立体几何平面复习

合集下载

立体几何平面的基本性质

立体几何平面的基本性质

一、知识点:1.平面的概念:平面就是没有厚薄的,可以无限延伸,这就是平面最基本的属性2.平面的画法及其表示方法:①常用平行四边形表示平面通常把平行四边形的锐角画成45o ,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画(面实背虚)②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面AC 等3.空间图形就是由点、线、面组成的点、线、面的基本位置关系如下表所示:图形 符号语言 文字语言(读法) 图形 符号语言 文字语言(读法)A a A a ∈点A 在直线a 上 a αa α⊂ 直线a 在平面α内 A a A a ∉点A 不在直线a 上 a αa α=∅I 直线a 与平面α无公共点AαA α∈点A 在平面α内 a A αa A α=I 直线a 与平面α交于点AA αA α∉点A 不在平面α内 b a A a b A =I 直线a 、b 交于A 点l αβ=I 平面α、β相交于直线lα⊄a (平面α外的直线a )表示a α=∅I (a αP )或a A α=I4 平面的基本性质公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 应用:就是判定直线就是否在平面内的依据,也可用于验证一个面就是否就是平面.公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既就是判断直线在平面内,又就是检验平面的方法.公理2如果两个平面有一个公共点,那么它们还有其她公共点,且所有这些公共点的集合就是一条过这个公共点的直线推理模式:A l A ααββ∈⎫⇒=⎬∈⎭I 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上公理2揭示了两个平面相交的主要特征,就是判定两平面相交的依据,提供了确定两个平面交线的方法.公理3 经过不在同一条直线上的三点,有且只有一个平面BA α推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈ 应用:①确定平面;②证明两个平面重合 “有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”就是同义词,因此,在证明有关这类语句的命题时,要从“存在性”与“唯一性”两方面来论证. 5 平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形 6公理的推论:推论1 经过一条直线与直线外的一点有且只有一个平面、推理模式:A a ∉⇒存在唯一的平面α,使得A α∈,l α⊂推论2 经过两条相交直线有且只有一个平面 推理模式:P b a =I ⇒存在唯一的平面α,使得,a b α⊂推论3 经过两条平行直线有且只有一个平面推理模式://a b ⇒存在唯一的平面α,使得,a b α⊂二、基本题型:1 下面就是一些命题的叙述语,其中命题与叙述方法都正确的就是( )A.∵αα∈∈B A ,,∴α∈AB .B.∵βα∈∈a a ,,∴a =βαI .C.∵α⊂∈a a A ,,∴A α∈.D.∵α⊂∉a a A ,,∴α∉A .2.下列推断中,错误的就是( )A.ααα⊂⇒∈∈∈∈l B l B A l A ,,, C.βα∈∈C B A C B A ,,,,,,且A,B,C 不共线βα,⇒重合B.AB B B A A =⇒∈∈∈∈βαβαβαI ,,, D.αα∉⇒∈⊄A l A l ,3.两个平面把空间最多分成___ 部分,三个平面把空间最多分成__部分.4.判断下列命题的真假,真的打“√”,假的打“×”(1)空间三点可以确定一个平面 ( )(2)两个平面若有不同的三个公共点,则两个平面重合( )(3)两条直线可以确定一个平面( )(4)若四点不共面,那么每三个点一定不共线( )(5)两条相交直线可以确定一个平面( )(6)三条平行直线可以确定三个平面( )(7)一条直线与一个点可以确定一个平面( )(8)两两相交的三条直线确定一个平面( )5.瞧图填空 (1)AC ∩BD = (4)平面A 1C 1CA ∩平面D 1B 1BD =(2)平面AB 1∩平面A 1C 1= (5)平面A 1C 1∩平面AB 1∩平面B 1C =(3)平面A 1C 1CA ∩平面AC = (6)A 1B 1∩B 1B ∩B 1C 1= 6 6.选择题(1)下列图形中不一定就是平面图形的就是 ( )A 三角形B 菱形 C 梯形 D 四边相等的四边形O 11D 1B C 1O D B A(2)空间四条直线每两条都相交,最多可以确定平面的个数就是( )A 1个 B 4个C 6个 D 8个(3)空间四点中,无三点共线就是四点共面的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件(D )既不充分也不必要7.已知直线a //b //c ,直线d 与a 、b 、c 分别相交于A 、B 、C ,求证:a 、b 、c 、d 四线共面、 答案:1、 C 2、 D 3、 2,4,8 4、 ⑴×⑵×⑶×⑷√⑸√⑹×⑺×⑻×5、⑴O ⑵A 1B 1⑶O ⑷OO 1⑸B 1⑹B 16、 答案:⑴ D ⑵ C ⑶ D7、 证明:因为a //b ,由推论3,存在平面α,使得,a b αα⊂⊂又因为直线d 与a 、b 、c 分别相交于A 、B 、C ,由公理1,d α⊂下面用反证法证明直线c α⊂:假设c α⊄,则c C α=I ,在平面α内过点C 作c b 'P ,因为b //c,则c c 'P ,此与c c C '=I 矛盾、故直线c α⊂、综上述,a 、b 、c 、d 四线共面、。

