整式2-3

合集下载

整式的所有概念

整式的所有概念

整式的所有概念整式是指由多个字母和常数通过有限次的加减乘除运算得到的多项式,也叫多项式函数。

在整式中,字母称为变量,常数称为系数。

整式是代数学中重要的概念,被广泛应用于各个数学领域,如代数、几何、概率等。

一、整式的基本概念1. 变量:整式中的字母通常用来表示未知量,可代表各种数值。

2. 系数:整式中字母的系数称为系数,系数可以是实数、有理数、整数或自然数等。

3. 单项式:只含有一个变量的整式,如3x、-4y^2等。

4. 多项式:由若干个单项式相加减得到的整式,如2x^2+3xy-5y^2等。

5. 最高次数:多项式中各单项式的次数的最大值称为多项式的最高次数。

6. 约束条件:用于限制变量的取值范围的条件,如不等式、方程等。

二、整式的运算1. 加法:整式与整式相加,按照对应项相加的原则进行运算。

2. 减法:整式与整式相减,按照对应项相减的原则进行运算。

3. 乘法:整式与整式相乘,按照分配律和乘法运算法则进行运算。

4. 除法:整式与整式相除,除法运算可通过因式分解与因式消去进行简化。

三、整式的性质和特点1. 对称性:整式具有对称性,即交换两个整式的次序仍可保持运算结果不变。

2. 同类项合并:多项式中相同次数的单项式可合并,该性质有助于简化整式。

3. 分解因式:整式可以通过因式分解化简,找到整式的因式有助于求解方程、图像等问题。

4. 比较大小:可通过整式的次数和系数对比大小,进一步研究整式的性质。

5. 二次函数:一种特殊的整式,其最高次数为2,常见的代表形式为f(x)=ax^2+bx+c。

四、整式的应用领域1. 代数方程:利用整式进行方程的求解和求根。

2. 几何学:整式在图形的建模中起重要作用,如通过函数图像求解交点、切线等。

3. 概率和统计:整式在概率和统计中用于计算合成概率、数据拟合等。

4. 数值计算:整式在数值计算中用于插值和多项式逼近等。

5. 计算机科学:整式在计算机科学中用于编程和算法设计等。

整式的加减第3课时整式的加减PPT课件(北师大版)

整式的加减第3课时整式的加减PPT课件(北师大版)
解:原式=-7a3+3a2+6a-3,当a=-2时,原式=53
10.(6 分)已知某三角形第三条边长等于 2n-m,求这个三角形的周长.
解:(m+n)+(m-3)+(m+n)+(2n-m)=2m+4n-3
一、选择题(每小题 5 分,共 15 分) 11.如果 b=2a-1,c=-3a,那么 a+b+c 等于( A ) A.-1 B.-2 C.1 D.2 12.如果 a,b 互为相反数,那么(5a2-10a)-5(a2+2b-3)的值为 ( C) A.-10 B.5 C.15 D.-15
6.(3 分)某校组织若干师生到活动基地进行社会实践活动.若学 校租用 45 座的客车 x 辆,则余下 20 人无座位;若租用 60 座的客车 则可少租用 2 辆,且最后一辆还没坐满,则乘坐最后一辆 60 座客车的 人数是( C )
A.200-60x B.140-15x C.200-15x D.140-60x
17.(10 分)已知小明的年龄是 m 岁,小红的年龄比小明的年龄的 2 倍少 4 岁,小华的年龄比小红年龄的21还多 1 岁,求这三名同学的年 龄之和是多少? 解:将代数式(x3+5x2+4x-3)-(-x2+2x3-3x-1)+(4-7x-6x2+ x3)去括号化简可得原式=2,即此代数式化简后的结果不含 x,∴不论 x 取何值,代数式的值不变
5a+13b
(3)5(a2b-3ab2)-2(a2b-7ab2); 3a2b-ab2 (4)3x2-[7x-(4x-3)-2x2].
5x2-3x-3
整式加减的应用 5.(2 分)一个长方形的一边长是 2a+3b,另一边长是 a+b,则这 个长方形的周长是( B ) A.12a+16b B.6a+8b C.3a+8b D.6a+4b

整式的化简知识点总结

整式的化简知识点总结

整式的化简知识点总结1. 整式的概念:由若干个单项式通过加减运算组合而成的代数式称为整式。

2. 整式的分类:-一次整式:次数为1 的整式,例如:3x + 2y - 5.-二次整式:次数为2 的整式,例如:x^2 + 3xy - 2y^2.-三次整式:次数为3 的整式,例如:x^3 - 2x^2y + xy^2 - y^3.-高次整式:次数大于3 的整式。

