2018考前数学模拟训练1
湖北2018届高考冲刺模拟考试数学(理)试题(一)含答案

湖北部分重点中学2018年高考冲刺模拟试卷(一)数学(理科)试题一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创,容易))A.{3}B.{0,3,5}C.{3,5}D.{0,3} [答案]D[解析]全集U={0,1,2,3,4},则CuA={0,3} [考点]分式不等式及集合运算.2.(原创,容易)已知i 为虚数单位,现有下面四个命题p 1:复数z 1=a +bi 与z 2=-a +bi ,(a ,b R ∈)在复平面内对应的点关于实轴对称; p 2:若复数z 满足(1-i )z =1+i ,则z 为纯虚数; p 3:若复数z 1,z 2满意z 1z 2R ∈,则z 2p 4:若复数z 满足z 2+1=0,则z =±i .其中的真命题为( )A.p 1,p 4B.p 2,p 4C.p 1,p 3D.p 2,p 3 [答案]B[解析]对于p 1:z 1与z 2关于虚轴对称,所以p 错误;对于p 2:由(1-i)z=1+i ⇒z=则z 为纯虚数,所以p 2正确;对于p 3:若z 1=2,z 2=3,则z 1z 2=6,满足z 1z 2R ∈,而它们实部不相等,不是共轭复数,所以p 3不正确;p 4正确. [考点]复数与命题真假的综合.3.(原创,容易)已知2:2,:,10p a q x R x ax p q >∀∈++≥是假命题,则是的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 [答案]A[解析]2:,10q x R x ax q ∀∈++≥∃∈是假命题,则非:x R,使210x ax ++<是真命题, 24022,a a a p q =->⇔<->V 或则是的充分不必要条件.[考点]二次不等式及充分、必要条件.4.(原创,容易)在某次学科知识竞赛中(总分100分),若参赛学生成绩ξ服从N (80,σ2)(σ>0),若ξ在(70,90)内的概率为0.8,则落在[90,100]内的概率为( ) A.0.05 B.0.1 C.0.15 D.0.2 [答案]B[解析]由题意可得1(070)(90100)(10.8)0.12P p ξξ≤≤=≤≤=⨯-=.[考点]正态分布.5.(原创,容易)某几何体的三视图是网络纸上图中粗线画出的部分,已知小正方形的边长为1,则该几何体中棱长的最大值为( ) A.5 B.10 C.13 D.4 [答案]C[解析]由三视图可得该几何体是一个四面体,可以将其放入棱长分别为1,2,3的长方体中,该四面体的棱长是长方体的各面的对角线,长度分别是5,10,13,则最长的棱长为13.[考点]三视图还原.6.(原创,容易)要使右边的程序框图输出的S=2cos3992cos32cos99,πππ++⋅⋅⋅+则判断框内(空白框内)可填入( ) A.99n < B.100n < C.99n ≥ D.100n ≥ [答案]B[解析]要得到题中的输出结果,则1,3,,99n =⋅⋅⋅均满足判断框内的条件,101n =不满足判断框内的条件,故空白框内可填入100.n < [考点]程序框图.7.(原创,中档)已知等差数列{}n a 的第6210a a +=( )A.160B.-160C.320D.-320 [答案]D[解析]3个x 和3所以6160a =-,由等差数列的性质可得21062a a a +==-320.[考点]二项式定理及等差数列的性质.8.(原创,中档)①纵坐标不变,横坐标变为原来的2倍,②个单位,得到函数()y f x =的图象,则函数[0,2]π上的对称中心为( )A.(,0),(2,0)ππB.(,0)πC.(0,0),(,0)πD.(0,0),(,0),(2,0)ππ [答案]D[解析]故,令k 所有可能的取值为-1,0,1,故所求对称中心为(0,0),(π,0),(2π,0).[考点]三角函数的图象变换及正切函数的对称中心.9.(原创,中档)已知点P是双曲线CF1、F2是双曲线的下焦点和上焦点,且以F1F2为直径的圆经过点P,则点P到y轴的距离为()[答案]D[解析]不妨设点P由以F1F2为直径的圆经过点P =2360y-=,P到y[考点]双曲线的几何性质10.(原创,中档)已知O是平面上的一定点,A、B、C是平面上不共线的三点,若动点P满足P的轨迹一定通过△ABC的()A.内心 B.外心 C.重心 D.垂心[答案]C[解析]在△ABC中点为D,P点的轨迹在三角形的中线上,则P点轨迹一定通过三角形的重心. [考点]平面向量的加减法的几何运算及向量共线的应用.11.(原创,难)设直线43y x=-与椭圆A、B两点,过A、B两点的圆与E交于另两点C、D,则直线CD的斜率为()A.--4[答案]D[解析]本题来源于教材选修4-4中第38页例4,如图所示,AB 、CD 是中心为点O 的椭圆的两条相交弦,交点为P ,两弦AB 、CD 与椭圆长轴的夹角分别为∠1,∠2,且∠1=∠2,则||PA ||||||PB PC PD ⋅=⋅. [考点]直线与圆、椭圆的综合12.(改编,难)若函数2()ln ln x f x ax x x x =+--有三个不同的零点,则实数a 的取值范围是( )A.1(1,)1e e e -- B.1[1,]1e e e -- C. 1(,1)1e e e --- D. 1[,1]1ee e ---[答案]A[解析]由题意可得ln ,(0,)ln x xa x x x x =-∈+∞-有3个不同解,令ln (),ln x xg x x x x x =-∈-22221ln 1ln ln (1ln )(2ln )(0,),'(),(ln )(ln )x x x x x x g x x x x x x x ----+∞=-=--则当(0,)x ∈+∞时,令2ln y x x =-,则1211'2,(0,),'0,2x y x y y x x -=-=∈<当递减;当1(,),'0,2x y y ∈+∞>递增,min 11ln1ln 20,(0,)2y x =-=+>∈+∞则当,恒有2ln 0.'()0,x x g x ->=令得1x =或,(0,1),'()0,()x e x g x g x =∈<且时递减;(1,),'()0,()x e g x g x ∈>时递增;(,)x e ∈+∞时,'()0,()g x g x <递减,则()g x 的极小值为(1)1,()g g x =的极大值为1(),1e g e e e =--结合函数图象可得实数a 的取值范围是1(1,)1e e e --.[考点]函数的零点与导数的综合应用.二、填空题:本大题共4小题,每小题5分,共20分. 13. (原创,容易)设命题2:,4,n p n N n p ∃∈>⌝则为 .[答案]2,4nn N n ∀∈≤.[解析]特称命题的否定是全称命题. [考点]全(特)称命题的否定.14.(原创,容易)直线sin 30()x y R αα+-=∈的倾斜角的取值范围是 .[答案]3[,]44ππ[解析]若sin 0α=,则直线的倾斜角为90°;若sin 0α≠,则直线的斜率k =1(,1][1,),sin α-∈-∞-+∞U 设直线的倾斜角为θ,则tan (,1][1,)θ∈-∞-+∞U ,故θ∈[,)42ππU 3(,]24ππ,综上可得直线的倾斜角的取值范围是3[,]44ππ.[考点]直线的倾斜角与斜率的关系.15.(原创,中档)设实数,x y 满足250,20,220,xx y x y x y y ++-≥⎧⎪--≤⎨⎪-≤⎩则的最小值是 .[答案]18[解析]不等式组对应的可行域如图,令1,(3,1)yu u x =+则在点处取得最小值,min 141,33u =+=在点(1,2)处取得最大值,max 123,u =+=故u 的取值范围是34111[,3],[,].32816∈u 则() [考点]求线性约束条件下目标函数的最值.16.(改编,难)已知G 为△ABC 的重心,点M ,N 分别在边AB ,AC 上,满足,AG x AM y AN =+u u u r u u u u r u u u r其中31.,4x y AM AB +==u u u u r u u u r若则△ABC 和△AMN 的面积之比为 . [答案]209[解析]连接AG 并延长交BC 于D ,此时D 为BC),AC +u u u r设所以[考点]平面向量的综合应用三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分) (原创,容易)在等差数列510{}0,10.n a a a ==中,(Ⅰ)求数列{}n a 的通项公式;(Ⅱ,求数列{}n nb 的前n 项和S n .