初中数学易考知识点平面几何与立体几何

初中数学易考知识点平面几何与立体几何

初中数学易考知识点平面几何与立体几何初中数学易考知识点——平面几何与立体几何在初中数学学科中,平面几何与立体几何是必须掌握的基础知识点。

平面几何主要涉及平面内的图形性质与变换,而立体几何则着重于空间图形的性质与计算。

这两个知识点相辅相成,相互联系,是数学学习的重要环节。

下面将重点介绍初中数学易考知识点——平面几何与立体几何。

一、平面几何知识点1. 线段和角度线段是平面上两点之间的线段,它有长度。

求线段长度的方法包括直接测量和利用两点坐标计算等。

角度是由两条射线共同确定的,常用度、弧度作为表示单位。

求解角度大小的方法包括用量角器度量和通过两条直线的斜率计算等。

2. 基本图形的性质(1) 三角形:三角形是由三条线段组成的图形,其内角和为180度。

三角形的分类包括等边三角形、等腰三角形和普通三角形。

同样知道三角形的一边与其对应的角,可以用正弦、余弦、正切等三角函数求解其它边或角。

(2) 矩形:矩形有四个直角,相邻两边相等。

矩形的周长等于四边长之和,面积可以通过长乘以宽得到。

(3) 正方形:正方形是特殊的矩形,具有四个直角和四条边相等的性质。

它的周长等于四边长之和,面积可以通过边长的平方得到。

3. 相似和全等图形相似图形是指形状相同但尺寸不同的图形,它们之间的对应边长比相等。

全等图形是指形状和尺寸都相同的图形,它们的各个对应边和对应角完全相等。

相似与全等图形的判定条件与性质是考察的重点。

4. 圆的性质圆是由平面上所有与中心点的距离相等的点组成的图形。

圆的重要性质包括半径、直径、弧长和面积。

半径和直径是圆的基本尺寸,弧长是圆上的一段弧的长度,面积可以通过半径的平方和π来计算。

二、立体几何知识点1. 空间图形的表示(1) 空间直线:空间直线是由两点确定的直线,可以用两点坐标表示。

(2) 空间曲线:空间曲线是有方程或参数方程表示的曲线,常见的有圆柱曲线、抛物线等。

(3) 空间图形:空间图形包括平面图形与曲面图形,如平面、圆柱体、圆锥体、球等。

高二数学立体几何专题资料:空间点、直线、平面间的位置关系

高二数学立体几何专题资料:空间点、直线、平面间的位置关系

空间点、直线、平面间的位置关系[基础要点]1、平面:抽象概念,几何里的平面是无限 的4、直线和平面的位置关系: 、 、 。

5、平面与平面的位置关系: 、 、 。

题型一、集合语言的应用例1、下列叙述中,正确的是( )A 、因为,P Q αα∈∈,所以PQ α∈B 、因为,P Q αβ∈∈,所以PQ αβ⋂= C 、因为,,AB C AB D AB α⊂∈∈,所以CD α∈D 、因为,AB AB αβ⊂⊂,所以()A αβ∈⋂且()B αβ∈⋂变式:已知,m n 表示两条直线,,,αβγ表示平面,下列命题正确的是( )①若,m n αγβγ⋂=⋂=,且//m n ,则//αβ②若,m n 相交且都在,αβ外,//,//,//,//m m n n αβαα,则//αβ ③若//,//m m αβ,则//αβ ④若//,//m n αβ,且//m n ,则//αβ A 、1个 B 、2个 C 、3个 D 、4个 题型二、共线问题 例2、如图示,1O 是正方体1111ABCD A BC D -的上底面的中心,G 是对角线1AC 和截面11B D A 的交点,求证:1,,O G A 三点共线1A 1变式:已知三角形ABC 各边所在直线分别交平面α于P 、Q 、R 三点,求证: P 、Q 、R 三点共线题型三、共面问题例3、若三条平行线都与一条直线相交,则这四条直线共面变式:如图示,在正方体1111ABCD A BC D -中,E 为AB 的中点,F 为AA 1的中点,求证:(1)E 、C 、D 1、F 四点共面 (2)CE 、D 1F 、DA 三线共点题型四、异面直线问题例4、如图示,正方体1111ABCD A BC D -中,1111114A B B E D F ==,则1BE 与1DF 所成角的余弦值是( )A 、1517B 、12C 、817D、2变式:如图示,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE 的中点,将三角形ABC 沿DE 、EF 、DF 折成三棱锥后,GH 与IJ 