为k =y ′|x =x 0=2x 0,由点斜式可得所求切线方程为y -y 0=2x 0(x -x 0).又∵切线过点(1,a ),且y 0=x 20+1, ∴a -(x 20+1)=2x 0(1-x 0), 即x 20-2x 0+a -1=0.∵切线有两条, ∴Δ=(-2)2-4(a -1)>0,解得a <2.故存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线,a 的取值范围是(-∞,2).。

【K12教育学习资料】2018-2019学年高中数学苏教版选修2-2教学案:第2章 2.1 2.1.

【K12教育学习资料】2018-2019学年高中数学苏教版选修2-2教学案:第2章 2.1 2.1.

第二课时类比推理为了回答“火星上是否有生命”这个问题,科学家们把火星与地球作为类比,发现火星具有一些与地球类似的特征,如火星也是围绕太阳运行、绕轴自转的行星,也有大气层,在一年中也有季节的变更,而且火星上大部分时间的温度适合地球上某些已知生物的生存,等等.由此,科学家猜想:火星上也可能有生命存在.问题:科学家做出上述猜想的推理过程是怎样的?提示:在提出上述猜想的过程中,科学家对比了火星与地球之间的某些相似特征,然后从地球的一个已知特征(有生命存在)出发,猜测火星也可能具有这个特征.1.类比推理根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理,简称类比法.其思维过程为:观察、比较猜测新的结论2.合情推理合情推理是根据已有的事实、正确的结论、实验和实践结果_,以及个人的经验等推测某些结果的推理过程.归纳推理和类比推理都是数学活动中常用的合情推理.类比推理的特点主要体现在以下几个方面:(1)类比推理是从特殊到特殊的推理.(2)类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征.所以,类比推理的结果具有猜测性,不一定可靠.(3)由于类比推理的前提是两类对象之间具有某些可以清楚定义的类似特征.所以,进行类比推理的关键是明确地指出两类对象在某些方面的类似特征.[对应学生用书P16][例1]n1012n a1+a2+…+a19-(n<19,n∈N*)成立.类比上述性质,相应地,在等比数列{b n}中,若b9=1,则有什么样n的等式成立?[思路点拨] 在等差数列与等比数列的类比中,等差数列中的和类比等比数列中的积,差类比商,积类比幂.[精解详析] 在等差数列{a n }中,a 10=0, ∴a 1+a 2+…+a n +…+a 19=0, 即a 1+a 2+…+a n =-a 19-a 18-…-a n +1. 又由a 10=0,得a 1+a 19=a 2+a 18=…=a n +a 20-n =a n +1+a 19-n =2a 10=0,∴a 1=-a 19,a 2=-a 18,…,a 19-n =-a n +1, ∴a 1+a 2+…+a n =a 1+a 2+…+a 19-n ,若a 9=0,同理可得a 1+a 2+…+a n =a 1+a 2+…+a 17-n , 相应的,在等比数列{b n }中,若b 9=1, 则可得b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).[一点通] 类比推理的一般模式为:A 类事物具有性质a ,b ,c ,d ,B 类事物具有性质a ′,b ′,c ′,d ′(a ,b ,c 分别与a ′,b ′,c ′相似或相同),所以B 类事物可能具有性质d ′(d 与d ′相似或相同).1. 若数列{a n }(n ∈N *)是等差数列,则有数列b n =a 1+a 2+a 3+…+a nn(n ∈N *)也是等差数列.类比上述性质,相应地:若数列{c n }(n ∈N *)是等比数列,且c n >0,则数列d n =________(n ∈N *)也是等比数列. 答案:nc 1·c 2·c 3·…·c n2.已知命题:若数列{a n }为等差数列,且a m =a ,a n =b (m ≠n ,m ,n ∈N *),则a m +n=bn -am n -m .现已知等比数列{b n }(b n >0,n ∈N *),且b m =a ,b n =b (m ≠n ,m ,n ∈N *),类比上述结论,求b m +n .解:等差数列通项a n 与项数n 是一次函数关系,等比数列通项b n 与项数n 是指数型函数关系.利用类比可得b m +n =⎝⎛⎭⎫b na m 1n -m =n -m b na m .[例2]如图,在三棱锥S -ABC 中,SA ⊥SB ,SB ⊥SC ,SA ⊥SC ,且SA 、SB 、SC 和底面ABC 所成的角分别为α1、α2、α3,三侧面△SBC ,△SAC ,△SAB 的面积分别为S 1,S 2,S 3,类比三角形中的正弦定理,给出空间情形的一个猜想.[思路点拨] 在△DEF 中,有三条边,三个角,与△DEF 相对应的是四面体S -ABC ,与三角形三条边长对应的是四面体三个侧面的面积,三角形三个角对应的是SA ,SB ,SC 与底面ABC 所成的三个线面角α1,α2,α3.在平面几何中三角形的有关性质,我们可以用类比的方法,推广到四面体、三棱柱等几何体中.[精解详析] 在△DEF 中,由正弦定理,得d sin D =e sin E =fsin F .于是,类比三角形中的正弦定理,在四面体S -ABC 中,我们猜想S 1sin α1=S 2sin α2=S 3sin α3成立.[一点通] (1)类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手.由平面中相关结论可以类比得到空间中的相关结论.(2)平面图形与空间图形类比3.在平面中△ABC 的角C 的内角平分线CE 分△ABC 面积所成的比S △AEC S △BEC =ACBC ,将这个结论类比到空间:在三棱锥A -BCD 中,平面DEC 平分二面角A -CD -B 且与AB 交于E ,则类比的结论为________.图(1) (2) 解析:平面中的面积类比到空间为体积, 故S △AEC S △BEC 类比成V A -CDEV B -CDE. 平面中的线段长类比到空间为面积, 故ACBC 类比成S △ACD S △BCD . 故有V A -CDE V B -CDE =S △ACD S △BDC .答案:V A -CDE VB -CDE =S △ACDS △BDC4.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P —ABC 中,S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面PAB ,面PBC ,面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ.[例3] (1)类比“等差数列”给出“等和数列”的定义;(2)探索等和数列{a n }的奇数项和偶数项各有什么特点,并加以说明; (3)在等和数列{a n }中,如果a 1=a ,a 2=b ,求它的前n 项和S n .[思路点拨] 可先根据等差数列的定义类比出“等和数列”的定义,然后再据此定义探索等和数列的奇数项、偶数项及其前n 项和.[精解详析] (1)如果一个数列从第2项起,每一项与它的前一项的和等于同一个常数,那么这个数列就叫做等和数列.(2)由(1)知a n +a n +1=a n +1+a n +2,所以a n +2=a n .所以等和数列的奇数项相等,偶数项也相等. (3)当n 为奇数时,令n =2k -1,k ∈N *,则 S n =S 2k -1=S 2k -2+a 2k -1=2k -22(a +b )+a =n -12(a +b )+a =n +12a +n -12b ; 当n 为偶数时,令n =2k ,k ∈N *,则 S n =S 2k =k (a +b )=n2(a +b ).所以它的前n 项和S n=⎩⎨⎧n +12a +n -12b ,n 为奇数;n2(a +b ), n 为偶数.[一点通] (1)本题是一道浅显的定义类比应用问题,通过对等差数列定义及性质的理解,类比出等和数列的定义和性质,很好地考查学生类比应用的能 力.(2)本题型是类比定义,对本类题型解决的关键在于弄清两个概念的相似性和相异性.5.类比平面向量基本定理:“如果e 1,e 2是平面α内两个不共线的向量,那么对于平面α内任一向量a ,有且只有一对实数λ1,λ2,使得a =λ1e 1+λ2e 2.”写出空间向量基本定理的是________.