解:(Ⅰ)设数列{}n a 的公差为d ,则1(1),n a a n d =+-由5100,10,a a ==得方程组11140,8910,2a d a a d d +==-⎧⎧⎨⎨+==⎩⎩,解得,……………………4分 所以8(1)2210.n a n n =-+-⨯=-…………………………6分(Ⅱ) 由(I)8分①②①-②,得121111(1) 31114434444444nn n n nn nS++-=++⋅⋅⋅+-=-,所以434994n nnS+=-⋅……………………………………………………12分[考点]等差数列基本量运算、数列求和.18.(本题满分12分)(原创,中档)如图,在四棱锥P-ABCD中,AD⊥平面PCD,PD⊥CD,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2AB,Q为棱PC上一点.(Ⅰ)若点Q是PC的中点,证明:B Q∥平面PAD;(Ⅱ),PQ PCλ=u u u r u u u r试确定λ的值使得二面角Q-BD-P为60°.解析:(Ⅰ)证明:取PD的中点M,连接AM,MQ,Q PCQ点是的中点,∴M Q∥CD,1.2MQ CD=…………………………………………1分又AB∥CD,1,2AB CD QM=则∥AB,QM=AB,则四边形ABQM是平行四边形.BQ∴∥AM.……………………3分又AM⊂平面PAD,BQ⊄平面PAD,BQ∴∥平面PAD.……4分(Ⅱ)解:由题意可得DA,DC,DP两两垂直,以D为原点,DA,DC,DP所在直线为,,x y z轴建立如图所示的空间直角坐标系,则P(0,1,1),C(0,2,0),A(1,0,0),B(1,1,0).……………… 5分令000000(,,),(,,1),(0,2,1).Q x y z PQ x y z PC =-=-u u u r u u u r则 000,(,,1)(0,2,1),PQ PC x y z λλ=∴-=-u u u r u u u rQ(0,2,1).Q λλ∴-……………………………………… 7分又易证BC ⊥平面PBD ,(1,1,0).PBD ∴=-是平面的一个法向量n 设平面QBD 的法向量为(,,),x y z =m,0,0,22(1)0,.0,1x y DB x y y z z y DQ λλλλ=-⎧⎧⋅=+=⎧⎪⎪⎨⎨⎨+-==⋅=⎩⎪⎪⎩-⎩u u u r u u u r 则有即解得m m 令21,(1,1,).1y λλ==--则m …………………………………………………9分60Q BD P --o Q 二面角为,2||21|cos ,|,||||2222()1λλ⋅∴<>===⋅+-m n m n m n解得3 6.λ=±……………………………………………11分Q Q 在棱PC 上,01,3 6.λλ<<∴=-………………………………12分[考点]线面平行证明及二面角计算 19.(本题满分12分)(原创 ,中档)《中华人民共和国民法总则》(以下简称《民法总则》)自2017年10月1日起施行。
2018届高考数学考前模拟试卷(文科)

2018届高三考前模拟数学(文科)全卷满分150分,时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。
一.选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1. 集合}{022≤--=x x x A ,}{1<=x x B ,则)(B C A R = ( )(A) }{1x x > (B) }{12x x <≤ (C) }{1x x ≥ (D) }{12x x ≤≤ 2.设1iz i=-(i 为虚数单位),则1z =( )(C) 12(D) 2 3.等比数列{}n a 中,122a a +=,454a a +=,则1011a a +=( )(A) 8 (B) 16 (C) 32 (D) 644. 已知向量a b ⊥r r,2,a b ==r r 则2a b -=r r ( )(A) 2(C)5.下列说法中正确的是( )(A) “(0)0f =”是“函数()f x 是奇函数”的充要条件(B) 若2000:,10p x R x x ∃∈-->,则2:,10p x R x x ⌝∀∈--<(C) 若p q ∧为假命题,则,p q 均为假命题(D) “若6πα=,则1sin 2α=”的否命题是“若6πα≠,则1sin 2α≠”6.已知输入实数12x =,执行如图所示的流程图,则输出的x 是 ( )的图象,若()g x 的图象关于直线9x π=对称,则θ=( )(A)718π (B) 18π (C) 18π- (D) 718π- 8.已知x ,y 满足条件04010x y x y x -≤⎧⎪+-≤⎨⎪-≥⎩,则yx 的最大值是 ( )(A) 1 (B) 2 (C) 3 (D) 4 9.某几何体的三视图如图所示,则该几何体的体积为 ( )(A)3 (B) 3 (C) 3(D) 10.已知函数()y f x =的定义域为{}|0x x ≠,满足()()0f x f x +-=,当0x >时,()ln 1f x x x =-+,则函数()y f x =的大致图象是( )(A) (B) (C) (D)11.已知P 为抛物线24y x =上一个动点,Q 为圆()2241x y +-=上一个动点,则点P 到点Q 的距离与点P 到抛物线的准线的距离之和最小值是( )1- (B) 2 (C) 2 12. 设定义在R 上的函数()y f x =满足任意t R ∈都有()()12f t f t +=,且(]0,4x ∈时, ()()f x f x x'>,则()()()20164201722018f f f 、、的大小关系是( )(A) ()()()22018201642017f f f << (B) ()()()22018201642017f f f >>(C) ()()()42017220182016f f f << (D) ()()()42017220182016f f f >>二.填空题:本大题共4小题,每小题5分。
2018届江苏高考数学模拟试卷(1)(含答案)

2018届江苏高考数学模拟试卷(1)数学I一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.已知集合{02},{11}A x x B x x =<<=-<<,则A B U = ▲ .2. 设复数1a +=-i z i(i 是虚数单位,a ∈R ).若z 的虚部为3,则a 的值为 ▲ .3.一组数据5,4,6,5,3,7的方差等于 ▲ .4.右图是一个算法的伪代码,输出结果是 ▲ .5.某校有B A ,两个学生食堂,若甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则此三人不在同一食堂用餐的概率为 ▲ .6. 长方体1111ABCD A B C D -中,111,2,3AB AA AC ===,则它的体积等于 ▲ .7.若双曲线2213x y a -=的焦距等于4,则它的两准线之间的距离等于 ▲ .8. 若函数()22xx af x =+是偶函数,则实数a 等于 ▲ .9. 已知函数f (x )=2sin(ωx +φ)(ω>0).若f (π3)=0,f (π2)=2,则实数ω的最小值为 ▲ .S ←0 a ←1 For I From 1 to 3a ←2×a S ←S +a End For Print S (第4题)10. 如图,在梯形ABCD 中,,2,234,//CD AD AB CD AB ====,,如果 ⋅-=⋅则,3= ▲ .11.椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是 ▲ .12.若数列12{}(21)(21)n n n +--的前k 项的和不小于20172018,则k 的最小值为 ▲ .13. 已知24παπ<<,24πβπ<<,且22sin sin sin()cos cos αβαβαβ=+,则tan()αβ+的最大值为▲ .14. 设,0a b >,关于x 的不等式3232x xx xa N Mb ⋅-<<⋅+在区间(0,1)上恒成立,其中M , N 是与x 无关的实数,且M N >,M N -的最小值为1. 则ab的最小值为___▲___.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证 明过程或演算步骤.15.如图,在ABC ∆中,已知7,45AC B =∠=o,D 是边AB 上的一点,3,120AD ADC =∠=o . 求:(1)CD 的长; (2)ABC ∆的面积.16.如图,在四棱锥S-ABCD 中,底面ABCD 是平行四边形,E ,F 分别是AB ,SC 的中点. (1)求证:EF ∥平面SAD ; A D CB(2)若SA=AD ,平面SAD ⊥平面SCD ,求证:EF ⊥AB .17.如图,有一椭圆形花坛,O 是其中心,AB 是椭圆的长轴,C 是短轴的一个端点. 