所成角的度数为[自测训练]1、过平行六面体1111ABCD A BC D -任意两条棱的中点作直线,其中与平面11DBB D 平行的直线共有( ) A 、4条 B 、6条 C 、8条 D 、12条2、若空间中有四个点,则“这四个点中有三点在同一条直线上”是“这四个点在同一平面上”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 3、如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( ) A 、12对 B 、24对 C 、36对 D 、48对4、在空间四边形ABCD 的边AB 、BC 、CD 、DA 上分别取点E 、F 、G 、H ,若EF 与HG交1A 1FD1CDB1EA1BC1AFE1F1A I C E F D GBJ H于一点M ,则( ) A 、M 一定在直线AC 上 B 、M 可能在直线AC 上,也有可能在直线BD 上 C 、M 一定在直线BD 上D 、M 既不在直线AC 上,也不在直线BD 上5、正六棱柱111111ABCDEF A BC D E F -的底面边长为1对角线1E D 与1BC 所成的角是( )A 、90B 、60C 、45D 、306、如图示,正三棱锥S-ABC 的侧棱与底面边长都相等,若E 、F 分别为SC 、AB 的中点,则异面直线EF 与SA 所成的角等于( )A 、90B 、60C 、45D 、307、三个平面把空间最多成 部分,最少分成 部分8、空间四点A 、B 、C 、D ,其中任何三点都不在同一直线上,它们一共可以确定 个平面;共点的三条直线可以确定 个平面;空间n 条平行直线最多能确定 个平面。

高考立体几何专题复习公开课获奖课件

高考立体几何专题复习公开课获奖课件
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

立体几何知识点总结

立体几何知识点总结

立体几何复习知识点总结传统几何证明方法知识要点一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法6、据定义:如果一条直线和一个平面没有公共点7、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行8、两面平行,则其中一个平面内的直线必平行于另一个平面9、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面10、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法90角1、定义:成2、直线和平面垂直,则该线与平面内任一直线垂直3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直七、判定面面垂直的方法1、 定义:两面成直二面角,则两面垂直2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面八、面面垂直的性质1、 二面角的平面角为︒902、 在一个平面内垂直于交线的直线必垂直于另一个平面3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面九、各种角的范围1、异面直线所成的角的取值范围是:︒≤<︒900θ (]︒︒90,02、直线与平面所成的角的取值范围是:︒≤≤︒900θ []︒︒90,03、斜线与平面所成的角的取值范围是:︒≤<︒900θ (]︒︒90,04、二面角的大小用它的平面角来度量;取值范围是:︒≤<︒1800θ (]︒︒180,0十、三角形的心1、 内心:内切圆的圆心,角平分线的交点2、 外心:外接圆的圆心,垂直平分线的交点3、 重心:中线的交点4、 垂心:高的交点十一、常用公式1、球的表面积公式:24R S π=.2、球的体积公式:334R V π=. 3、圆柱体积:h r V 2π=(r 为半径,h 为高)4、圆锥体积:h r V 231π=(r 为半径,h 为高) 5、锥体体积:Sh V 31=(S 为底面积,h 为高) 6、扇形面积公式R 是扇形半径,n 是弧所对圆心角度数,π是圆周率,L 是扇形对应的弧长。

2023届高考数学总复习:立体几何复习题附答案


a,
在 Rt△FCM 中,tan∠FCM .