答案:如果e 1,e 2,e 3是空间三个不共面的向量,那么对空间内任一向量a ,有且只有一组实数λ1,λ2,λ3,使得a =λ1e 1+λ2e 2+λ3e 36.已知椭圆C :x 2a 2+y 2b 2=1具有性质:若M ,N 是椭圆C 上关于原点对称的两点,点P是椭圆C 上任意一点,当直线PM ,PN 的斜率都存在,并记为K PM ,K PN 时,那么K PM 与K PN 之积是与点P 位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出类似的性质,并加以证明.解:类似的性质:若M ,N 是双曲线x 2a 2-y 2b 2=1上关于原点对称的两点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为K PM ,K PN 时,那么K PM 与K PN 之积是与点P 位置无关的定值.证明如下:设M (m ,n ),则N (-m ,-n ),其中m 2a 2-n 2b2=1.设P (x ,y ),由K PM =y -nx -m ,K PN =y +nx +m ,得K PM ·K PN =y -n x -m ·y +n x +m =y 2- n 2x 2-m 2,将y 2=b 2a 2x 2-b 2,n 2=b 2a 2m 2-b 2代入得K PM ·K PN =b 2a2.1.进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.2.多用下列技巧会提高所得结论的准确性: (1)类比对象的共同属性或相似属性尽可能的多些. (2)这些共同属性或相似属性应是类比对象的主要属性.(3)这些共同(相似)属性应包括类比对象的各个方面,并尽可能是多方面.[对应学生用书P18]一、填空题1.正方形的面积为边长的平方,则在立体几何中,与之类比的图形是________,结论是________.答案:正方体 正方体的体积为棱长的立方 2.给出下列推理:(1)三角形的内角和为(3-2)·180°, 四边形的内角和为(4-2)·180°, 五边形的内角和为(5-2)·180°, ……所以凸n 边形的内角和为(n -2)·180°;(2)三角函数都是周期函数,y =tan x 是三角函数,所以y =tan x 是周期函数; (3)狗是有骨骼的;鸟是有骨骼的;鱼是有骨骼的;蛇是有骨骼的;青蛙是有骨骼的,狗、鸟、鱼、蛇和青蛙都是动物,所以,所有的动物都是有骨骼的;(4)在平面内如果两条直线同时垂直于第三条直线,则这两条直线互相平行,那么在空间中如果两个平面同时垂直于第三个平面,则这两个平面互相平行.其中属于合情推理的是________.(填序号)解析:根据合情推理的定义来判断.因为(1)(3)都是归纳推理,(4)是类比推理,而(2)不符合合情推理的定义,所以(1)(3)(4)都是合情推理.答案:(1)(3)(4)3.三角形的面积为S =12(a +b +c )r ,a 、b 、c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为________.解析:△ABC 的内心为O ,连结OA ,OB ,OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a ,b ,c ;类比:设四面体A -BCD 的内切球球心为O ,连结OA ,OB ,OC ,OD ,将四面体分割为四个以O 为顶点,以原来面为底面的四面体,高都为r ,所以有V =13(S 1+S 2+S 3+S 4)r .答案:13(S 1+S 2+S 3+S 4)r (S 1,S 2,S 3,S 4为四个面的面积,r 为内切球的半径)4.在平面几何中,有射影定理:“在△ABC 中,AB ⊥AC ,点A 在BC 边上的射影为D ,有AB 2=BD ·BC .”类比平面几何定理,研究三棱锥的侧面面积与射影面积、底面面积的关系,可以得出的正确结论是:“在三棱锥A -BCD 中,AD ⊥平面ABC ,点A 在底面BCD 上的射影为O ,则有________.”答案:S 2△ABC =S △BOC ·S △BCD 5.已知结论:“在三边长都相等的△ABC 中,若D 是BC 的中点,G 是△ABC 外接圆的圆心,则AGGD=2”.若把该结论推广到空间,则有结论:“在六条棱长都相等的四面体ABCD 中,若M 是△BCD 的三边中线的交点,O 为四面体ABCD 外接球的球心,则AO OM=________.”解析:如图,易知球心O 在线段AM 上,不妨设四面体ABCD 的边长为1,外接球的半径为R ,则BM =32×23=33, AM =12-⎝⎛⎭⎫332=63, R =⎝⎛⎭⎫63-R 2+⎝⎛⎭⎫332,解得R =64.于是,AOOM=6463-64=3.答案:3二、解答题6.已知:等差数列{a n }的公差为d ,前n 项和为S n ,有如下的性质: (1)通项a n =a m +(n -m )·d .(2)若m +n =p +q ,且m ,n ,p ,q ∈N *,则a m +a n =a p +a q . (3)若m +n =2p ,且m ,n ,p ∈N *,则a m +a n =2a p . (4)S n ,S 2n -S n ,S 3n -S 2n 构成等差数列.类比上述性质,在等比数列{b n }中,写出相类似的性质. 解:设等比数列{b n }中,公比为q ,前n 项和为S n . (1)通项a n =a m ·q n -m .(2)若m +n =p +q ,且m ,n ,p ,q ∈N *, 则a m ·a n =a p ·a q .(3)若m +n =2p ,且m ,n ,p ∈N *,则a 2p =a m ·a n .(4)S n ,S 2n -S n ,S 3n -S 2n 构成等比数列. 7.类比圆的下列特征,找出球的相关特征. (1)平面内与定点距离等于定长的点的集合是圆; (2)平面内不共线的3个点确定一个圆; (3)圆的周长与面积可求.解:(1)在空间中,与定点距离等于定长的点的集合是球; (2)空间中不共面的4个点确定一个球; (3)球的表面积与体积可求.8.若记号“*”表示两个实数a 与b 的算术平均的运算,即a *b =a +b 2,则两边均含有运算符号“*”和“+”,写出对于任意3个实数a ,b ,c 都能成立的一个等式.解:由于本题是探索性和开放性的问题,问题的解决需要经过一定的探索类比过程,并且答案不惟一.解决这道试题要把握住a *b =a +b2,还要注意到试题的要求不仅类比推广到三个数,而且等式两边均含有运算符号 “*”和“+”,则可容易得到a +(b *c )=(a +b )*(a +b ).正确的结论还有:(a *b )+c =(a *c )+(b *c ),(a *b )+c =(b *a )+c 等.。

苏教版高中数学选修(2-2)课件配套第2章复习与小结

苏教版高中数学选修(2-2)课件配套第2章复习与小结

体积比为.
(3)若数列{an}是等差数列,对于bn=(a1+a2 +…+an),则数列{bn}也是 1 等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn n >0,则dn=时,数列{dn}也是等比数列.
二、数学运用
例2 若△ABC的三个内角A,B,C成等差数列,分别用综合法
c a + =1 . 和分析法证明: a+b b+c
分析法和综合法是两种常用的直接证明方法. 分析法的特点是执果索因,综合法的特点是由因导果. 分析法常用来探寻解题思路,综合法常用来书写解题过程.
二、数学运用
例3 已知A,B,C∈(0,1), 1 求证:(1-a)b, (1-b)c, (1-c)a不能同时大于 .
记Sn = a1 +a2+…+an
1 1 1 Tn= + ++ 1+a1 (1+a1 )(1+a2 ) (1+a1 )(1+a2 ) (1+an )
求证:当n∈N*时,(1) an<an+1 (2) Sn>n-2 (3) Tn行小
结,明确推理、归纳推理的概念及彼此间关
4
用反证法证明命题“若p则q”时,可能会出现以下三种情况: (1)导出非p为真,即与原命题的条件矛盾; (2)导出q为真,即与假设“非q为真”矛盾; (3)导出一个恒假命题. 当遇到否定性、惟一性、无限性、至多、至少等 类型问题时,常用反证法.
二、数学运用
例4 已知数列{an},an ≥0, a1=0,an+12+an+1-1= an 2(n∈N*)
系.认识数学本质,把握数学本质,增强创
新意识,提高创新能力.
四、课后作业
教材第102-103页复习题 第3题,第4题,第5题,
第9题,第12题,第13题.