现欲铺设灌溉管道,拟在AB 上选两点E ,F ,使OE =OF ,沿CE 、CF 、F A 铺设管道,设θ=∠CFO ,若OA =20m ,OC =10m , (1)求管道长度u 关于角θ的函数;(2)求管道长度u 的最大值.18.在平面直角坐标系xOy 中,已知圆222:C x y r +=和直线:l x a =(其中r 和a 均为常数,且0r a <<),M 为l 上一动点,1A ,2A 为圆C 与x 轴的两个交点,直线1MA ,2MA 与圆C 的另一个交点分别为,P Q .(1)若2r =,M 点的坐标为(4,2),求直线PQ 方程; (2)求证:直线PQ 过定点,并求定点的坐标.19.设R k ∈,函数2()ln 1f x x x kx =+--,求: (1)1=k 时,不等式()1f x >-的解集; (2)函数()x f 的单调递增区间;(3)函数()x f 在定义域内的零点个数.20.设数列{}n a ,{}n b 分别是各项为实数的无穷等差数列和无穷等比数列. (1)已知06,12321=+-=b b b b ,求数列{}n b 的前n 项的和n S ;(2)已知数列{}n a 的公差为d (0)d ≠,且11122(1)22n n n a b a b a b n +++⋅⋅⋅+=-+,求数列{}n a ,{}n b 的通项公式(用含n ,d 的式子表达); (3)求所有满足:11n n n na b b a ++=+对一切的*N n ∈成立的数列{}n a ,{}n b .数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲(本小题满分10分) 如图,在△ABC 中,90BAC ∠=,延长BA 到D ,使得AD =12AB ,E ,F 分别为BC ,AC 的中点,求证:DF =BE .B .选修4—2:矩阵与变换 (本小题满分10分)已知曲线1C :221x y +=,对它先作矩阵1002A ⎡⎤=⎢⎥⎣⎦对应的变换,再作矩阵010m B ⎡⎤=⎢⎥⎣⎦对应的变换(其中0≠m ),得到曲线2C :2214x y +=,求实数m 的值.C .选修4—4:坐标系与参数方程 (本小题满分10分)已知圆C的参数方程为12cos 2sin x y θθ=+⎧⎪⎨=⎪⎩, , (θ为参数),直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩, , (t 为参数,0 ααπ<<π≠2,且),若圆C 被直线lα的值.D .选修4—5:不等式选讲 (本小题满分10分)对任给的实数a 0a ≠()和b ,不等式()12a b a b a x x ++-⋅-+-≥恒成立,求实数x 的取值范围.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在直三棱柱ABC -A 1B 1C 1中,A A 1=AB =AC =1,AB ⊥AC ,M ,N 分别是棱CC 1,BC 的 中点,点P 在直线A 1B 1上.(1)求直线PN 与平面ABC 所成的角最大时,线段1A P 的长度;(2)是否存在这样的点P ,使平面PMN 与平面ABC 所成的二面角为6π. 如果存在,试确定点P 的位置;如果不存在,请说明理由.(第21—A 题)BECFDA123.(本小题满分10分)设函数()sin cos n n f θθθ=+,其中n 为常数,n ∈*N , (1)当(0,)2πθ∈时, ()f θ是否存在极值?如果存在,是极大值还是极小值?(2)若sin cos a θθ+=,其中常数a 为区间[内的有理数. 求证:对任意的正整数n ,()f θ为有理数.2018高考数学模拟试卷(1)数学Ⅰ答案一、填空题答案:1. {12}x x -<<2. 5 3.53 4. 14 5. 43 6.4 7. 1 8. 1 9. 3 10.2311. 111(,)(,1)322⋃.解:422111232c a c e e c a>-⎧⇒<<≠⎨≠⎩且,故离心率范围为111(,)(,1)322⋃.12. 10解:因为对任意的正整数n ,都有1212)12)(12(211--=--++n n n n n 1-1, 所以⎭⎬⎫⎩⎨⎧--+)12)(12(21n n n的前k 项和为 1)1)(2(221)1)(2(221)1)(2(221322211--++--+--+k kk12112112112112112113221---++---+---=+k k 12111--=+k 使2018201712111≥--+k ,即2018121≥-+k ,解得10≥k ,因此k 的最小值为10.13. -4解:因为24ππ<<βα,,所以βαβαsin sin cos cos ,,,均不为0.由βαβαβαcos cos )sin(sin sin 22+=,得βαβαβαβαsin cos cos sin tan tan sin sin +=,于是αββαtan 1tan 1tan tan +=,即βαβαβαtan tan tan tan tan tan +=, 也就是βαβα22tan tan tan tan =+,其中βαtan tan ,均大于1. 由βαβαβαtan tan 2tan tan tan tan22⋅≥+=⋅,所以34tan tan ≥βα.令()341tan tan 1-,--∞∈=βαt , βαβαβαβαβαtan tan 1tan tan tan tan 1tan tan )tan(22-=-+=+21-+=tt 4-≤,当且仅当1-=t 时取等号.14.4+解:32()32xxx x a f x b ⋅-=⋅+,则23()6l n2()0(32)xx x a b f x b +'=>⋅+恒成立,所以()f x 在(0,1)上单调递增, 132(0),(1)132a a f f b b --==++,∴()f x 在(0, 1)上的值域为132(,)132a ab b --++,M x f N <<)( 在(0,1)上恒成立,故mi n 321()1321(32)(1)a a ab M N b b b b --+-=-==++++,所以2342a b b =++,所以2344a b b b=++≥.所以min ()4ab=+.二、解答题答案15.解:(1)在ACD ∆中,由余弦定理得2222cos AC AD CD AD CD ADC =+-⋅∠,2227323cos120CD CD =+-⨯⋅o ,解得5CD =.(2)在BCD ∆中,由正弦定理得sin sin BD CD BCD B =∠,5sin 75sin 45BD =o o,解得BD = 所以BDC BD CD ADC CD AD S S S BCD ACD ABC ∠⋅+∠⋅=+=∆∆∆sin 21sin 2111535sin120560222+=⨯⨯+⨯⨯oo 758+=.16. 解(1)取SD 的中点G ,连AG ,FG .在SCD ∆中,因为F ,G 分别是SC ,SD 的中点, 所以FG ∥CD ,12FG CD =. 因为四边形ABCD 是平行四边形,E 是AB 的中点, 所以1122AE AB CD ==,AE ∥CD . 所以FG ∥AE ,FG=AE ,所以四边形AEFG 是平行四边形,所以EF ∥AG .因为AG ⊂平面SAD ,EF ⊄平面SAD ,所以EF ∥平面SAD . (2)由(1)及SA=AD 得,AG SD ⊥.因为平面SAD ⊥平面SCD ,平面SAD ⋂平面SCD =SD ,AG ⊂平面SAD , 所以AG ⊥平面SCD ,又因为SCD CD 面⊂,所以AG ⊥CD . 因为EF ∥AG ,所以EF ⊥CD , 又因为CD AB //,所以EF ⊥AB .17. 解:(1)因为θsin 01=CF ,θtan 10=OF ,θtan 10-20=AF , 所以θθθθsin cos 102020tan 1002sin 02-+=-+=++=AF CF CE u , AE DCS FG其中,552cos 0<<θ. (2)由 θθsin cos 102020-+=u ,得θθ2'sin cos 0201-=u ,令21cos 0'==θ,u , 当 21cos 0<<θ时,0'>u ,函数)(θu 为增函数;当552c o s 21<<θ时,0'<u ,函数)(θu 为减函数. 所以,当21cos =θ,即3πθ=时,310203sin21102020max +=⨯-+=πu (m )所以,管道长度u 的最大值为)(31020+m.18. 解:(1)当2r =,(4,2)M 时,则1(2,0)A -,2(2,0)A ,直线1MA 的方程:320x y -+=,解224320x y x y ⎧+=⎨-+=⎩得86(,)55P .直线2MA 的方程:20x y --=,解22420x y x y ⎧+=⎨--=⎩得(0,2)Q -.所以PQ 方程为220x y --=.