3. 整式的化简:通过加减运算、乘除运算,将整式中的项进行合并或消去,使整式变得更加简洁。

4. 整式的加减运算:-同类项:具有相同变量和相同次数的项称为同类项。

-合并同类项:将同类项的系数相加,字母和字母的指数不变。

-运用加减法则:将整式中的同类项合并,不是同类项的一般不能合并。

5. 整式的乘除运算:-单项式乘以多项式:将单项式与多项式的每一项分别相乘,然后将结果相加。

-多项式乘以多项式:将多项式的每一项与另一个多项式的每一项分别相乘,然后将结果相加。

-整式的除法:将除数与被除数的每一项分别相除,然后将结果相加。

注意:除数不能为0.6. 整式的因式分解:将整式分解为若干个因式的乘积。

常见的因式分解方法有提公因式、运用公式等。

重难点精析1. 合并同类项:掌握同类项的定义,能够准确判断哪些项是同类项,哪些不是。

注意同类项的系数可以相加,字母和字母的指数不变。

2. 整式的乘除运算:掌握单项式乘以多项式、多项式乘以多项式的运算方法,注意运算顺序和运算法则。

在整式的除法中,注意除数不能为0.3. 因式分解:掌握常见的因式分解方法,如提公因式、运用公式等。

因式分解是整式化简的重要方法,需要熟练掌握。

七上数学第二章整式的加减

七上数学第二章整式的加减

七上数学第二章整式的加减摘要:1.整式的概念及其分类2.整式的加减运算法则3.整式的加减运算实例分析4.整式的加减运算技巧和方法5.整式的加减在实际问题中的应用正文:七上数学第二章整式的加减一、整式的概念及其分类整式是指由常数、变量和它们的乘积以及它们的和差所组成的代数式。

整式可以分为单项式和多项式两大类。

单项式是只包含一个变量或常数的代数式,例如:3x、-2y等;多项式是由多个单项式通过加减运算组合而成的代数式,例如:x+3xy-2y等。

二、整式的加减运算法则整式的加减运算主要遵循以下法则:1.同类项相加减:同类项是指具有相同变量和相同次数的项,例如:3x 和4x 是同类项,而2x 和3y 不是同类项。

2.合并同类项:将同类项的系数相加减,字母和字母的指数不变。

3.遵循交换律和结合律:整式的加减运算可以交换顺序,也可以先计算部分项的和差,再进行总的加减运算。

三、整式的加减运算实例分析例如:计算以下整式的和差。

(1) 5x + 3xy - 2y + 2x - xy首先合并同类项,得到:7x + 2xy - 2y。

(2) 4a - 2b + 3c - (2a - b + c)去括号后,合并同类项,得到:2a - b + c。

四、整式的加减运算技巧和方法1.观察运算符号,根据符号进行相应的加减运算。

2.利用分配律,将加减运算分解为多个简单的加减运算。

3.注意合并同类项,避免遗漏或重复计算。

4.可以使用括号改变运算顺序,简化计算过程。

五、整式的加减在实际问题中的应用整式的加减在解决实际问题中具有重要作用,例如:在几何中求解面积、周长等问题时,需要用到整式的加减运算;在代数方程中,整式的加减是求解方程的重要手段。