高中数学 选修2-2

苏教版高中数学选修2-2 导数的概念与应用 教案

苏教版高中数学选修2-2 导数的概念与应用    教案

要求层次 重难点导数及其应用导数概念及其几何意义导数的概念 A 了解导数概念的实际背景; 理解导数的几何意义.导数的几何意义C导数的运算根据导数定义求函数y c =,y x =,2y x =,3y x =,1y x=,y x =的导数 C能根据导数定义,求函数23y c y x y x y x ====,,,,1y y x x==,(c 为常数)的导数.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如()f ax b +的复合函数)的导数. 导数的四则运算C 简单的复合函数(仅限于形如()f ax b +)的导数) B 导数公式表C 导数在研究函数中的应用利用导数研究函数的单调性(其中多项式函数不超过三次) C 了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次). 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 会利用导数解决某些实际问题.函数的极值、最值(其中多项式函数不超过三次)C利用导数解决某些实际问题 B板块一:导数的概念与几何意义知识内容1.函数的平均变化率:一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ∆=-, 10y y y ∆=-10()()f x f x =-00()()f x x f x =+∆-,则当0x ∆≠时,商00()()f x x f x yx x+∆-∆=∆∆称作函数()y f x =在区间00[,]x x x +∆(或00[,]x x x +∆)的平均变化率.注:这里x ∆,y ∆可为正值,也可为负值.但0x ∆≠,y ∆可以为0.高考要求例题精讲导数的概念与应用2.函数的瞬时变化率、函数的导数:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变00()()y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率00()()f x x f x y x x+∆-∆=∆∆趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率.“当x ∆趋近于零时,00()()f x x f x x+∆-∆趋近于常数l ”可以用符号“→”记作:“当0x ∆→时,00()()f x x f x l x +∆-→∆”,或记作“000()()lim x f x x f x l x∆→+∆-=∆”,符号“→”读作“趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ∆→时,000()()()f x x f x f x x +∆-'→∆”或“0000()()lim ()x f x x f x f x x∆→+∆-'=∆”.3.可导与导函数:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y ').导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数.4.导数的几何意义:设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与00(,())B x x f x x +∆+∆的一条割线.由此割线的斜率是00()()f x x f x y x x+∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即000()()lim x f x x f x x∆→+∆-=∆切线AD 的斜率. 由导数意义可知,曲线()y f x =过点00(,())x f x 的切线的斜率等于0()f x '.典例分析: 极限与导数【题1】 设()f x 在0x 可导,则()()0003limx f x x f x x x∆→+∆--∆∆等于( )A .()02f x 'B .()0f x 'C .()03f x 'D .()04f x '【考点】极限与导数 【难度】1星 【题型】选择 【关键词】无【解析】 ()()0003lim x f x x f x x x ∆→+∆--∆∆()()00000()()3limx f x x f x f x f x x x∆→+∆-+--∆∆= ()()000000()()3=lim lim 33x x f x x f x f x f x x x x∆→∆→+∆---∆+⋅∆∆ ()()000000()3()=lim 3lim3x x f x x f x f x x f x x x∆→∆→+∆--∆-+⋅∆-∆000()3()4()f x f x f x '''=+=.【答案】D【题2】 设(3)4f '=,则0(3)(3)lim2h f h f h →--=( )A .1-B .2-C .3-D .1【考点】极限与导数 【难度】1星【题型】选择【关键词】无【解析】 00(3)(3)(3)(3)11limlim (3)2222h h f h f f h f f h h →→----⎛⎫'=⋅-=-=- ⎪-⎝⎭. 【答案】B【题3】 如图,在半径为r 的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去.设n S 为前n 个圆的面积之和,则lim n n S →∞=( )r OA .22πrB .28π3r C .24πr D .26πr【考点】极限与导数 【难度】3星 【题型】选择 【关键词】2010,湖北,高考7【解析】 设第n 个圆的面积为n a ,则21πa r =,134n n a a -=,于是23π14314n n r S ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭=-,从而2lim 4πnn S r →∞= 【答案】C【题4】 如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;函数()f x 在1x =处的导数(1)f '= .【考点】极限与导数【难度】1星【题型】填空【关键词】2008,北京,高考【解析】 ((0))(4)2f f f ==;04(1)220f -'==--. 【答案】22-,【题5】 若函数2()f x x=,则当1x =-时,函数的瞬时变化率为( ) A .1 B .1- C .2 D .2-【考点】极限与导数 【难度】1星 【题型】选择 【关键词】无【解析】 22(1)(1)(2)11xf x f x x ∆-+∆--=--=-+∆∆-, 00(1)(1)2lim lim 21x x f x f x x ∆→∆→-+∆--==-∆∆-. 【答案】D【题6】 已知物体的运动方程是23s t t=+,则物体在时刻4t =时的速度v =____,加速度a = .【考点】极限与导数 【难度】1星 【题型】填空 【关键词】无【解析】 232v s t t '==-,362a v t '==+,4t =时,312581616v =-=,66726432a =+=. 【答案】12567,1632.【题7】 一质点做直线运动,由始点起经过t s 后的距离为43214164s t t t =-+,则速度为零的时刻是( )A .4s 末B .8s 末C .0s 与8s 末D .0s ,4s ,8s 末【考点】极限与导数 【难度】1星 【题型】选择 【关键词】无 【解析】 321232v s t t t '==-+,令0v =得0t =,4或8. 【答案】D导数的几何意义【题8】 已知曲线1y x x =+上一点522A ⎛⎫⎪⎝⎭,,用斜率定义求: ⑴ 过点A 的切线的斜率;⑵ 过点A 的切线方程.【考点】导数的几何意义 【难度】2星 【题型】解答 【关键词】【解析】 分析:求曲线在A 处的斜率A k ,即求0(2)(2)lim x f x f x ∆→+∆-∆,其中1()f x x x=+.⑴ 记1()f x x x=+,(2)(2)y f x f ∆=+∆-1122222(2)x x x x x -∆⎛⎫=+∆+-+=+∆ ⎪+∆+∆⎝⎭, 00(1)lim lim 2(2)x x y x x f x x x x ∆→∆→⎡⎤∆-∆∆'==+⎢⎥∆∆+∆∆⎣⎦013lim 12(2)4x x ∆→⎡⎤-=+=⎢⎥+∆⎣⎦;⑵ 切线方程为53(2)24y x -=-,即3440x y -+=.注:也可先求1y x x=+的导函数,200()()11limlim 11(0)()x x f x x f x y x x x x x x ∆→∆→⎛⎫+∆--'==+=-≠ ⎪∆+∆⎝⎭, 再计算13(2)144y '=-=.【答案】⑴34,⑵3440x y -+=【题9】 函数()f x 的图象如图所示,下列数值排序正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(3)(3)(2)(2)f f f f ''<<-<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(3)(2)(2)(3)f f f f ''<-<<【考点】导数的几何意义 【难度】2星 【题型】选择 【关键词】 【解析】 设23x x ==,时曲线上的点为A ,B ,点A 处的切线为AT ,点B 处的切线为BQ ,∵(3)(2)f f -(3)(2)32AB f f k -==-,∵(3)BQ f k '=,(2)AT f k '=,如图所示,切线BQ 的倾斜角小于直线AB 的倾斜角小于切线AT 的倾斜角BQ AB AT k k k <<. 【答案】B【题10】 曲线321y x x =+-在点(11)P --,处的切线方程是( )A .1y x =-B .2y x =-C .y x =D .1y x =+ 【考点】导数的几何意义 【难度】2星 【题型】选择 【关键词】【解析】 232y x x '=+,(1)1y '-=,P 在曲线上,故切线方程为11y x y x +=+⇒=. 【答案】C【题11】 若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( )AB. C .23 D .23或0【考点】导数的几何意义 【难度】2星 【题型】选择 【关键词】 【解析】 曲线21y x =-在0x x =处的切线斜率为00()2y x x '=;曲线31y x =-在0x x =处的切线的斜率为200()3y x x '=-,由题意有:2002(3)1x x ⋅-=-,解得0x =. 【答案】A【题12】 设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,【考点】导数的几何意义 【难度】2星 【题型】选择 【关键词】2008,辽宁,高考【解析】 设00()P x y ,,22y x '=+,点P 处的切线的斜率的取值范围为πtan 0tan [01]4⎡⎤=⎢⎥⎣⎦,,, 故00221x +≤≤,解得0112x --≤≤.