∴sin∠FCM ,
故直线 CF 与平面 ACDE 所成角的正弦值为 . 2.如图,在三棱柱 ABC﹣A1B1C1 中,BC⊥平面 AA1C1C,D 是 AA1 的中点,△ACD 是边长
为 1 的等边三角形. (1)证明:CD⊥B1D; (2)若 BC ,求二面角 B﹣C1D﹣B1 的大小.
,令
由(1)知,平面 B1C1D 的一个法向量为
,得
,, ,
, ,,
故 th< , >

所以二面角 B﹣C1D﹣B1 的大小为 30°.
第3页共3页
在直角梯形 AEFB 中,有 AF EF,BF

∴AF2+BF2=AB2,即 AF⊥BF.
∵BC∩BF=B,BC、BF⊂平面 BCF,
∴AF⊥平面 BCF.
EF,AB=2EF,
(2)解:∵AE⊥平面 ABC,AE⊂平面 ACDE,∴平面 ACDE⊥平面 ABC,
又平面 ABC∥平面 DEF,∴平面 ACDE⊥平面 DEF.
【解答】解:(1)证明:因为△ACD 是边长为 1 的等边三角形,所以∠ADC=60°,∠ DA1C1=120° 因为 D 是 AA1 的中点,所以 AD=A1D=A1C1=1,即△A1C1D 是等腰三角形, 则∠A1DC1=30°,故∠CDC1=90°,即 CD⊥C1D, 因为 BC⊥平面 AA1C1C,BC∥B1C1,所以 B1C1⊥平面 AA1C1C, 因为 CD⊂平面 AA1C1C,所以 B1C1⊥CD, 因为 B1C1∩C1D=C1,B1C1⊂平面 B1C1D,C1D⊂平面 B1C1D,所以 CD⊥平面 B1C1D, 因为 B1D⊂平面 B1C1D,所以 CD⊥B1D;

立体几何复习专题及答案-高中数学

立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

立体几何知识点和例题(含有答案)

【考点梳理】一、考试内容1.平面。

平面的基本性质。

平面图形直观图的画法。

2.两条直线的位置关系。

平行于同一条直线的两条直线互相平行。

对应边分别平行的角。

异面直线所成的角。

两条异面直线互相垂直的概念。

异面直线的公垂线及距离。

3.直线和平面的位置关系。

直线和平面平行的判定与性质。

直线和平面垂直的判定与性质。

点到平面的距离。

斜线在平面上的射影。

直线和平面所成的角。

三垂线定理及其逆定理。

4.两个平面的位置关系。

平面平行的判定与性质。

平行平面间的距离。

二面角及其平面角。

两个平面垂直的判定与性质。

二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。

对于异面直线的距离,只要求会计算已给出公垂线时的距离。

2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。

对于异面直线上两点的距离公式不要求记忆。

3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。

能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。

三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。

(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。

平面解析几何以及立体几何复习题

一 、选择题:本大题共15小题,每小题4分,共60分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

1.椭圆的对称轴是坐标轴,离心率23e =,长轴长为6,则椭圆的方程为( )。

.A 2213620x y += .B 22195x y +=或22195y x += .C 22195x y += .D 2212036x y +=或2212036y x += 2. 圆22230x y y +--=的圆心及半径为( )。

.A 012(,),r = .B 014(,),r = .C 012(,-),r = .D 014(,-),r = 3.下列命题中的真命题是( )。

.A 若直线l 垂直于平面a 内的二直线、a b ,则l ^a.B 若直线l 与平面a 相交,则过l 且与a 垂直的平面只有一个 .C 过平面a 外一点,只能作一个平面与a 平行 .D 与两条异面直线都相交的二直线也是异面直线4.直线210ax y ++=与直线220x y ++=垂直,那么a 的值为( )。

.A 4 .B 4- .C 1 .D 1-5.双曲线22123y x -=的离心率为( )。

.A 3 .B 2.C 3 .D 26.双曲线的方程是221205x y -=,那么它的焦距是( )。

.A 5 .B 10 .C .D7.抛物线214y x =的焦点坐标是( )。

.A 1016(,) .B 1016(,) .C ()0,1 .D ()01,8.圆心为23(,)-,半径r = )。

.A ()()2223=18x y +++ .B ()()2223=18x y ++- .C ()()2223=18x y -++ .D ()()2223=18x y -+-9.抛物线24x y =的准线方程为( )。