整式其加减知识点总结

整式其加减知识点总结

整式其加减知识点总结一、整式的基本概念1. 整式:由正整数幂、变量和它们的积(包括系数)以及它们的和或差组成的式子称为整式。

2. 字母的幂:整式中的变量乘方。

3. 项:整式中的单个元素,可以是常数、变量或者它们的乘积。

4. 系数:整式中变量的乘方的系数,可以是数字或者其他变量的多项式。

5. 次数:整式中变量的幂次的最高指数。

二、整式的加法1. 整式的加法公式:将同类项相加,即将具有相同字母幂的项相加,并将结果写成一个整式。

2. 同类项:具有相同字母幂的项即为同类项。

3. 加法运算规则:将同类项的系数相加,并将相同的字母幂保持不变。

三、整式的减法1. 整式的减法公式:与整式的加法类似,只是将同类项相减,并将结果写成一个整式。

2. 减法运算规则:将同类项的系数相减,并将相同的字母幂保持不变。

四、整式的加减混合运算1. 整式的加减混合运算:将整式的加法和减法相结合,首先将同类项相加或相减,然后将结果写成一个整式。

2. 加减混合运算规则:先将同类项相加或相减,然后将结果整理成一个整式。

3. 注意事项:注意符号的加减变换,并且要注意合并同类项时系数的变化。

五、整式加减的化简1. 整式加减的化简:将整式中的同类项相加或相减,然后将结果整理成一个简化的整式。

2. 通常包括的步骤:合并同类项、整理系数、整理变量。

六、整式加减的应用1. 代数方程式的整理:将代数方程式中的整式进行加减混合运算,将同类项进行合并后化简方程式。

2. 代数方程式的解:通过整式的加减混合运算,可以更方便地求解代数方程式,从而得到方程的解。

七、整式加减的补充1. 整式的系数:整式中变量的乘方的系数可以是数字,也可以是其他变量的多项式。

2. 多项式的次数:整式中变量的幂次的最高指数即为整式的次数。

3. 整式的导数:整式的导数表示对整式中的变量求导数。

4. 整式的积分:整式的积分表示对整式中的变量求不定积分。

综上所述,整式的加减是代数中的基础运算,需要掌握多项式的各种形式以及相关运算规则。

整式的概念知识点

整式的概念知识点

整式的概念知识点(原创实用版)目录1.整式的定义2.整式的分类3.整式的基本运算4.整式的性质5.整式的应用正文1.整式的定义整式是指由常数、变量和它们的积与和所构成的代数式。

其中,变量通常用字母表示,如 x、y、z 等,而常数则表示为数字或者字母与数字的乘积,例如 2、3a 等。

整式中各项的次数是指该项中所有变量的指数之和。

例如,在代数式 3x^2 + 2xy - y^2 中,第一项的次数是 2,第二项的次数是 1,第三项的次数是 2。

2.整式的分类根据整式中各项的次数,可以将整式分为一次整式、二次整式、三次整式等。

一次整式是指次数为 1 的整式,例如 2x + 3。

二次整式是指次数为 2 的整式,例如 x^2 + 2xy - y^2。

三次整式是指次数为 3 的整式,例如 x^3 - 3x^2y + 2xy^2。

3.整式的基本运算整式的基本运算包括加法、减法、乘法和除法。

其中,同类项相加减时,只需将它们的系数相加减,变量和变量的指数保持不变。

例如,(2x + 3y) + (x - y) = 3x + 2y。

整式的乘法是指将一个整式乘以另一个整式或者一个数,例如 (2x + 3y)(x - y) = 2x^2 - 2xy + 3xy - 3y^2。

整式的除法是指将一个整式除以另一个整式,例如 (x^2 - 2xy + y^2) / (x - y) = x - y。

4.整式的性质整式具有以下性质:(1) 整式的各项可以交换位置,整式的值不变。

(2) 整式的各项可以乘以一个非零常数,整式的值不变。

(3) 若整式中有同类项,可以合并成一项,合并后的项的系数为原项系数之和,变量和变量的指数保持不变。

(4) 整式的值与它的各项的值有关,可以通过改变各项的值来改变整式的值。

5.整式的应用整式在数学中有广泛的应用,例如在代数、几何、物理等领域。

整式可以用来表示问题的关系式、函数等。

解整式方程是求解数学问题的一种方法,可以得到变量的值,从而解决问题。

整式求值经典题型(9大类型)(原卷版)

整式求值经典题型(9大类型)(原卷版)