【答案】A【题13】 已知点P 在曲线4e 1x y =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .π04⎡⎫⎪⎢⎣⎭, B .ππ42⎡⎫⎪⎢⎣⎭, C .π3π24⎛⎤ ⎥⎝⎦, D .3ππ4⎡⎫⎪⎢⎣⎭,【考点】导数的几何意义 【难度】3星 【题型】选择 【关键词】2010,辽宁,高考10【解析】 2441(1)2x x x x e y e e e--'==+++,124x x e e ++≥,故[1,0)y '∈-,从而tan [1,0)α∈-,3ππ4α⎡⎫∈⎪⎢⎣⎭, 【答案】D【题14】 若存在过点(10),的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( )A .1-或2564-B .1-或214C .74-或2564-D .74-或7【考点】导数的几何意义 【难度】2星 【题型】选择 【关键词】2009,江西,高考【解析】 设过(10),的直线与3y x =相切于点300()x x ,,所以切线方程为320003()y x x x x -=-,即230032y x x x =-,又(10),在切线上,则00x =或032x =,当00x =时,由0y =与21594y ax x =+-相切可得2564a =-,当032x =时,由272744y x =-与21594y ax x =+-相切可得1a =-.【答案】A【题15】 ⑴曲线32242y x x x =--+在点(13)-,处的切线方程是____.⑵曲线32242y x x x =--+过点(13)-,的切线方程是_________. 【考点】导数的几何意义 【难度】2星 【题型】填空 【关键词】 【解析】 ⑴2()344y x x x '=--,(1)5y '=-,故所求的切线方程为35(1)y x +=--.⑵点(13)-,在曲线上,若切点为(13)-,,则切线方程为520x y +-=;若切点不是(13)-,,设切点为00()x y ,,则有2000033441y x x x +=---,又320000242y x x x =--+,解得01x =或012x =. 当012x =时,斜率为21121344224⎛⎫⨯-⨯-=- ⎪⎝⎭,故直线方程为21490x y +-=.故过点(13)-,的切线方程为520x y +-=或21490x y +-=.注意过一点的切线与在一点的切线的区别.【答案】⑴520x y +-=;⑵520x y +-=或21490x y +-=.【题16】 已知函数()f x 在R 上满足()()22288f x f x x x =--+-,则曲线()y f x =在点()()11f ,处的切线方程是( )A .21y x =-B .y x =C .32y x =-D .23y x =-+【考点】导数的几何意义 【难度】2星 【题型】选择 【关键词】2009,安徽,高考 【解析】 由()()22288f x f x x x =--+-,得2(2)2()(2)8(2)8f x f x x x -=--+--,即22()(2)44f x f x x x --=+-,∴2()f x x =,()2f x x '=,∴切线方程为12(1)y x -=-,即210x y --=,选A .【答案】A【题17】 设函数1()()f x ax a b x b=+∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为3y =. ⑴求()y f x =的解析式;⑵证明:曲线()y f x =的图像是一个中心对称图形,并求其对称中心;⑶证明:曲线()y f x =上任一点的切线与直线1x =和直线y x =所围三角形的面积为定值,并求出此定值.【考点】导数的几何意义 【难度】2星 【题型】解答 【关键词】2008,海南宁夏,高考【解析】 ⑴21()()f x a x b '=-+,由题设知(2)0(2)3f f '=⎧⎨=⎩, 于是2123210(2)a b a b ⎧+=⎪+⎪⎨⎪-=⎪+⎩,解得11a b =⎧⎨=-⎩或9483a b ⎧=⎪⎪⎨⎪=-⎪⎩.因a b ∈Z ,,故1()1f x x x =+-. ⑵证明:已知函数1y x =,21y x=都是奇函数.所以函数1()g x x x =+也是奇函数,其图象是以原点为中心的中心对称图形.而1()111f x x x =-++-.可知,函数()g x 的图象按向量(11)=,a 平移,即得到函数()f x 的图象,故函数()f x 的图象是以点(11),为中心的中心对称图形.(可以直接验证:若(,)x y 在()y f x =的图象上,则(2,2)x y --也在函数()y f x =的图象上)⑶证明:在曲线上任取一点00011x x x ⎛⎫+ ⎪-⎝⎭,. 由0201()1(1)f x x '=--知,过此点的切线方程为2000200111()1(1)x x y x x x x ⎡⎤-+-=--⎢⎥--⎣⎦. 令1x =得0011x y x +=-,切线与直线1x =交点为00111x x ⎛⎫+ ⎪-⎝⎭,. 令y x =得021y x =-,切线与直线y x =交点为00(2121)x x --,.直线1x =与直线y x =的交点为(11),. 从而所围三角形的面积为00000111212112222121x x x x x +---=-=--.所以,所围三角形的面积为定值2.【答案】⑴1()1f x x x =+-;⑵(11),;⑶2【题18】 已知曲线1C :2y x =与2C :2(2)y x =--,直线l 与12C C ,都相切,求直线l 的方程. 【考点】导数的几何意义 【难度】2星 【题型】解答 【关键词】 【解析】 分别对两条曲线的方程求导得:2y x '=与2(2)y x '=--,设直线l 与曲线1C 相切于点200()x x ,,则直线l 的方程为20002()y x x x x -=-,令02(2)2x x --=解得02x x =-,代入直线l 的方程得20043y x x =-,故直线l 与曲线2C 交于点2000(243)x x x --,,由此点在曲线2C 上得2200043(22)x x x -=---, 解得00x =或02x =,于是直线l 的方程为0y =或44y x =-.【答案】0y =或44y x =-.板块二:导数的运算知识内容1注:ln e a =.注意()x x e e '=.2.导数的四则运算法则:⑴函数和(或差)的求导法则:设()f x ,()g x 是可导的,则(()())()()f x g x f x g x '''±=±,即,两个函数的和(或差)的导数,等于这两个函数的导数和(或差). ⑵函数积的求导法则:设()f x ,()g x 是可导的,则[()()]()()()()f x g x f x g x f x g x '''=+,即,两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数的乘上第二个函数的导数.由上述法则即可以得出[()]()Cf x Cf x ''=,即,常数与函数之积的导数,等于常数乘以函数的导数. ⑶函数的商的求导法则:设()f x ,()g x 是可导的,()0g x ≠,则2()()()()()()()f x g x f x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦. 特别是当()1f x ≡时,有21()()()g x g x g x ''⎡⎤=-⎢⎥⎣⎦.典例分析:【题1】 已知函数()ln f x x =,则()ef e '的值等于( )A .1B .eC .1eD .2e【考点】导数的运算 【难度】1星 【题型】选择【关键词】【解析】 1()f x x '=,()1eef e e'==.【答案】A【题2】 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为( )A .3(1)3(1)x x -+-B .22(1)x -C .2(1)x -D .1x -【考点】导数的运算 【难度】1星 【题型】选择【关键词】 【解析】 【答案】A【题3】 已知函数2()f x ax c =+,且(1)2f '=,则a 的值为( ) A .1 BC .1-D .0【考点】导数的运算 【难度】1星 【题型】选择 【关键词】【解析】 ()2f x ax '=,于是221a a =⇒=.【答案】A【题4】 已知函数()(1)(2)(3)(100)f x x x x x =----,则(1)f '=( )A .99!-B .100!-C .98!-D .0【考点】导数的运算 【难度】2星 【题型】选择 【关键词】 【解析】 设()(2)(3)(4)(100)g x x x x x =----,则()(1)()f x x g x =-,且()g x 可导,有()()(1)()f x g x x g x ''=+-,令1x =得,99(1)(1)0(0)(1)(1)99!99!f g g g ''=+⨯==-=-.【题5】 已知函数2()(1)f x x x =-,若00()f x x '=,则0x =_______.【考点】导数的运算 【难度】1星 【题型】填空【关键词】 【解析】 2()32f x x x '=-,从而20032x x x -=⇒00x =或01x =. 【答案】0或1【题6】 已知函数xe y x=在0x x =处的导数值与函数值互为相反数,求0x 的值.【考点】导数的运算 【难度】1星 【题型】解答【关键词】【解析】 由于x e y x =,所以000()x e f x x =,又2(1)x e x y x ⋅-'=,00020(1)()x e x f x x -'∴=依题意得00()()0f x f x '+=,即000200(1)0x x e x e x x -+=,0210x ∴-=,得012x =. 【答案】12【题7】 设()ln x f x a e b x =⋅+,且1(1),(1)f e f e ''=-=,求实数,a b 的值. 【考点】导数的运算 【难度】1星【题型】解答【关键词】【解析】 ()x b f x ae x '=+,(1)f ae b e '=+=,1(1)a f b e e'-=-=,解得1,0a b ==. 【答案】1,0a b ==.板块三:导数的应用知识内容1.利用导数判断函数的单调性的方法:如果函数()y f x =在x 的某个开区间内,总有()0f x '>,则()f x 在这个区间上是增函数;如果函数()y f x =在x 的某个开区间内,总有()0f x '<,则()f x 在这个区间上是减函数. 2.利用导数研究函数的极值:已知函数()y f x =,设0x 是定义域内任一点,如果对0x 附近的所有点x ,都有0()()f x f x <,则称函数()f x 在点0x 处取极大值,记作0()y f x =极大.并把0x 称为函数()f x 的一个极大值点. 如果在0x 附近都有0()()f x f x >,则称函数()f x 在点0x 处取极小值,记作0()y f x =极小.并把0x 称为函数()f x 的一个极小值点.极大值与极小值统称为极值.极大值点与极小值点统称为极值点. 3.求函数()y f x =的极值的方法: 第1步 求导数()f x ';第2步 求方程()0f x '=的所有实数根;第3步 考察在每个根0x 附近,从左到右,导函数()f x '的符号如何变化.