(2)由题设得1(,0)A r -,2(,0)A r ,设(,)M a t ,直线1MA 的方程是()ty x r a r =++,与圆C 的交点11(,)P x y , 直线2MA 的方程是()ty x r a r=--,与圆C 的交点22(,)Q x y ,则点11(,)P x y ,22(,)Q x y 在曲线[()()][()()]0a r y t x r a r y t x r +-+---=上, 化简得2222222()2()()0a r y ty ax r t x r ---+-=, ①又11(,)P x y ,22(,)Q x y 在圆C 上,圆C :2220x y r +-=, ②①-2t ×②得22222222222()2()()()0a r y ty ax r t x r t x y r ---+--+-=,化简得2222()2()0a r y t ax r t y ----=.所以直线PQ 方程为2222()2()0a r y t ax r t y ----=.令0y =得2r x a =,所以直线PQ 过定点2(,0)r a.19.解(1)k =1时,不等式()1f x >-即2ln 0x x x +->,设2()l n g x x x x =+-,因为2121()210x x g x x x x-+'=+-=>在定义域(0,)+∞上恒成立,所以g (x )在(0,)+∞上单调递增,又(1)0g =,所以()1f x >-的解集为(1,)+∞.(2)2121()2(0)x kx f x x k x x x-+'=+-=>,由()0f x '≥得2210x kx -+≥……(*). (ⅰ)当280k ∆=-≤,即k -≤≤(*)在R 上恒成立,所以()f x 的单调递增区间为(0,)+∞. (ⅱ)当k >时,280k ∆=->,此时方程2210x kx -+=的相异实根分别为12x x ==,因为12120,2102k x x x x ⎧+=>⎪⎪⎨⎪=>⎪⎩,所以120x x <<,所以()0f x '≥的解集为(0,[)44k k -+∞U , 故函数f (x )的单调递增区间为)+∞和.(ⅲ)当k <-时,同理可得:,0,21,020212121<<∴⎩⎨⎧<=+>=x x kx x x x ()f x 的单调递增区间为(0,)+∞.综上所述,当k >()f x的单调递增区间为)+∞和;当k ≤()f x 的单调递增区间为(0,)+∞. (3)据(2)知①当k ≤时,函数()f x 在定义域(0,)+∞上单调递增,令210,0x kx x ⎧-->⎨>⎩得2k x +>,取}m =,则当x >m 时,2()10f x x kx >-->.设01x <<,21max{1,}x kx k λ--<--=,所以()l n f x x λ<+,当0x e λ-<<时,()0f x <,取m i n {1,}n e λ-=,则当(0,)x n ∈时,()0f x <,又函数()f x 在定义域(0,)+∞上连续不间断,所以函数()f x 在定义域内有且仅有一个零点.②当22>k 时,()f x 在12(0,)(,)x x +∞和上递增,在12(,)x x 上递减, 其中012,0122211=+-=+-kx x kx x则2221111111()ln 1ln (21)1f x x x kx x x x =+--=+-+-211ln 2x x =--.下面先证明ln (0)x x x <>:设x x x h -=ln )(),由1()xh x x-'=>0得01x <<,所以h (x )在(0,1)上递增,在(1,)+∞上递减,01)1()(m a x <-==h x h ,所以()0h x <)0(>x ,即 ln (0)x x x <>.因此,047)21(2)(212111<---=--<x x x x f ,又因为)(x f 在12(,)x x 上递减,所以21()()0f x f x <<,所以()f x 在区间2(0,)x 不存在零点.由①知,当x m >时,()0f x >,()f x 的图象连续不间断,所以()f x 在区间2(,)x +∞上有且仅有一个零点. 综上所述,函数()f x 在定义域内有且仅有一个零点.20.解(1)设{}n b 的公比为q ,则有063=+-q q ,即2(2)(23)0q q q +-+=,所以2q =-,从而1(2)3nn S --=.(2)由11122(1)22n n n a b a b a b n +++⋅⋅⋅+=-+得112211(2)22nn n a b a b a b n --++⋅⋅⋅+=-+,两式两边分别相减得2(2)nn n a b n n =⋅≥.由条件112a b =,所以*2(N )n n n a b n n =⋅∈,因此111(1)2(2)n n n a b n n ---=-⋅≥,两式两边分别相除得12(2)1n n a n q n a n -⋅=≥-,其中q 是数列{}n b 的公比.所以122(1)(3)2n n a n q n a n ---⋅=≥-,上面两式两边分别相除得2221(2)(3)(1)n n n a a n n n a n ---=≥-.所以312234a a a =,即1121(2)3()4a d a a d +=+,解得113a d a d ==-或,若d a 31-=,则04=a ,有024444==⋅b a 矛盾,所以1a d =满足条件,所以2,nn n a dn b d==.(3)设数列{}n a 的公差为d ,{}n b 的公比为q , 当q =1时,112n n b b b ++=,所以112n na b a +=,所以数列{}n a 是等比数列,又数列{}n a 是等差数列,从而数列{}n a 是各项不为0的常数列,因此112b =,经验证,110,2n n a a b =≠=满足条件.当1q ≠时,由11n n n n a b b a ++=+得1111(1)n dn a b q q dn a d-+=++-……(*) ①当d>0时,则1d a n d ->时,10n n a a +>>,所以111dn a dn a d +>+-此时令112dn a dn a d +<+-得12d a n d->,因为112d a d a d d -->所以,当12d a n d ->时,1112dn a dn a d +<<+-. 由(*)知,10,0b q >>. (ⅰ)当q >1时,令11(1)2n b q q-+>得121log (1)qn b q >++,取11122max{,1log }(1)q d a M d b q -=++,则当1n M >时,(*)不成立. (ⅱ)当0<q <1时,令11(1)1n b q q -+<得111log (1)qn b q >++,取12121max{,1log }(1)q d a M d b q -=++,则当2n M >时,(*)不成立. 因此,没有满足条件的数列{}n a ,{}n b .②同理可证:当d <0时,也没有满足条件的数列{}n a ,{}n b .综上所述,所有满足条件的数列{}n a ,{}n b 的通项公式为110,2n n a a b =≠=(*N n ∈).数学Ⅱ(附加题)答案21.【选做题】答案A .选修4—1:几何证明选讲 解:取AB 中点G ,连结GF ,12AD AB =,AD AG ∴=,又90BAC ∠=, 即AC 为DG 的垂直平分线, ∴ DF = FG ………………① ,又E 、F 分别为BC 、AC 中点, 1//2EF AB BG EF BG ==∴ 四边形BEFG 为平行四边形, ∴ FG = BE …………② 由①②得BE =DF .B .选修4—2:矩阵与变换 解:010********m m BA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,设P ()00,x y 是曲线1C 上的任一点,它在矩阵BA 变换作用下变成点(),P x y ''',则000020210x my x m y x y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦,则002x my y x '=⎧⎨'=⎩,即0012x y y x m'=⎧⎪⎨'=⎪⎩, 又点P 在曲线1C 上,则22214x y m''+=,'p 在曲线2C 上,则14''22=+x y , 故21m =,所以,1m =±.C .选修4—4:坐标系与参数方程 解:圆的直角坐标方程为()(2214x y -+-=,直线的直角坐标方程为()1y k x =-()tan k α=,因为圆C 被直线l,∴=k =,即tan α=, 又0πα≤<,∴α=π3或2π3.D .选修4—5:不等式选讲 解:由题知,aba b a x x ++-≤-+-21恒成立,故|1||2|x x -+-不大于aba b a ++-的最小值 ,∵||||2|||≥|a b a b a b a b a -++++-=,当且仅当()()0≥a b a b +-时取等号, ∴aba b a ++-的最小值等于2.