专题2.2 整式求值经典题型(9大类型)【题型1 直接代入】【题型2 整体代入-配系数】【题型3整体代入-奇次项为相反数】【题型4 整体构造代入】【题型5不含无关】【题型6 化简求值】【题型7 绝对值化简求值】【题型8 非负性求值】【题型9 定义求值】【题型1 直接代入】【典例1】(2023•琼山区校级模拟)当x=﹣1时,代数式3x+1的值是()A.﹣4B.﹣2C.2D.4【变式1-1】(2023•秀英区模拟)当x=﹣2时,代数式3﹣2x的值是()A.﹣7B.7C.9D.﹣9【变式1-2】(2022秋•平泉市校级期末)当,计算代数式﹣x2﹣1=()A.0B.C.D.【变式1-3】(2021秋•济宁期末)当x=﹣1时,代数式2x2﹣5x的值为()A.5B.3C.﹣2D.7【题型2 整体代入-配系数】【典例2】(2023春•吴江区期中)当x2﹣3x=1时,代数式2x2﹣6x+3的值为()A.2B.3C.4D.5【变式2-1】(2022秋•平泉市期末)已知x﹣2y﹣4=﹣1,则代数式3+2x﹣4y 的值为()A.7B.6C.0D.9【变式2-2】(2023春•永安市期中)若x﹣3y=﹣5,则代数式5+2x﹣6y的值是()A.0B.﹣5C.﹣10D.﹣15(2023•香洲区一模)已知2a+3b=4,则整式﹣4a﹣6b+1的值是()【变式2-3】A.5B.3C.﹣7D.﹣10【题型3整体代入-奇次项为相反数】【典例3】(2023春•长治月考)当x=1时,代数式ax3﹣3bx+4的值是9,则当x=﹣1时,这个代数式的值是()A.9B.8C.﹣1D.﹣9(2020秋•越秀区校级期中)当x分别等于2或﹣2时,代数式ax4+bx2+1【变式3-1】的两个值()A.相等B.互为相反数C.互为倒数D.相差2【变式3-2】(2022秋•滦州市期末)当x=1时,多项式ax3+bx﹣2的值为2,则当x=﹣1时,该多项式的值是()A.﹣6B.﹣2C.0D.2【变式3-3】(2022秋•衡东县期末)当x=1时,代数式px3+qx+1的值为2022,则当x=﹣1时,px3+qx+4043的值为()A.2020B.﹣2020C.﹣2021D.2022【变式3-4】(2022秋•射洪市期末)已知:当x=3时,代数式ax2021+bx2019﹣1的值是8,则当x=﹣3时,这个代数式的值是()A.﹣10B.8C.9D.﹣8【题型4 整体构造代入】【典例4】(2023春•南宁期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x =3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是中学教学课题中的一种重要的思想方法,它在方程、多项式的求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣5(a﹣b)2的结果是.(2)已知x﹣2y=1,求3x﹣6y﹣5的值.(3)拓展探索:已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【变式4-1】(2022秋•翠屏区期末)若a+b=﹣5,b﹣c=﹣1,则c﹣a﹣2b的值为()A.6B.4C.﹣6D.﹣4【变式4-2】(2022秋•永年区期末)已知a+b=3,c﹣d=﹣2,则(b+c)﹣(d ﹣a)的值为()A.5B.﹣5C.1D.﹣1【变式4-3】(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3分)(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b ﹣c)的值.【题型5 不含无关】【典例5】(2022秋•青川县期末)已知多项式A=x2+xy+3y,B=x2﹣xy.(1)求2A﹣B;(2)x=﹣2,y=5时,求2A﹣B的值;(3)若2A﹣B的值与y的值无关,求x的值.【变式5-1】(2022秋•长沙期末)已知关于x,y的多项式mx2+2xy﹣x与3x2﹣2nxy+3y的差不含二次项,求n m的值()A.﹣1B.1C.3D.