如果()f x '的符号由正变负,则0()f x 是极大值;如果由负变正,则0()f x 是极小值.如果在()0f x '=的根0x x =的左右侧,()f x '的符号不变,则0()f x 不是极值.4.函数()f x 的最大(小)值是函数在指定区间的最大(小)的值. 求函数最大(小)值的方法:第1步 求()f x 在指定区间内所有使()0f x '=的点;第2步 计算函数()f x 在区间内使()0f x '=的所有点和区间端点的函数值,其中最大的为最大值,最小的为最小值.典例分析:原函数与导函数的图象【题1】 若函数2()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象可能为( )D.C.B.A.【考点】原函数与导函数的图象 【难度】2星 【题型】选择【关键词】【解析】 函数()f x 的顶点为2424b c b ⎛⎫-- ⎪⎝⎭,,故有204b b c <<,,()2f x x b '=+,斜率为正,排除B ,D ;纵截距为负,排除C .(即图象不过第四象限)【答案】A【题2】 设()f x '是函数()f x 的导函数,()y f x '=的图象如下图所示,则()y f x =的图象可能是( )A.【考点】原函数与导函数的图象 【难度】2星 【题型】选择 【关键词】 【解析】 由导函数的图象知()y f x =在(0)-∞,与(2)+∞,上单调递增,在(02),上单调递减. 【答案】B【题3】 已知函数()y xf x '=的图象如右图所示(其中()f x '是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )D.C.B.A.【考点】原函数与导函数的图象【难度】2星【题型】选择【关键词】2005,江西,高考【解析】由图象知,(1)(1)0f f''=-=,结合图象知1x=±是函数()f x的极值点,又因为在(10)-,上,()0f x'<,在(01),上,()0f x'<,因此在(11)-,上,()f x单调递减,故选C.要注意,若00()P x y,是函数()y f x=的极值点,则有()0f x'=,但是若()0f x'=,则是00()P x y,不一定是函数()y f x=极值点,所以要判断一个点是否为极值点,还要检验点P的两侧的单调性是否不同.【答案】C【题4】设()f x'是函数()f x的导函数,将()y f x=和()y f x'=的图象画在同一个直角坐标系中,不可能正确的是()【考点】原函数与导函数的图象【难度】2星【题型】选择【关键词】2007,浙江,高考【解析】选项A中的直线为导函数图象;B中递减的曲线为导函数图象;C中上面的曲线为导函数图象,都没有矛盾.D中不论哪条曲线是导函数的图象,原函数都为单调的函数,故不可能.【答案】D函数的单调性【题5】函数214y xx=+的单调增区间为()A.(0)+∞,B.12⎛⎫+∞⎪⎝⎭,C.(1)-∞-,D.12⎛⎫-∞-⎪⎝⎭,【考点】函数的单调性【难度】2星【题型】选择【关键词】【解析】令2221(21)(421)80x x xy xx x-++'=-=>,得12x>.【答案】B【题6】三次函数3()1y f x ax==-在()-∞+∞,内是减函数,则()A.1a=B.2a=C.0a≤D.0a<【考点】函数的单调性 【难度】2星 【题型】选择 【关键词】【解析】 23y ax '=,要()f x 在R 上为减函数,当且仅当0a <. 【答案】D【题7】 若21()ln(2)2f x x b x =-++在(1)-+∞,上是减函数,则b 的取值范围是( )A .[1)-+∞,B .(1)-+∞,C .(1]-∞-,D .(1)-∞-,【考点】函数的单调性 【难度】2星 【题型】选择【关键词】2008,湖北,高考,题7【解析】 22()22b x x bf x x x x --+'=-+=++,当1x >-时,有()0f x ≤,又此时20x +>, 故220x x b --+≤,故222(1)1b x x x +=+-≤对一切(1)x ∈-+∞,成立,故1b -≤.【答案】C【题8】 若函数()221xf x x =-+,则()f x ( ) A .在()-∞+∞,单调增加 B .在()-∞+∞,单调减少C .在(11)-,单调减少,在(1)-∞-,与(1)+∞,上单调增加D .在(11)-,单调增加,在(1)-∞-,与(1)+∞,上单调减少【考点】函数的单调性 【难度】2星 【题型】选择 【关键词】【解析】 222222(1)222(1)(1)()(1)(1)x x x x x f x x x +-⋅+-'=-=++. 【答案】C【题9】 已知函数321()53f x x x ax =++-,若()f x 在[1)+∞,上是单调增函数,则a 的取值范围是 .【考点】函数的单调性 【难度】2星 【题型】填空 【关键词】【解析】 函数在[1)+∞,上是单调增函数[){}1()0x f x '⇔+∞⊆,≥ ()*, 2()244f x x x a a '=++∆=-,,分类讨论:①当0∆≤,即440a -≤,即1a ≥时,()*条件成立;②当011130(1)0a a f ∆>⎧<⎧⎪-<⇔⎨⎨+⎩⎪'⎩≥≥,即31a -<≤时,()*条件成立;综上,当3a -≥时,()*条件成立,3a -≥为所求.【答案】[3)-+∞,【题10】 )(x f 是定义在(0,)+∞上的非负可导函数,且满足()()0xf x f x '+≤,对任意正数,a b ,若a b <,则必有( )A .()()af a bf b ≤B .()()bf b af a ≤C .()()af b bf a ≤D .()()bf a af b ≤【考点】函数的单调性 【难度】2星 【题型】选择 【关键词】 【解析】 (())()()0xf x xf x f x ''=+≤,故函数()xf x 在区间(,)a b 上是非增函数,有()()af a bf b ≥【答案】B【题11】 已知函数32()(1)(2)f x x a x a a x b =+--++()a b ∈R ,.若函数()f x 在区间(11)-,上不单调...,求a 的取值范围. 【考点】函数的单调性【难度】2星 【题型】解答【关键词】2009,浙江,高考【解析】 由()0f x '=,得1x a =,223a x +=-. 函数()f x 在区间(11)-,不单调,等价于()0f x '=在区间(11)-,上有实数解,且无重根.即1123a a a -<<⎧⎪+⎨-⎪⎩≠或211323a a a +⎧-<-<⎪⎪⎨+⎪-⎪⎩≠,解得1112a a -<<⎧⎪⎨-⎪⎩≠或5112a a -<<⎧⎪⎨-⎪⎩≠.所以a 的取值范围是115122⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,.【答案】115122⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,,【题12】 已知函数()ln xf x x=. ⑴判断函数()f x 的单调性;⑵若()1y xf x x=+的图像总在直线y a =的上方,求实数a 的取值范围; ⑶若函数()f x 与()1263m g x x x =-+的图像有公共点,且在公共点处的切线相同,求实数m 的值.【考点】函数的单调性 【难度】3星 【题型】解答 【关键词】2010,宣武,二模,理,题19【解析】 ⑴可得21ln ()xf x x-'=. 当0x e <<时,()0f x '>,()f x 为增函数;当x e >时,()0f x '<,()f x 为减函数.⑵依题意,转化为不等式1ln a x x<+对于0x >恒成立.令1()ln g x x x=+,则21111()1g x x x x x ⎛⎫'=-=- ⎪⎝⎭.当1x >时,因为11()10g x x x ⎛⎫'=-> ⎪⎝⎭,()g x 是()1.+∞上的增函数,当()0,1x ∈时,()0g x '<,()g x 是()0,1上的减函数, 所以 ()g x 的最小值是(1)1g =, 从而a 的取值范围是(),1-∞.⑶转化为212ln 63x x x m =+-,ln y x =与21263y x x m =+-在公共点()00,x y 处的切线相同由题意知20000012ln 6311233x x x m x x ⎧=+-⎪⎪⎨⎪=+⎪⎩,∴解得:01x =,或03x =-(舍去),代入第一式,即有56m =.【答案】⑴()f x 的单调增区间为(0,)e ,单调减区间为(,)e +∞;⑵(),1a ∈-∞;⑶56m =.【题13】 设a ∈R ,函数()()()()2121ln 1f x x a x =--+-+.⑴若函数()f x 在点()()00f ,处的切线方程为41y x =-,求a 的值; ⑵当1a <时,讨论函数()f x 的单调性.【考点】函数的单调性 【难度】2星 【题型】解答【关键词】2009,西城,一模,题18【解析】 ⑴函数()f x 的定义域为()1-+∞,,()22221a f x x x -'=-+++2221x ax -+=+.因为()04f '=,所以2a =. ⑵当0a <时,因为10x +>,2220x a -+<,所以()0f x '<,故()f x 在()1-+∞,上是减函数;当0a =时,当()10x ∈-,时,()2201x f x x -'=<+,故()f x 在()10-,上是减函数,当()0x ∈+∞,时,()2201x f x x -'=<+,故()f x 在()0+∞,上是减函数,因为函数()f x 在()1-+∞,上连续,所以()f x 在()1-+∞,上是减函数;当01a <<时,由()22201x af x x -+'==+,得x =x =x 变化时,()f x ',()f x 的变化如情况下表:所以()f x 在1-,上为减函数、在+∞上为减函数;()f x 在上为增函数.综上,当0a ≤时,()f x 在()1-+∞,上是减函数;当01a <<时,()f x 在(1-,上为减函数、在)+∞上为减函数;()f x 在(上为增函数.【答案】⑴2a =;⑵当0a ≤时,()f x 在()1-+∞,上是减函数;当01a <<时,()f x 在(1-,上为减函数、在)+∞上为减函数;()f x 在(上为增函数.函数的极值【题14】 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =( ) A .2 B .3 C .4 D .5 【考点】函数的极值 【难度】2星【题型】填空【关键词】2005,全国,高考【解析】 2()323f x x ax '=++,又()f x 在3x =-取得极值,∴(3)0f '-=,即23(3)6305a a ⨯--+=⇒=.【答案】D【题15】 设a ∈R ,若函数x y e ax x =+∈R ,有大于零的极值点,则( ) A .1a <- B .10a -<< C .10a e -<< D .ea 1-<【考点】函数的极值 【难度】2星 【题型】填空 【关键词】2008,广东,高考,题9【解析】 x y e a '=+,由题意知0y '=有正根,故0a <,且ln()01a a ->⇒<-.