∴x 的范围即为不等式|x -1|+|x -2|≤2的解,解不等式得1522≤≤x .【必做题】答案22. 解:如图,以A 为原点建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1), M (0,1,12),N (12,12,0)设10),1,0,(<<=λλp .则)0,0,(1λ=A ,)1,0,(11λ=+=A ;)1,21,21(--=λ, (1)∵()0,0,1=m 是平面ABC 的一个法向量.=><=∴|,cos |sin m θ45)21(1141)21(|100|22+-=++--+λλ∴当12λ=时,θ取得最大值,此时sin θ=,tan 2θ=即:当12λ=时, θ取得最大值,此时tan 2θ=. 故P A 1的长度为21.(2)=)21,21,21(-,由(1))1,21,21(--=λ,设(),,x y z =n 是平面PMN 的一个法向量.则111022211()022x y z x y z λ⎧-++=⎪⎨⎪-+-=⎩得123223y x z x λλ+⎧=⎪⎨-⎪=⎩令x =3,得y =1+2λ,z=2-2λ, ∴()3,12,22λλ=+-n , ∴|cos ,|<>=m n 4210130λλ++=(*)∵△=100-4⨯4⨯13=-108<0,∴方程(*)无解∴不存在点P 使得平面PMN 与平面ABC 所成的二面角为30º. 23. 解:(1)当(0,)2πθ∈时,设22()sin cos (sin cos )0n n f n θθθθθ--'=->,等价于0cos sin 22>---θθn n .(ⅰ)n =1时,令,>0)('f θ得110sin cos θθ->,解得04πθ<<,所以()f θ在(0,)4π上单调递增,在(,)42ππ上单调递减,所以()f θ存在极大值,无极小值.(ⅱ)n =2时,()f θ=1,()f θ既无极大值,也无极小值. (ⅲ)3n ≥时,令,>0)('f θ得sin cos θθ>,所以42ππθ<<,所以()f θ在(0,)4π上单调递减,在(,)42ππ上单调递增,所以()f θ存在极小值,无极大值.(3)由22sin cos sin cos 1a θθθθ+=⎧⎪⎨+=⎪⎩得:21sin cos 2a θθ-= , 所以sin θ,cos θ是方程22102a x ax --+=的两根, x =,∴()((2nnnnna a f θ+=+=⎝⎭⎝⎭,当k n 2=为偶数时,()()()()()()()()]222222[(2]222222[(2222222244222224244222222kn n n n n kn nn nnnna a C a C a a C a C a a-++-+-+=-++-+-+=--+-+----当12+=k n 为奇数时,()()()()()()()()]2222222[(22222222(222222122442222214244222222kn n n n n n n knn nn nn n nnna C a C a C a C a C a C a a -++-+-+=-++-+-+=--+-+------∵a为[内的有理数,m n C,2n为正整数,∴()fθ为有理数.。
2018年高考数学模拟试卷(1)参考答案

2018年高考模拟试卷(1)参考答案数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.1.{}0 2. -1 3.0.5 4. 16 5.6.7. 17【解析】设最右边的正方形的右下角顶点为D ,则()11tan tan 123tan tan 1tan tan 117123BCD BAD ABC BCD BAD BCD BAD -∠-∠∠=∠-∠===+∠∠+⨯.8. 2【解析】因为2PE ED =,所以三棱锥E ACD -的体积是三棱锥P ACD -体积的1,所以三棱锥P ACE -的体积是P ACD -体积的23.因为三棱锥P ABC -与三棱锥P ACD -体积相等,所以12:V V =23.9. 6【解析】如图,过点M 作准线的垂线,垂足为T ,交y 轴于点P ,所以11MP OF ==,3MF MT ==,所以26FN MF ==.10. (,e)-∞-【解析】11()ln 1,(0,),(,),(e)e e ef x x f '=++∞=为减区间为增区间.由于()f x 是奇函数,结合函数图像得,不等式的解集是(,e)-∞-.11. 8【解析】设99根相同的圆钢捆扎成的尽可能大的1个正六边形垛的边长为n 根,则这个正六边形垛的层数是21n -,每一层的根数从上往下依次为: 12(2)(1)(2)21n n n n n n n n n n n n ++⋅⋅⋅+-+-+-⋅⋅⋅++,,,,,,,,,,, 则圆钢的总根数为:()222(1)2(21)33 1.2n n n n n n +--⨯+-=-+由题意2331n n -+≤99即299n n --≤0, 设函数299()3f x x x =--,则299()3f x x x =--在[)1+∞,上单调递增. 因为(6)0(7)0f f <>,,所以6n =.此时剩余的圆钢根数为299(36361)8-⨯-⨯+=.12. 54-【解析】由极化恒等式知,22AB AC AM BM ⋅=-,则32BM ,所以()222235124NB NC MN BM ⋅=-=-=- . 13. 2【解析】设1a x y=+,19b y x =+,则10a b +=.ABCB 1C 1A 1MN 因为ab =()1x y +⋅()1191091016y xy x xy +=+++≥(当且仅当19xy xy =时取“=”),所以()1016a a -≥,解得28a ≤≤,所以1x y +的最小值是2. 14. 1009π6【解析】因为()π02n θ∈,,所以()(]πcos 2sin 126n n n n a θθθ==+∈,,所以等比数列{a n }的公比0q >.若1q >,由1a n 充分大,则2n a >,矛盾; 若01q <<,由1a n 充分大,则1n a <,矛盾, 所以1q =,从而1n a a =,所以π12n θ=.则数列{}n θ的前2 018项之和是1009π6.二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)解:(1)由sin cos θθ+2(sin cos )1θθ+=-即22sin 2sin cos cos 1θθθθ++=,所以sin 2θ=.因为()ππ44θ∈-,,所以()ππ222θ∈-,,所以π23θ=-,即π6θ=-. (2)由(1)知,()22π()sin sin 6f x x x =--,所以()()11π()1cos21cos 2223f x x x ⎡⎤=----⎢⎥⎣⎦()1πcos 2cos223x x ⎡⎤=--⎢⎥⎣⎦112cos222x x ⎫=-⎪⎭()1πsin 226x =-. 令πππ2π22π+k x k --≤≤,得ππππ+63k x k -≤≤,所以函数()f x 的单调增区间是ππππ+63k k ⎡⎤-⎢⎥⎣⎦,Z k ∈.16.(本小题满分14分证明:(1)因为MN 与1AA 所成角的大小为90°,所以MN ⊥1AA , 因为1MA MC =,且N 是A 1C 的中点,所以MN ⊥1A C . 又111AA AC A = ,1AC ,1AA ⊂平面11A ACC ,故MN ⊥平面11A ACC ,因为MN ⊂平面1A MC ,所以平面1A MC ⊥平面11A ACC .(2)取AC 中点P ,连结NP ,BP .因为N 为A 1C 中点,P 为AC 中点,所以PN //AA 1,且PN 1=AA 1.在三棱柱111ABC A B C -中,BB 1 // AA 1,且BB 1=AA 1. 又M 为BB 1中点,故BM // AA 1,且BM 12=AA 1.所以PN // BM ,且PN =BM ,于是四边形PNMB 是平行四边形, 从而MN // BP .又MN ⊄平面ABC ,BP ⊂平面ABC ,故//MN 平面ABC . 17.(本小题满分14分解:(1)考虑05x <≤时,利润()()22()20.4 4.20.820.4 3.2 2.8y P x x x x x x x =-+=-+--+=-+-. 令20.4 3.2 2.80y x x =-+-≥得,17x ≤≤,从而15x ≤≤,即min 1x =. (2)当05x <≤时,由(1)知()220.4 3.2 2.80.44 3.6y x x x =-+-=--+, 所以当4x =时,max 3.6y =(万元).当5x >时,利润()()()99()214.729.7333y P x x x x x x =-+=--+=--+--.