.A 1x = .B 1x =- .C 1y = .D 1y =- 10.过点13(,)-且垂直于直线230x y -+=的直线方程为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面的基本性质
观察下列图形,你能得到什么结论?
B
桌面α
A
公理1.如果一条直线上两点在一个平面内,那么这条直 线上的所有的点都在这个平面内(即直线在平面内)线上两点在一个平面内,那么这条直线 上的所有的点都在这个平面内(即直线在平面内)。
图形语言:
l B
α
A
符号语言: 符号表示:
1、平面图形与立体图形的联系与区别: 联系:从集合论的角度看,两者都是点的集合;
区别:① 平面图形的点都在一个平面内, 而立体图形的点不全在一个平面内;
② 平面图形由点、线构成, 而立体图形是由点、线、面构成。
2、空间图形
平面图形 立体图形
3、立体图形的研究方法:
① 考虑问题时,要着眼于整个空间,而不 是局限于某一个平面; ② 立体图形的问题常常转化为平面图形问 题来解决。
Al, B l,且A , B l
若A , B 直线AB
公理1的作用有三:
一 是可以用来判定一条直线是否在平面内,即 要判定直线在平面内,只需确定直线上两个 点在平面内即可;
二 是可以用来判定点在平面内,即如果直线在 平面内、点在直线上,则点在平面内.
三 是表明平面是“平的”
观察下列图形,你能得到什么结论?
天花板α
墙面γ
P 墙面β
β
a
α
P
公理2.如果不重合的两个平面有一个公共点,那么 它们有且只有一条过这个点的公共直线
公理2.如果不重合的两个平面有一个公共点,那么它们有 且只有一条过这个点的公共直线
图形语言:
β
a P α
符号语言:
P P
l且P
l
如果两个平面有一条公共直线,则称这两个平面 相交,这条公共直线叫做这两个平面的交线。
D1
C1
O
A1
B1
D A
C B
B
αA
C
公理3.过不在同一直线上的三点,有且只有一个平面.
公理3.过不在同一直线上的三点,有且只有一个平面.
B
图形语言:
αA
C
或记为平面ABC
符号语言:
A, B,C三点不共线 有且只有一个平面
使A , B ,C
公理3的作用有二: 一、确定平面的依据;
二、判定点或线的共面
公理2的作用有三:
一 是判定两个平面相交,即如果两个平面有一个 公共点,那么这两个平面相交;
二 是判定点在直线上,即点若是某两个平面的公 共点,那么这点就在这两个平面的交线上.
三.两平面两个公共点的连线就是它们的交线
β
P
l
α
【例1】在长方体ABCD—A1B1C1D1中, 画出平面A1C1D与平面B1D1D的交线.
βA
Ba b
C
直线a // b 有且只有一个平面, 使得a ,b .
思考1:不共面的四点可以确定多少个平面?
思考2:四条相交于同一点的直线a,b,c,d并且任意三 条都不在同一平面内,由它们中的两条来确定平面, 可以确定多少个平面?
2.判断下列命题是否 正确: (1)经过三点确定一个平面。(×) (2)经过同一点的三 条直线确定一个平面。(×) (3)若点A 直线a,点A 平面α,则a α.(×) (4)平面α与平面β 相交,它们只有有限个公共点。
问题一:你能过任意一点引三条互相垂直的 直线吗?
墙角
问题二:
给你六根长度相同的火柴棒,以火柴棒为边长,你 最多能搭成几个正三角形呢?
平面
空间
启示: 考虑问题要着眼于整个空间,而不是局限于一个平面。
问题三:你能画出一个四边形,使它的对角 线所在的直线不相交吗?
折纸
上述图形即为立体图形
第十四章 立体几何
(×)
推论1.一条直线和直线外一点唯一确定一个平面。
A
a
β
B
C
数学语言表示:
A直线a 有且只有一个平面, 使得A ,a .
推论2.两条相交直线唯一确定一个平面。
a
βb
C
数学语言表示:
直线a I b C 有且只有一个平面, 使得a ,b .
推论3.两条平行直线唯一确定一个平面。
数学语言表示:
D
C
A
B
平面α 、平面ABCD 、平面AC
符号表示:通常用希腊字母 , , 等来表 示,如:平面 也可用表示平行四边形的两个 相对顶点的字母来表示,如:平面AC.
(1)水平放置的平面:
a
(2)垂直放置的平面:
ß
一般用水平放置的正方形的直观图作为水平放 置的平面的直观图
(3)在画图时,如果图形的一部分被另一部分遮住, 可以把遮住部分画成虚线,也可以不画。
一.平面的概念:
(1)平面的直观认识
光滑的桌面、平静的湖面等都是我们很熟悉. 象这些桌面、平静的湖面、镜面、黑板面等都给我们以_平__面_的 印象
数学中的平面概念是现实平面加以抽象的结果。
(2)平面的特征:
平面没有大小、厚薄和宽窄,平面在空间是无限延伸的。
(3)平面的表示方法
几何画法:通常用平行四边形来表示平面.
相关文档
最新文档