【答案】A【题16】 函数3()4f x ax bx =++在12x =-有极大值283,在22x =有极小值是43-,则a = ;b = .【考点】函数的极值 【难度】2星 【题型】填空 【关键词】【解析】 2()3f x ax b '=+,(2)(2)120f f a b ''-==+=,又28(2)8243f a b -=--+=,4(2)8243f a b =++=-.解得13a =,4b =-. 【答案】13a =,4b =-.【题17】 求函数22()(0100)1a b f x x a b x x=+<<>>-,,的单调区间与极小值.【考点】函数的极值 【难度】2星 【题型】解答【关键词】【解析】 2222222222(1)()(1)(1)a b b x a x f x x x x x --'=-+=--22()[()](1)a a b x b a x a a b x x ⎛⎫+--+ ⎪+⎝⎭=-. 当0x =时,()0b a x a a -+=>;当1x =时,()0b a x a b -+=>,∴01x <<时,恒有()0b a x a -+>,令()0f x '=,解得ax a b=+(01)∈,.当0a x a b <<+时,()0f x '<,当1ax a b<<+时,()0f x '>.∴函数()f x 在0a a b ⎛⎫ ⎪+⎝⎭,上单调递减,在1a a b ⎛⎫⎪+⎝⎭,上单调递增,故()f x 在a x a b =+处取得极小值为2()a f a b a b ⎛⎫=+ ⎪+⎝⎭.【答案】()f x 在0a a b ⎛⎫ ⎪+⎝⎭,上单调递减,在1a a b ⎛⎫⎪+⎝⎭,上单调递增; 极小值为2()a f a b a b ⎛⎫=+ ⎪+⎝⎭.【题18】 已知函数()()2223x f x x ax a a e =+-+(x ∈R ),其中a ∈R .⑴当0a =时,求曲线()y f x =在点()()11f ,处的切线的斜率;⑵当23a ≠时,求函数()f x 的单调区间与极值. 【考点】函数的极值 【难度】2星 【题型】解答 【关键词】【解析】 ⑴ 当0a =时,()2x f x x e =,()()22x f x x x e '=+,故()13f e '=.所以曲线()y f x =在点()()11f ,处的切线的斜率为3e .⑵ ()()22224xf x x a x a a e '⎡⎤=++-+⋅⎣⎦.令()0f x '=,解得2x a =-,或2x a =-.由23a ≠知,22a a -≠-. 以下分两种情况讨论.① 若23a >,则22a a -<-.当x 变化时,()'f x ,()f x 的变化情况如下表:所以()f x 在()2a -∞-,,()2a -+∞,内是增函数,在()22a a --,内是减函数函数()f x 在2x a =-处取得极大值()2f a -,且()223a f a ae --=.函数()f x 在2x a =-处取得极小值()2f a -,且()()2243a f a a a --=-. ② 若2a >,则22a a ->-,当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 在()2a -∞-,,()2a -+∞,内是增函数,在()22a a --,内是减函数. 函数()f x 在2x a =-处取得极大值()2f a -,且()()2243a f a a e --=-. 函数()f x 在2x a =-处取得极小值()2f a -,且()223a f a ae --=.【答案】⑴3e ;⑵见解析.【题19】 已知函数()6ln (0)f x x x =>和2()8g x ax x =+(a 为常数)的图象在3x =处有平行切线.⑴求a 的值;⑵求函数()()()F x f x g x =-的极大值和极小值.【考点】函数的极值 【难度】2星 【题型】解答 【关键词】【解析】 ⑴ 6()f x x'=,()28g x ax '=+,根据题意,得(3)(3)f g ''=,解得1a =-.⑵ 2()()()6ln 8F x f x g x x x x =-=+-,令6()280F x x x'=+-=,得13x =,∵01x <<时,()0F x '>,()F x 单调递增;13x <<时,()0F x '<,()F x 单调递减;3x >时,()0F x '>,()F x 单调递增.∴()F x 的极大值为(1)7F =-,()F x 的极小值为(3)6ln315F =-.【答案】⑴1a =-;⑵()F x 的极大值为(1)7F =-,()F x 的极小值为(3)6ln315F =-.【题20】 设()323()1312f x x a x ax =-+++. ⑴若函数()f x 在区间()1,4内单调递减,求a 的取值范围;⑵若函数()f x 在x a =处取得极小值是1,求a 的值,并说明在区间()1,4内函数()f x 的单调性.【考点】函数的极值 【难度】2星【题型】解答【关键词】2010,丰台,一模,题18【解析】 ()()()()2331331f x x a x a x x a '=--+=--⑴∵函数()f x 在区间()1,4内单调递减, ∵(4)0f '≤,∴[)4,a ∈+∞.⑵∵函数()f x 在x a =处有极值是1,∴()1f a =.即()3223231313111222a a a a a a -+++=++=. ∴2(3)0a a -=,解得0a =或3. 当0a =时,()f x 在(),0-∞上单调递增,在()0,1上单调递减,所以()0f 为极大值, 这与函数()f x 在x a =处取得极小值是1矛盾,所以0a ≠.当3a =时,()f x 在()1,3上单调递减,在()3,+∞上单调递增,所以()3f 为极小值, 所以3a =满足.故3a =,()f x 在()1,3内单调递减,在[)3,4内单调递增.【答案】⑴[)4,a ∈+∞;⑵3a =,()f x 在()1,3内单调递减,在[)3,4内单调递增.【题21】 设函数322()31(,)f x ax bx a x a b =+-+∈R 在1x x =,2x x =处取得极值,且122x x -=.⑴若1a =,求b 的值,并求()f x 的单调区间;⑵若0a >,求b 的取值范围.【考点】函数的极值 【难度】4星 【题型】解答【关键词】2008,辽宁,高考,题22【解析】 22()323f x ax bx a '=+-.①⑴当1a =时,2()323f x x bx '=+-;由题意知12x x ,为方程23230x bx +-=的两根,所以12x x -=.由122x x -=,得0b =.从而2()31f x x x =-+,2()333(1)(1)f x x x x '=-=+-.当()11x ∈-,时,()0f x '<;当()()11x ∈-∞-+∞,,时,()0f x '>.故()f x 在()11-,单调递减,在()1-∞-,,()1+∞,单调递增.⑵由①式及题意知12x x ,为方程223230x bx a +-=的两根,所以12x x -=.从而221229(1)x x b a a -=⇔=-, 由上式及题设知01a <≤.考虑23()99g a a a =-,22()1827273g a a a a a ⎛⎫'=-=-- ⎪⎝⎭.故()g a 在203⎛⎫ ⎪⎝⎭,单调递增,在213⎛⎫ ⎪⎝⎭,单调递减,从而()g a 在(]01,的极大值为2433g ⎛⎫= ⎪⎝⎭.又()g a 在(]01,上只有一个极值,所以2433g ⎛⎫= ⎪⎝⎭为()g a 在(]01,上的最大值,且最小值为(1)0g =.所以2403b ⎡⎤∈⎢⎥⎣⎦,,即b的取值范围为⎡⎢⎣⎦. 【答案】⑴0b =,()f x 在()11-,单调递减,在()1-∞-,,()1+∞,单调递增. ⑵b的取值范围为⎡⎢⎣⎦.【题22】 设函数2()ln f x ax b x =+,其中0ab ≠.⑴求证:当0ab >时,函数()f x 没有极值点; ⑵当12a b ==-,时,求()f x 的极值.⑶求证:当0ab <时,函数()f x 有且只有一个极值点,并求出极值.【考点】函数的极值 【难度】3星【题型】解答【关键词】【解析】 ⑴因为2()ln 0f x ax b x ab =+≠,,所以()f x 的定义域为(0)+∞,.22222()2b a x b ax b a f x ax x x x ⎛⎫+ ⎪+⎝⎭'=+==. 当0ab >时,02b a>,202bx a +>,()0f x '=无解, 所以当0ab >时,函数()f x 没有极值点.⑵2()2ln f x x x =-,22(1)(1)()2x x f x x x x+-'=-=, 又函数()f x 的定义域为(0)+∞,,故()f x '在(01),上为负,在(1)+∞,上为正,故()f x 存在唯一的极小值点1x =,它有极小值(1)1f =.⑶当0ab <时,2()a x x f x x⎛- ⎝⎭⎝⎭'=, 令()0f x '=,得1(0)x =+∞,(舍去),2(0)x +∞,,当00a b ><,时,()f x ',()f x 随x 的变化情况如下表:函数()f x 有且只有一个极小值点,极小值为1ln 22b b f a⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦. 当00a b <>,时,()f x ',()f x 随x 的变化情况如下表:函数()f x 有且只有一个极大值点,极大值为1ln 22b b f a ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦. 综上所述,当0ab <时,当00a b ><,时,函数()f x 有且只有一个极小值点,极小值为1ln 22b b a⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.当00a b <>,时,函数()f x 有且只有一个极大值点,极大值为1ln 22b b a⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.【答案】⑴见解析;⑵()f x 存在唯一的极小值点1x =,它有极小值(1)1f =.⑶当00a b ><,时,()f x 有极小值1ln 22b b a⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦;当00a b <>,时,()f x 有极大值1ln 22b b a⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.函数的最值【题23】 已知32()26f x x x a =-+(a 是常数)在[22]-,上有最大值3,那么在[22]-,上的最小值是( ) A .5- B .11- C .29- D .37- 【考点】函数的最值 【难度】2星 【题型】选择 【关键词】【解析】 2()6126(2)f x x x x x '=-=-,令()0f x '>,解得2x >或0x <;当02x <<时,()0f x '<;于是()f x 在(20)-,上单调增,在(02),上单调减;于是()f x 在[22]-,上的最大值为(0)3f a ==.故32(2)2(2)6(2)337f -=⨯--⨯-+=-;32(2)226235f =⨯-⨯+=-,故()f x 在[22]-,的最小值为37-.