因为9363x x -+=-≥(当且仅当933x x -=-即6x =时,取“=”), 所以max 3.7y =(万元). 综上,当6x =时,max 3.7y =(万元).答:(1)该厂至少生产1百套此款式服装才可以不亏本;(2)该厂生产6百套此款式服装时,利润最大,且最大利润为3.7万元. 18.(本小题满分16分)解:(1)依题意,221314a b +=,c a =222(0)c a b c =->,解得2241a b ==,.因为0a b >>,所以21a b ==,.(2)由(1)知,椭圆C 的右焦点为)0F,椭圆C 的方程为2214x y +=,① 所以()()2001A B --,,,.从而直线BF 1y -=. ②由①②得,)17P ,.从而直线AP 的方程为:2)y x =+.令0x =,得7y =-E 的坐标为(07-,.(3)设()00P x y ,(0000x y >>,),且220014x y +=,即220044x y +=.则直线AP 的方程为:00(2)2y y x x =++,令0x =,得0022y y x =+. 直线BP 的方程为:0011y y x x ++=,令0y =,得001xx y =+. 所以四边形ABFE 的面积S =()()00002121212x y y x ++++00000022221212x y x y y x ++++=⋅⋅++ ()2200000000004222441222x y x y x y x y x y +++++=⋅+++00000000224422x y x y x y x y +++=+++ 2=. 19.(本小题满分16分)解:(1)因为29p =,所以()21112a S a ==+,即211540a a -+=,解得119a =或49.(2)设等差数列123a a a ,,的公差为d . 因为()()2*n n S a p n p =+∈∈N R ,,所以()211a a p =+, ①()2122a a a p +=+, ②()21233a a a a p ++=+. ③②-①,得()()22221a a p a p =+-+,即()2122a d a a p =++, ④③-②,得()()22332a a p a p =+-+,即()3232a d a a p =++, ⑤⑤-④,得()()32231222a a d a a p a a p ⎡⎤-=++-++⎣⎦,即22d d =.若0d =,则230a a ==,与0n a >矛盾,故12d =. 代入④得()1111112222a a a p +=+++,于是14p =.因为()()2*14n n S a n =+∈N ,所以()21114n n S a ++=+, 所以()()221111144n n nn na S S a a +++=-=+-+,即()()221111044n n n a a a +++--+=,整理得()()22111044n na a +--+=,于是()()1110n n n na a a a +++--=.因为0n a >,所以1102n n a a +--=,即112n n a a +-=.因为()21114a a =+,所以114a =.所以数列{a n }是首项为14,公差为12的等差数列.因此,*1121(1)()424n n a n n -=+-=∈N .20.(本小题满分16分)解:(1)由()e (1)x f x a x =-+,知()e x f x a '=-.若0a ≤,则()0f x '>恒成立,所以()f x 在()-∞+∞,上单调递增; 若0a >,令()0f x '=,得ln x a =,当ln x a <时,()0f x '<,当ln x a >时,()0f x '>,所以()f x 在(ln )a -∞,上单调递减;在(ln )a +∞,上单调递增. (2)由(1)知,当0a >时,min ()(ln )ln f x f a a a ==-.因为()f x b ≥对任意x ∈R 都成立,所以ln b a a -≤, 所以2ln ab a a -≤. 设2()ln t a a a =-,(0a >),由21()(2ln )(2ln 1)t a a a a a a a '=-+⋅=-+,令()0t a '=,得12e a -=,当10e a -<<时,()0t a '>,所以()t a 在()10e-,上单调递增;当1e a ->时,()0t a '<,所以()t a 在()1e -∞,+上单调递减,所以()t a 在12e a -=处取最大值,且最大值为12e.所以21ln 2e ab a a -≤≤,当且仅当1e a -=,121e b -=时,ab 取得最大值为12e .(3)设()()()F x f x g x =-,即()e e 2x F x x ax a =--- 题设等价于函数()F x 有零点时的a 的取值范围.① 当0a ≥时,由(1)30F a =-≤,1(1)e e 0F a --=++>,所以()F x 有零点. ② 当e 02a -<≤时,若0x ≤,由e 20a +≥,得()e (e 2)0x F x a x a =-+->;若0x >,由(1)知,()(21)0F x a x =-+>,所以()F x 无零点. ③ 当e 2a <-时,(0)10F a =->,又存在010e 2a x a -=<+,00()1(e 2)0F x a x a <-+-=,所以()F x 有零点.综上,a 的取值范围是e 2a <-或0a ≥.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作..................答..若多做,则按作答的前两题评分. A . [选修4—1:几何证明选讲](本小题满分10分)证明:因为P A 是圆O 在点A 处的切线,所以∠P AB =∠ACB . 因为PD ∥AC ,所以∠EDB =∠ACB , 所以∠P AE =∠P AB =∠ACB =∠BDE . 又∠PEA =∠BED ,故△P AE ∽△BDE . B . [选修4-2:矩阵与变换](本小题满分10分)21B.【解】设1 -⎡⎤=⎢⎥⎣⎦a c b d A ,因为1 2 -1 1 02 1 0 1-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦a cb d AA , 所以2a b 1,2c d 0,2a b 0,2c d 1,-=⎧⎪-=⎪⎨+=⎪⎪+=⎩解之得1a 41b 21c 41d ⎧=⎪⎪=-⎪⎪⎨⎪=⎪⎪=⎪⎩ ,所以A -1=11 4411- 22⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦.所以12131111 16164444()111131- - 222288-⎡⎤⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A . C .[选修4-4:坐标系与参数方程](本小题满分10分)解:直线l的普通方程为3y =+,圆C 的参数方程化为普通方程为22()(2)4x a y -+-=.因为直线l 与圆C2=.解得a =a =0a >,所以a = D .[选修4-5:不等式选讲](本小题满分10分)证明:由柯西不等式,得()()2222111y x z x y z y z x ++++≥,即()()()2222111111yx z x y z x y z y z x++++++≥,所以222111yx z x y z y z x++++≥.【必做题】第22题、第23题,每题10分,共计20分.22.(本小题满分10分)解:(1)以{}AB AD AP,,为一组基底建立如图所示的空间直角坐标系A —xyz .因为1λ=,所以BC AD =.依题意,()110C ,,,()001P ,,,()100B ,,,()010D ,,,所以()111PC =- ,,, ()101PB =- ,,,()11PD =- 0,,. 设平面PBD 的一个法向量为n ()x y z =,,,则00PB PD ⎧⋅=⎪⎨⋅=⎪⎩ ,,n n 所以00x z y z -=⎧⎨-=⎩,. 取1z =得,n ()111=,,.所以1 cos 3PC PC PC ⋅〈〉===⋅,n n n . 所以直线PC 与平面PBD 所成角的正弦值为13.(2)依题意,()10C λ,,,()101PB ,,=-,()11PC λ ,,=-,()011PD,,=-. 设平面PBC 的一个法向量为1n ()111x y z ,,=,则1100PB PC ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即1111100x z x y z λ-=⎧⎨+-=⎩,,取11z =得,()1101=,,n . 