﹣3【变式5-2】(2023春•青阳县期末)如果多项式3x2﹣7x2+x+k2x2﹣5中不含x2项,则k的值为()A.2或﹣2B.﹣2C.0D.2【变式5-3】(2022秋•自贡期末)已知多项式A=x2+xy+3y,B=x2﹣xy.(1)求3A﹣2B的值;(2)若3A﹣2B的值与y的取值无关,求x的值.【变式5-4】(2022秋•栖霞市期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+1,(1)求3A﹣6B;(2)若3A﹣6B的值与x的取值无关.求y的值.【题型6 化简求值】【典例6】(2022秋•华容区期末)先化简,再求值:,其中a=﹣3,b=﹣2.【变式6-1】(2022秋•澄海区期末)先化简,再求值:,其中,.【变式6-2】(2022秋•武陵区期末)先化简,再求值:5a2﹣[3a﹣(2a﹣3)+4a2],其中a=﹣2.【变式6-3】(2022秋•防城港期末)化简与求值:3(x﹣y)﹣(2x﹣y)+y,其中x=﹣2,y=1.【变式6-4】(2022秋•零陵区期末)先化简,再求值:(4x2y﹣2xy2+2)﹣3(x2y ﹣xy2+1),其中x=2,y=﹣1.【题型7 绝对值化简求值】【典例7】(2022秋•丰泽区校级期末)若用点A、B、C分别表示有理数a、b、c,如图:(1)判断下列各式的符号:a+b0;c﹣b0;c﹣a0(2)化简|a+b|﹣|c﹣b|﹣|c﹣a|【变式7-1】(2022秋•郫都区校级期末)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【变式7-2】(2021秋•农安县期末)有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,化简|c﹣a|+|c﹣b|+|a+b|.【变式7-3】(2022春•龙凤区期末)已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.【题型8 非负性求值】【典例8】(2023春•九龙坡区校级期末)先化简,再求值:4x2y﹣[(6x2y﹣3xy2)﹣2(3xy2﹣x2y)]﹣3x2y+1,其中x,y满足|x+2|+(y﹣1)2=0.【变式8-1】(2023春•九龙坡区校级期中)先化简,再求值:a3b﹣a2b3﹣(4ab ﹣6a2b3﹣1)+2(ab﹣a2b3),其中a,b满足|2a﹣1|+(b+4)2=0.【变式8-2】(2023春•通州区月考)已知(a﹣2)2+|b+3|=0,求代数式的值.【变式8-3】(2022秋•包河区期末)先化简,再求值:x2+(2xy﹣3y2)﹣2(x2+xy ﹣2y2),其中x、y满足|x+1|+(2y+4)2=0.【题型9定义求值】【典例9】(2022秋•晋州市期末)定义:若a+b+ab=10,则称a,b是“最佳拍档数”.例如:,因此3和是一组“最佳拍档数”.(1)8与是一组“最佳拍档数”;(2)有一个数与任何数都不能组成“最佳拍档数”,这个数是;(3)若m,n是一组“最佳拍档数”,请求出的值.【变式9-1】(2022秋•安乡县期末)定义如下:存在数a,b,使得等式+=成立,则称数a,b为一对“互助数”,记为(a,b).比如:(0,0)是一对“互助数”.(1)若(1,b)是一对“互助数”,则b的值为;(2)若(﹣2,x)是一对“互助数”,求代数式(﹣x2+3x﹣1)﹣(﹣x2+5x ﹣15)的值;(3)若(m,n)是一对“互助数”,满足等式m﹣n﹣(6m+2n﹣2)=0,求m和n的值.【变式9-2】(2022秋•昭阳区期中)定义新运算=ad﹣bc,例如=2×3﹣1×5=1.(1)化简;(2)当x=时,求的值.【变式9-3】(2022秋•东城区期末)给出定义如下:我们称使等式a﹣b=ab+1的成立的一对有理数a,b为“相伴有理数对”,记为(a,b).如:3﹣=3×+1,5﹣=5×+1,所以数对(3,),(5,)都是“相伴有理数对”.(1)数对(﹣2,),(﹣,﹣3)中,是“相伴有理数对”的是;(2)若(x+1,5)是“相伴有理数对”,则x的值是;(3)若(a,b)是“相伴有理数对”,求3ab﹣a+(a+b﹣5ab)+1的值.。