【答案】D【题24】 设a ∈R ,函数32()3f x ax x =-.⑴若2x =是函数()y f x =的极值点,求a 的值;⑵若函数()()()[02]g x f x f x x '=+∈,,在0x =处取得最大值,求a 的取值范围. ⑶若函数()()()g x f x f x '=+在[02]x ∈,时的最大值为1,求a 的值.【考点】函数的最值 【难度】2星 【题型】解答 【关键词】2008,全国Ⅱ,高考,题21 【解析】 ⑴2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点.⑵由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤.反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5x x x =+-3(25)(2)5xx x =+-0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,.⑶∵(0)01g =<,故()g x 不在0x =时取到最大值,故65a >. 此时,2()36(1)60g x ax a x '=+--=有两个相异的实根,记为12x x ,(120x x <<), ∵0a >,故()g x 在2(0)x ,(12()x x ⊆,)上单调递减,在2()x +∞,上单调递增. 又()g x 在[02],上的最大值不在0x =时取到,故必有22x <,且()g x 在最大值在2x =时取到,即5(2)1812(1)124g a a a ==+--⇒=.【答案】⑴1a =;⑵a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,.⑶54a =.【题25】 设0a >,函数2()|ln 1|f x x a x =+-.⑴ 当1a =时,求曲线()y f x =在1x =处的切线方程;⑵ 当3a =时,求函数()f x 的单调性; ⑶ 当4a =,[1)x ∈+∞,时,求函数()f x 的最小值.【考点】函数的最值 【难度】3星 【题型】解答 【关键词】【解析】 ⑴ 当1a =时,2()|ln 1|f x x x =+-.令1x =,易得(1)2f =,(1)1f '=,所以切点为(12),,切线的斜率为1,所以曲线()y f x =在1x =处的切线方程为:10x y -+=.⑵ 当3a =时,223ln 3(0)()3ln 3()x x x e f x x x x e ⎧-+<⎪=⎨+-⎪⎩≤≥.当0x e <≤时,2323()2x f x x x x-'=-=,()f x 在0⎛ ⎝⎭内单调递减,]e ⎝内单调递增; 当x e ≥时,3()20f x x x'=+>恒成立,故()f x 在[)e +∞,内单调递增;综上,()f x 在0⎛ ⎝⎭内单调递减,⎫+∞⎪⎪⎝⎭内单调递增. ⑶ ①当x e ≥时,2()4ln 4f x x x =+-,4()2f x x x'=+∴()0f x '>恒成立,()f x 在[)e +∞,上为增函数.故当x e =时,2min y e =.②当1x e <≤时,2()4ln 1f x x x =-+,42()2(f x x x x x x'=-=()f x 在[1上为减函数,在]e 上为增函数,因此当x min 242ln 22y =+=-.【答案】⑴10x y -+=;⑵()f x 在0⎛ ⎝⎭内单调递减,⎫+∞⎪⎪⎝⎭内单调递增.⑶min 2ln 22y =-.【题26】 已知函数()()1ln 1af x x ax a x-=-+-∈R . ⑴ 当12a ≤时,讨论()f x 的单调性;⑵ 设()224g x x bx =-+.当14a =时,若对任意()102x ∈,,存在[]212x ∈,,使()()12f x g x ≥,求实数b 取值范围.【考点】函数的最值 【难度】4星 【题型】解答 【关键词】2010,山东,高考22【解析】 ⑴ 因为()1ln 1af x x ax x-=-+-,所以()()222111'0a ax x af x a x x x x --+-=-+=-∈+∞,,令()21h x ax x a =-+-,()0x ∈+∞,,(ⅰ)当0a =时,()1h x x =-+,()0x ∈+∞,,所以当()01x ∈,时,()0h x >,此时()0f x '<,函数()f x 单调递; 当()1x ∈+∞,时,()0h x <,此时()'0f x >,函数()f x 单调递增. (ⅱ)当0a ≠时,()0f x '=, 即210ax x a -+-=,解得11x =,211x a=-. ①当12a =时,12x x =,()0h x ≥恒成立,此时()'0f x ≤,函数()f x 在()0+∞,上单调递减; ②当102a <<时,1110a->>,()01x ∈,时,()0h x >此时()0f x '<,函数()f x 单调递减; 111x a ⎛⎫∈- ⎪⎝⎭,时,()0h x <,此时()0f x '>,函数()f x 单调递增; 11x a ⎛⎫∈-+∞ ⎪⎝⎭,时,()0h x >,此时()0f x '<,函数()f x 单调递减; ③当0a <时,由于110a-<,()01x ∈,时,()0h x >,此时()'0f x <,函数()f x 单调递减; ()1x ∈+∞,时,()0h x <,此时()'0f x >,函数()f x 单调递增.综上所述:当0a ≤时,函数()f x 在()01,和()1+∞,上单调递减; 当12a =时,函数()f x 在()0+∞,上单调递减; 当102a <<时,函数()f x 在()01,和11a ⎛⎫-+∞ ⎪⎝⎭,上单调递减,在111a ⎛⎫- ⎪⎝⎭,上单调递增; ⑵因为102a ⎛⎫= ⎪⎝⎭,,由⑴知,11x =,()2302x =∉,,当()01x ∈,时,()0f x '<.函数()f x 单调递减;当()12x ∈,时,()0f x '>,函数()f x 在单调递增,所以()f x 在()02,上的最小值为()112f =-.由于“对任意()102x ∈,,存在[]212x ∈,,使()()12f x g x ≥”等价于“()g x 在[]12,上的最小值不大于()f x 在()02,上的最小值12-”.又()()224g x x b b =-+-,[]12x ∈,,所以①当1b <时,因为()()min 1520g x g b ==->⎡⎤⎣⎦,此时与()*矛盾;②当[]12b ∈,时,因为()2min 40g x b =-⎡⎤⎣⎦≥,同样与()*矛盾;③当()2b ∈+∞,时,()()min 284g x g b ==-⎡⎤⎣⎦.解不等式1842b --≤,可得178b ≥.综上,b 的取值范围是178⎡⎫+∞⎪⎢⎣⎭,. 【答案】⑴当0a ≤时,函数()f x 在()01,和()1+∞,上单调递减; 当12a =时,函数()f x 在()0+∞,上单调递减; 当102a <<时,函数()f x 在()01,和11a ⎛⎫-+∞ ⎪⎝⎭,上单调递减,在111a ⎛⎫- ⎪⎝⎭,上单调递增; ⑵b 的取值范围是178⎡⎫+∞⎪⎢⎣⎭,.【题27】 已知函数()1e x a f x x ⎛⎫=+ ⎪⎝⎭,其中0a >.⑴求函数()f x 的零点;⑵讨论()y f x =在区间(,0)-∞上的单调性;⑶在区间,2a ⎛⎤-∞- ⎥⎝⎦上,()f x 是否存在最小值?若存在,求出最小值;若不存在,请说明理由.【考点】函数的最值 【难度】3星 【题型】解答 【关键词】2010,西城,一模,题19 【解析】 ⑴令()0f x =,得x a =-,所以函数()f x 的零点为a -.⑵函数()f x 在区域(,0)-∞上有意义,22()e xx ax a f x x +-'=⋅,令()0f x '=得12x x ==, 因为0a >,所以120,0x x <>,当x 在定义域上变化时,()f x '的变化情况如下:所以()f x 在区间,⎛-∞ ⎝⎭上是增函数,在区间0⎫⎪⎪⎝⎭上是减函数. ⑶在区间,2a ⎛⎤-∞- ⎥⎝⎦上()f x 存在最小值2a f ⎛⎫- ⎪⎝⎭,证明:由⑴知a -是函数()f x 的零点,因为10a x a --=-=>, 所以10x a <-<.由()1e x a f x x⎛⎫=+ ⎪⎝⎭知,当x a <-时,()0f x >.又函数在1(,0)x 上是减函数,且102ax a <-<-<.所以函数在区间1,2a x ⎛⎤- ⎥⎝⎦上的最小值为2a f ⎛⎫- ⎪⎝⎭,且02a f ⎛⎫-< ⎪⎝⎭.所以函数在区间,2a ⎛⎤-∞- ⎥⎝⎦上的最小值为2a f ⎛⎫- ⎪⎝⎭. 计算得2e 2aa f -⎛⎫-=- ⎪⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[对应学生用书P52]一、合情推理和演绎推理1.归纳和类比是常用的合情推理,都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的推理.从推理形式上看,归纳是由部分到整体,个别到一般的推理,类比是由特殊到特殊的推理,演绎推理是由一般到特殊的推理.2.从推理所得结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确.从二者在认识事物的过程中所发挥作用的角度考虑,它们又是紧密联系,相辅相成的.合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得.合情推理可以为演绎推理提供方向和思路.二、直接证明和间接证明1.直接证明包括综合法和分析法:(1)综合法是“由因导果”.它是从已知条件出发,顺着推证,用综合法证明命题的逻辑关系是:A⇒B1⇒B2⇒…⇒B n⇒B(A为已经证明过的命题,B为要证的命题).它的常见书面表达是“∵,∴”或“⇒”.(2)分析法是“执果索因”,一步步寻求上一步成立的充分条件.它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知(已知条件,包括学过的定义、定理、公理、公式、法则等).用分析法证明命题的逻辑关系是:B⇐B1⇐B2⇐…⇐B n⇐A.它的常见书面表达是“要证……只需……”或“⇐”.2.间接证明主要是反证法:反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法,反证法是间接证明的一种方法.反证法主要适用于以下两种情形:(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.三、数学归纳法数学归纳法是推理逻辑,它的第一步称为归纳奠基,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为归纳递推,是命题具有后继传递性的保证,两步合在一起为完全归纳步骤,这两步缺一不可,第二步中证明“当n =k +1时结论正确”的过程中,必须用“归纳假设”,否则就是错误的.⎣⎢⎢⎡⎦⎥⎥⎤对应阶段质量检测(二) 见8开试卷 一、填空题(本大题共14个小题,每小题5分,共70分,把答案填在题中横线上) 1.(新课标全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为________.