设平面PCD 的一个法向量为2n ()222x y z ,,=,则2200PC PD ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即2222200x y z y z λ+-=⎧⎨-=⎩,,取21z =得,2n ()111λ=-,,.所以121212 cos⋅〈〉=⨯,n n n n n n 1 cos120 2== , 解得1λ=或5λ=,因为01λ<≤,所以1λ=. 23.(本小题满分10分)解:(1)依题意, ()()31343128P ξ==⨯⨯=.(2)依题意,()()()11111C C2m km m m k m k P m k ξ+-++-+-=+=+⋅(23k =,,…1m +,).设()()()11111CCm km m m k m k f k +-++-+-=+⋅()()()()()()1!1!121!!1!2!m km k m k m k m k ++-+-⎡⎤=+⋅⎢⎥-+-⎣⎦()()()()()1111!21!!m km m k k m k m k +++-=⋅⋅+-+则()()1f k f k +()()()()()()()()()()()1111!1!1!1111!21!!m k m k m m k k m k m k m m k k m k m k ++++++⋅⋅+++=++-⋅⋅+-+()()()()()()112111m k m m k k k m m k k ++++⎡⎤⎣⎦=+++-⎡⎤⎣⎦. 而()()()1112111m k m m k k k m m k k ++++⎡⎤⎣⎦+++-⎡⎤⎣⎦≥ (*) ()()()32221220k m k m k m m m ⇔-++----≤()()2220k m k k m m ⇔--+--≤.(#) 因为2220k k m m -+--=的判别式()21420m m ∆=---<2704m m ⇔--<(显然在*1m m >∈N ,时恒成立), 所以2220k k m m -+-->.又因为k m ≤,所以(#)恒成立,从而(*)成立. 所以()()11f k f k +≥,即()()1f k f k +≥(当且仅当k m =时,取“=”), 所以()f k 的最大值为()()()()21112211C C2m m m mmf m f m +-+=+=+⋅,即()P m k ξ=+的最大值为()()2111221C C2m m m mm+-++⋅.。
2018届高考数学考前模拟试卷(文科)

2018届高三考前模拟数学(文科)全卷满分150分,时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上.2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效.3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。
一.选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1。
集合}{022≤--=x x x A ,}{1<=x x B ,则)(B C A R = ( )(A ) }{1x x > (B ) }{12x x <≤ (C ) }{1x x ≥ (D ) }{12x x ≤≤ 2.设1iz i=-(i 为虚数单位),则1z =( )(A )2(B) (C )12(D ) 2 3.等比数列{}n a 中,122a a +=,454a a +=,则1011a a +=( )(A) 8 (B ) 16(C ) 32 (D ) 644. 已知向量a b ⊥,2,a b ==则2a b -=( )(A) (B ) 2 (C) (D)5.下列说法中正确的是( )(A) “(0)0f =”是“函数()f x 是奇函数”的充要条件(B ) 若2000:,10p x R x x ∃∈-->,则2:,10p x R x x ⌝∀∈--<(C ) 若p q ∧为假命题,则,p q 均为假命题(D) “若6πα=,则1sin 2α=”的否命题是“若6πα≠,则1sin 2α≠”6.已知输入实数12x =,执行如图所示的流程图,则输出的x 是 ( )(A) 25 (B) 102 (C) 103 (D) 51 7.将函数()()1cos 24f x x θ=+(2πθ<)的图象向右平移512π个单位后得到函数()g x的图象,若()g x 的图象关于直线9x π=对称,则θ=( )(A)718π (B ) 18π (C ) 18π- (D ) 718π- 8.已知x ,y 满足条件04010x y x y x -≤⎧⎪+-≤⎨⎪-≥⎩,则yx 的最大值是 ( )(A) 1 (B) 2 (C) 3 (D ) 49.某几何体的三视图如图所示,则该几何体的体积为 ( ) (A)833 (B) 1633 (C) 3233(D) 163 10.已知函数()y f x =的定义域为{}|0x x ≠,满足()()0f x f x +-=,当0x >时,()ln 1f x x x =-+,则函数()y f x =的大致图象是( )(A) (B ) (C ) (D)11.已知P 为抛物线24y x =上一个动点,Q 为圆()2241x y +-=上一个动点,则点P 到点Q 的距离与点P 到抛物线的准线的距离之和最小值是( )(A ) 171- (B) 252- (C) 2 (D ) 1712. 设定义在R 上的函数()y f x =满足任意t R ∈都有()()12f t f t +=,且(]0,4x ∈时,()()f x f x x'>,则()()()20164201722018f f f 、、的大小关系是( )(A) ()()()22018201642017f f f << (B) ()()()22018201642017f f f >>(C) ()()()42017220182016f f f << (D ) ()()()42017220182016f f f >>二.填空题:本大题共4小题,每小题5分。
高三数学-2018年高考模拟试1(答案) 精品

2018年高考模拟试卷(数学)答案 第Ⅰ卷 (选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B2.D3.A4.B5.A6.B7.C8.C9.D 10.B 11.A 12.D第Ⅱ卷 (非选择题 共90分)二 .填空题:本大题共4个小题,没小题4分,共16分。
把答案填在题中横线上。
13. e 114.496 15. 5416.1,3三、解答题17.(1)依题意,随机变量ξ的取值是2、3、4、5、6.因为64983)2(22===ξP ;6418832)3(22=⨯==ξP ; 642182323)4(22=⨯⨯+==ξP ;64128232)5(2=⨯⨯==ξP ; 64482)6(22===ξP ;所以,当4=ξ 时,其发生的概率6421)4(==ξP 最大。
6分(2)41564466412564214641836492=⨯+⨯+⨯+⨯+⨯=ξE 8分 644)4156(6412)4155(6421)4154(6418)4153(649)4152(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξD =10241248=3239 所以,所求期望为415,所求方差为3239. 12分 18解:(1))3sin ,(cos ),sin ,3(cos -=-=αααα , 2分αααcos 610sin )3(cos ||22-=+-=∴AC ,αααsin 610)3(sin cos ||22-=-+=BC . 4分由||||=得ααcos sin =. 又45),23,2(παππα=∴∈ . 6分 (2)由.1)3(sin sin cos )3(cos ,1-=-+--=⋅αααα得.32cos sin =+∴αα① 7分又.cos sin 2cos sin 1cos sin 2sin 2tan 12sin sin 222αααααααααα=++=++ 9分 由①式两分平方得,94cos sin 21=+αα .95tan 12sin sin 2.95cos sin 22-=++∴-=∴ααααα 12分19.(1)连BD AC 、相交于O ,则O 为ABCD 的中心,ABCD PO ABCD P 面为正四棱锥,⊥∴- ,且 60=∠PAO ;;22,6,2,2===∴=PA PO AO AB 2分过O 作 OM ⊥AB,连PM ,由三垂线定理,得 PM ⊥AB,所以PMO ∠为所求二面角的平面角,6t a n ,6,1=∠∴==P MO PO OM ,即侧面与底面所成二面角的大小为6arctan .6分(2)假设存在点E ,使得PC AE ⊥,设x BE =,在平面PBC 中,过E 作PC EF //交BC于F ,连AF,在221cos =∠∆EBA BEA 中,,221222222x x AE ⨯⨯-+==4+x x 22-在PBC ∆中,由PC EF //,得PC EF BC BF BP BE == ,即22222EFBF x ==, 2xBF =∴,x EF =. 2422x AF ABF +=∆中,在在222AF EF AE AEF Rt =+∆中,,2424222x x x x +=+-+∴,解得,舍去)或(0322==x x . 12分 20.(1)(i )当n=1时,1)1(11=-+=+a a b a ,命题成立.(ii)假设k n =时命题成立,即1=+k k b a ,那么当1+=k n 时,111)1(112221111==-=-+=-+-⋅=+⋅=+++++kk k k kk k kk kk k k k k k k b ba b a a b a b a b a b b a b a.1时,命题成立当+=∴k n综上,1=+n n b a ,对一切正整数均成立。