《整式》整式的加减PPT课件(第2课时多项式和整式)

《整式》整式的加减PPT课件(第2课时多项式和整式)

探究新知
下列多项式2n-10, x2+2x+8 各有几项,每一 项的次数分别是多少? 多项式的次数:多项式里,次数最高的项的次数, 叫做这个多项式的次数。
巩固练习
说出下列多项式2a + 3b,12 ab-πr2的项和次数
分别是什么?(口答)
探究新知
单项式:这些代数式都是数或字母的乘积, 像这样的代数式叫作单项式。 多项式:几个单项式的和叫做多项式。
注意:多项式的每一项都包含它前面的正负号
当堂训练
1. 判断正误:
(1)多项式
1
2-
x2 y+2x2-y的次数是2.

×
)次数是3
(2)多项式 -a+3a2的一次项系数是1.( × )一次项系数是-1
(3)-x-y-z是三次三项式.( × ) 是一次三项式 2. 一个关于字母x的二次三项式的二次项系数为4,一次项系 数为1,常数项为7,则这个二次三项式为_4_x2_+x_+7_.
单项式与多项式统称为整式。
巩固练习
用多项式填空,并指出它们的项和次数。
(1)一个长方形相邻两边长分别为a,b,则这个长方形的
周长为 2a+2b . (2)m为一个有理数,m的立方与2的差为 m3-2 .
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环 保和安全起见,从第三年年初起不再投放,且每个月回b辆,第
导入新课
请同学们观察下列代数式
2n-10,x2+2x+8,2a + 3b,12 ab-πr2
这些式子与单项式有什么区别和联系?它们有什 么共同的特点?
探究新知
多项式的定义:像这样,几个单项式的和叫做 多项式。
观察下列多项式2n-10, x2+2x+8, 它们是由 那些单项式组成的? 多项式的项:多项式中的每个单项式叫做多项式 的项,不含字母的项叫做常数项。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减复习1
教学目标
1.知识与技能
(1)了解同类项、合并同类项的概念,掌握合并同类项法则,•能正确合并同类项.
(2)能先合并同类项化简后求值.
(3)能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
2.过程与方法
经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力.
3.情感态度与价值观
掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用.
教学过程:
例.(1)水库中水位第一天连续下降了a小时,每小时平均下降2cm,•第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?
(2)某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,•下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?
思路点拨:(1)水位上升量与水位下降量是具有相反意义的两个量.•我们可以把下降的水位变化量记为负,上升的水位变化量记为正,那么,第一天水位的变化量为-2acm,第二天水位的变化量0.5acm,两天水位的总变化量为-2a+0.5a=(-2+0.5)a=-1.5a(cm),这表明这两天水位的总变化情况是下降了1.5acm;(2)类似(1)•把进货的数量记为正,售出的数量记为负,那么进货后这个商店共有大米5x-3x+4x=(5-3+4)x=6x(千克).
练习一:
一、填空题.
1.如果5x2y与1
2
x m y n是同类项,那么m=______,n=______.
2.合并同类项:
(1)-a-a-2a=________.(2)-xy-5xy+6yx=_______.(3)0.8ab2-a2b+0.2a b2=______.
二、选择题.
3.下列各组式子中是同类项的是().
A.-2a与a2 B.2a2b与3ab2 C.5ab2c与-b2a c D.-1
7
a b2和4ab2c
4.下列运算中正确的是().
A.3a2-2a2=a2 B.3a2-2a2=1 C.3x2-x2=3 D.3x2-x=2x
三、合并下列各式中的同类项:
5.-7mn+mn+5nm; 6.5
6
x2-
1
2
x2-
2
3
x
; 7.3a2b-4a b2-4+5a2b+2ab2+7.
四、求下列各式的值:
8.3x2-8x+2x3-13x2+2x-2x3+3,其中x=-11
2

9.a2b-6ab-3a2b+5ab+2a2b,其中a=0.1,b=0.01.
10.2(x-2y)2-4(2x-y)+(x-2y)2-3(2x-y),其中x=-1,y=1
2

[提示:分别把(x-2y),(2x-y)看作一个整体]
答案:
一、1.2 1 2.(1)-4a (2)0 (3)a b2-a2b
二、3.C 4.A
三、5.-mn 6.0 7.8a2b-2ab2+3
四、8.-10x2-6x+3 -101
2
9.-ab -0.001 10.3(x-2y)2-7(2x-y) 29
1
2
例.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?
思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,•船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.•两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.
解答过程按课本.
去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,•括号内每一项都要变号.为了防止出错,可以先用分配律将数字2•与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.
练习二:
一、选择题:
1.下列各式化简正确的是().
A.a-(2a-b+c)=-a-b+c B.(a+b)-(-b+c)=a+2b+c
C.3a-[5b-(2c-a)]=2a-5b+2c D.a-(b+c)-d=a-b+c-d
2.下面去括号错误的是().
A.a2-(a-b+c)=a2-a+b-c B.5+a-2(3a-5)=5+a-6a+5
C.3a-1
3
(3a2-2a)=3a-a2+
2
3
a D.a3-[(a2-(-b))=a3-a2-b
3.将多项式2ab-4a2-5ab+9a2的同类项分别结合在一起错误的是(). A.(2ab-5ab)+(-4a2+9a) B.(2ab-5ab)-(4a2-9a2)
C.(2ab-5ab)+(9a2-4a2) D.(2ab-5ab)-(4a2+9a2)
二、化简下列各式:
4.2(-a3+2a2)-(4a2-3a+1). 5.(4a2-3a+1)-3(-a3+2a2).
6.3(a2-4a+3)-5(5a2-a+2). 7.3x2-[5x-2(1
4
x-
3
2
)+2x2].
答案:
一、1.C 2.B 3.D
二、4.-2a3+3a-1 5.3a3-2a2-3a+1 6.-22a2-7a-1 7.x2-9
2
x-3.。

相关文档
最新文档