解析:由甲、丙的回答易知甲去过A 城市和C 城市,乙去过A 城市或C 城市,结合乙的回答可得乙去过A 城市.答案:A2.周长一定的平面图形中圆的面积最大,将这个结论类比到空间,可以得到的结论是________.解析:平面图形中的图类比空间几何体中的球,周长类比表面积,面积类比体积. 故可以得到的结论是:表面积一定的空间几何体中,球的体积最大. 答案:表面积一定的空间几何体中,球的体积最大3.下列说法正确的是________.(写出全部正确命题的序号)①演绎推理是由一般到特殊的推理 ②演绎推理得到的结论一定是正确的 ③演绎推理的一般模式是“三段论”形式 ④演绎推理得到的结论的正误与大、小前提和推理形式有关解析:如果演绎推理的大前提和小前提都正确,则结论一定正确.大前提和小前提中,只要有一项不正确,则结论一定也不正确.故②错误.答案:①③④4.“因为AC ,BD 是菱形ABCD 的对角线,所以AC ,BD 互相垂直且平分.”以上推理的大前提是________.答案:菱形对角线互相垂直且平分5.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V1V2=13S1h113S2h2=⎝⎛⎭⎫S1S2·h1h2=14×12=18.答案:1∶86.(陕西高考)观察分析下表中的数据:解析:三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F+V-E=2.答案:F+V-E=27.由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的一个性质为________.解析:正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心,故可猜想:正四面体的内切球切于四个侧面各正三角形的中心.答案:正四面体的内切球切于四个侧面各正三角形的中心8.已知x,y∈R+,当x2+y2=________时,有x1-y2+y1-x2=1.解析:要使x1-y2+y1-x2=1,只需x2(1-y2)=1+y2(1-x2)-2y1-x2,即2y1-x2=1-x2+y2.只需使(1-x2-y)2=0,即1-x2=y,∴x2+y2=1.答案:19.用数学归纳法证明1+2+22+…+2n-1=2n-1(n∈N*)的过程如下:①当n =1时,左边=1,右边=21-1=1,等式成立;②假设当n =k (k ∈N *)时,等式成立,即1+2+22+…+2k -1=2k -1;③则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1,则当n =k +1时等式成立.由此可知,对任何n ∈N *,等式都成立.上述证明步骤中错误的是________.解析:因为③没有用到归纳假设的结果,错误. 答案:③10.如图,在平面直角坐标系xOy 中,圆x 2+y 2=r 2(r >0)内切于正方形ABCD ,任取圆上一点P ,若OP =m OA +n OB (m ,n ∈R),则14是m 2,n 2的等差中项;现有一椭圆x 2a 2+y 2b 2=1(a >b >0)内切于矩形ABCD ,任取椭圆上一点P ,若OP =m OA +n OB (m ,n ∈R),则m 2,n 2的等差中项为________.解析:如图,设P (x ,y ),由x 2a 2+y 2b2=1知A (a ,b ),B (-a ,b ),由OP=m OA +n OB 可得⎩⎪⎨⎪⎧x =(m -n )a ,y =(m +n )b ,代入x 2a 2+y 2b2=1可得(m -n )2+(m +n )2=1,即m 2+n 2=12,所以m 2+n 22=14,即m 2,n 2的等差中项为14.答案:1411.(安徽高考)如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一:直接递推归纳:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎫226=14.法二:求通项:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝⎛⎭⎫22n ,故a 7=2×⎝⎛⎭⎫226=14.答案:1412.已知x >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +a x n ≥n +1,则a 的值为________.解析:由x +1x ≥2,x +4x 2=x +22x 2≥3,x +27x 3=x +33x 3≥4,…,可推广为x +n n x n ≥n +1,故a =n n .答案:n n13.如图,第n 个图形是由正n +2边形“扩展”而来(n =1,2,3,…),则第n 个图形中共有________个顶点.解析:设第n 个图形中有a n 个顶点, 则a 1=3+3×3,a 2=4+4×4,…, a n -2=n +n ·n ,a n =(n +2)2+n +2=n 2+5n +6. 答案:n 2+5n +614.(湖北高考)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n ,……可以推测N (n ,k )的表达式,由此计算N (10,24)=________.解析:N (n ,k )=a k n 2+b k n (k ≥3),其中数列{a k }是以12为首项,12为公差的等差数列;数列{b k }是以12为首项,-12为公差的等差数列;所以N (n,24)=11n 2-10n ,当n =10时,N (10,24)=11×102-10×10=1 000.答案:1 000二、解答题(本大题共6个小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)设a >0,b >0,a +b =1,求证:1a +1b +1ab ≥8.证明:∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1ab ≥4⎝⎛⎭⎫当a =12,b =12时等号成立, 又1a +1b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b≥4. ⎝⎛⎭⎫当a =12,b =12时等号成立∴1a +1b +1ab≥8. 16.(本小题满分14分)已知数列{a n }满足a 1=1,a n +a n +1=⎝⎛⎭⎫15n (n ∈N *),若T n =a 1+a 2·5+a 3·52+…+a n ·5n -1,b n =6T n -5n a n ,类比课本中推导等比数列前n 项和公式的方法,求数列{b n }的通项公式.解:因为T n =a 1+a 2·5+a 3·52+…+a n ·5n -1,① 所以5T n =a 1·5+a 2·52+a 3·53+…+a n -1·5n -1+a n ·5n ,② 由①+②得:6T n =a 1+(a 1+a 2)·5+(a 2+a 3)·52+…+(a n -1+a n )·5n -1+a n ·5n =1+15×5+⎝⎛⎭⎫152×52+…+⎝⎛⎭⎫15n -1×5n -1+a n ·5n =n +a n ·5n , 所以6T n -5n a n =n ,所以数列{b n }的通项公式为b n =n . 17.(本小题满分14分)观察①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两式的结构规律,你能否提出一个猜想?并证明你的猜想. 解:观察40°-10°=30°,36°-6°=30°, 由此猜想:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=34.证明:sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=sin 2α+cos 2(30°+α)+sin α(cos 30°cos α-sin 30°sin α) =sin 2α+cos 2(30°+α)+32sin αcos α-12sin 2α =12sin 2α+cos 2(30°+α)+34sin 2α =1-cos 2α4+1+cos (60°+2α)2+34sin 2α=1-cos 2α4+12+14cos 2α-34sin 2α+34sin 2α=34. 18.(本小题满分16分)已知实数a 、b 、c 满足0<a ,b ,c <2,求证:(2-a )b ,(2-b )c ,(2-c )a 不可能同时大于1.证明:假设(2-a )b >1,(2-b )c >1,(2-c )a >1, 则三式相乘:(2-a )b (2-b )c (2-c )a >1①而(2-a )a ≤⎝ ⎛⎭⎪⎫2-a +a 22=1,同理,(2-b )b ≤1,(2-c )c ≤1, 即(2-a )b (2-b )c (2-c )a ≤1, 显然与①矛盾, 所以原结论成立.19.(本小题满分16分)数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1,a 2,a 3,a 4,并由此猜想通项a n 的表达式;(2)用数学归纳法证明(1)中的猜想.解:(1)由S n =2n -a n ,得,a 1=2-a 1,即a 1=1. S 2=a 1+a 2=4-a 2,解得a 2=32.S 3=a 1+a 2+a 3=6-a 3,解得a 3=74.S 4=a 1+a 2+a 3+a 4=8-a 4,解得a 4=158.由此猜想a n =2n -12n -1(n ∈N *).(2)①当n =1时,a 1=1,结论成立.②假设当n =k (k ∈N *)时,结论成立,即a k =2k -12k -1,那么当n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1, 则a k +1=2+a k 2=2+2k -12k -12=2k +1-12k =2k +1-12(k +1)-1,这就是说当n =k +1时,结论也成立. 根据①和②,可知猜想对任何n ∈N *都成立, 即a n =2n -12n -1(n ∈N *).20.(本小题满分16分)已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n+1),(1)证明:a n ≥2n -1(n ∈N *). (2)试比较11+a 1+11+a 2+…+11+a n与1的大小,并说明理由. 解:(1)证明:∵f ′(x )=x 2-1,∴a n +1≥(a n +1)2-1=a 2n +2a n .①当n =1时,a 1≥1=21-1,命题成立; ②假设当n =k (k ≥1,k ∈N *)时命题成立, 即a k ≥2k -1;那么当n =k +1时,a k +1≥a 2k +2a k =a k (a k +2)≥(2k -1)(2k-1+2)=22k -1≥2k +1-1.即当n =k +1时,命题成立, 综上所述,命题成立.(2)∵a n ≥2n -1,∴1+a n ≥2n ,∴11+a n ≤12n .∴11+a 1+11+a 2+…+11+a n ≤12+122+…+12n =1-12n <1.。

相关文档
最新文档