2018年上半年全国统考教师资格考试初中数学模拟卷一-教师版
2018年上半年中小学教师资格考试模拟卷数学学科知识与教学能力(初级中学)一、单项选择题(本大题共8小题,每小题5分,共40分)1.若)(x f 为(﹣l ,l )内的可导奇函数,则)('x f ( ).A .是(﹣l ,l )内的偶函数B .是(﹣l ,l )内的奇函数C .是(﹣l ,l )内的非奇非偶函数D .可能是奇函数,也可能是偶函数1.【答案】A .解析:因为()()f x f x -=-,所以.2.当x 0→时,与1x 133-+为同阶无穷小的是( ).A .3xB .34xC .32xD .x 2.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=,选A . 3.直线383311x y z ---==-与直线376324x y z ++-==-的位置关系为( ). A .平行 B .相交 C .异面 D .重合3.【答案】B .解析:直线383311x y z ---==-可以化为一般式:36z x -=,直线376324x y z ++-==-可以化为一般式:346z x +=,联立两个方程,解得12565x z ⎧=⎪⎪⎨⎪=⎪⎩,说明两条直线相交. 4.计算22x y D edxdy --⎰⎰,其中D 是由中心在原点、半径为a 的圆周所围成的闭区域( ).A .()21a e π--B .()21a e π-C .()21a e π-+D .()21a e π+ 4.【答案】A .解析:在极坐标系中,闭区域D 可表示为0,02a ρθπ≤≤≤≤,所以()()222222222200000111122a a x y a a D D edxdy e d d e d d e d e d e πππρρρρρθρρθθθπ-------⎡⎤⎡⎤===-=-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰,所以答案选A .5.求幂级数()()2202!!n n n x n ∞=∑的收敛半径是( ). A .1 B .2 C .12 D .-15.【答案】C .解析:级数缺少奇次幂的项,定理2不能直接应用.我们根据比值审敛法来求收敛半径:()()()()()21222221!1!lim 42!!n n nn x n x n x n +→∞+⎡⎤⎣⎦+⎡⎤⎣⎦=,当2141,2x x <<即时级数收敛;当2141,2x x >>即时级数发散.所以收敛半径12R =. 6.设A ,B ,C 是三个随机事件,P (ABC )=0,且0<P (C )<1,则一定有( ).A .()()()()P ABC P A PB PC =B .()()()|||P A BC P A C P B C +=+⎡⎤⎣⎦ C .()()()()P A B C P A P B P C ++=++D .()()()||P A B C P A C P B C +=+⎡⎤⎣⎦ 6.【答案】B .解析:A .由于不知道P (A )或P (B )是否为零,因此选项A 不一定成立. B .()()()()()()P A B C P AC P BC P ABC P AC P BC -=⎣+=++⎡⎤⎦,()()()()()|||P A B C P A B C P C A P B C P C ⎡⎤⎣⎦+⎡⎤⎣⎦++==,选项B 正确.C .()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ---+++=++,由于不能确定 ()()()P AB P BC P AC 、、的概率是否全为零,因此选项C 不一定成立.D .()()()()()=P A B C P AC BC P AC P BC P ABC ⎡⎤-⎣=++⎦+,而()()()P AB P ABC P ABC =-,其值是否为零不能判断,因此选项D 不一定成立.7.对于求函数最大值的问题,下列关于该问题的解题过程所蕴涵的主要数学思想的()[]3221,1,3f x x x x x =+-+∈-表述中,不恰当的一项是( ).A .方程与函数思想B .特殊与一般思想C .化归与转化思想D .有限与无限思想7.【答案】D .解析:本题在结果过程中采用将原函数求导,并根据其导函数的取值范围确定原函数的单调性,再通过单调性判别最大值,分别体现了方程与函数、特殊与一般以及化归与转化的思想,没有体现有限与无限的思想.8.概念的外延是概念所反映的( )的总和.A .本质属性B .本质属性的对象C .对象的本质属性D .属性8.【答案】B .解析:概念的外延是概念所反映的本质属性的对象的总和,故选B .二、简答题(本大题共5小题,每小题7分,共35分)9.设1211321563A λμ⎡⎤-⎢⎥=-⎢⎥⎢⎥⎣⎦,已知()2R A =,求λμ与的值.9.【答案】51λμ=⎧⎨=⎩. 解析:121112110303444451080054A λλμμλ⎡⎤⎡⎤--⎢⎥⎢⎥++----⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦::, 因为()2R A =,所以505,101λλμμ-==⎧⎧⎨⎨-==⎩⎩即. 10.三个箱子中,第一箱装有4个黑球1个白球,第二箱装有3个黑球3个白球,第三箱装有3个黑球5个白球,现在任取一箱,再从该箱中任取一球,问(1)取出的球是白球的概率?(2)若取出的为白球,则该球属于第二箱的概率?10.【答案】(1)53120;(2)2053. 解析:设i A 表示“取出第i 个箱子”, 1,2,3i =,B 表示“取出白球”. 于是1231()()()3P A P A P A ===, 11(|)5P B A =,23(|)6P B A =,15(|)8P B A =. (1)由全概率公式得3153()(|)()120i i i P B P B A P A ===∑; (2)由贝叶斯公式得2(|)()20(|)()53i i P B A P A P A B P B ==. 11.证明当0x >,()ln 11x x x x<+<+. 11.【答案】见解析.解析:设()()ln 1f t t =+,显然()f t 在区间[]0,x 上满足拉格朗日中值定理的条件,根据定理,应有()()()()00,0f x f f x x ξξ'-=-<<;由于()()100,1f f t t'==+,因此上式即为()ln 11x x ξ+=+,又由0x ξ<<,有()()ln 101x x x x x <+<>+,由此得证. 12.试结合实际教学说说在数学教学中如何激发学习兴趣,引起学习动机?12.【参考答案】兴趣是一个人积极探究某种事物或进行活动的意识倾向.学习兴趣是学生对学习活动或学习对象的一种力求认识或趋近的意识倾向.兴趣是入门的向导,是感情的体现,能促使动机的产生.学习兴趣是一种学习动机,是学习积极性中很现实、很活跃的心理成分.总是积极主动,心情愉快的进行学习,不会产生负担.在数学教学之初,或学习新课题时,教师应精心设计教学学习情境,将学生置于该情境之中,激发学习兴趣,千方百计的诱发学生的求知欲,使学生有一种力求认识世界,渴望获得知识,不断追求真理的欲望,产生学习的自觉性,迸发出极大的学习热情.13.何为教学反思?如何进行教学反思.13.【参考答案】反思是指教师以自己的教育教学实践为思考对象,对自己的教育行为、决策及教学效果进行认真的审视和分析,不断提高自己教学水平和专业素养的过程.反思不仅仅是头脑内部的“想一想”,而是一个不断实践、学习、研究的过程,是自己与自己、自己与他人更深层次的对话.反思是教师认识自己的重要途径,又是改变自己的前提,教学是一门遗憾的艺术,即使是成功的课堂教学也难免有疏漏失误之处,课后要及时进行回顾、梳理,并对其作深刻反思、探究和认真的剖析,为教师再教积累理论和实践经验.课后反思还要对自己的教学行为是否会对学生造成伤害进行反思.有时,教师无意识的行为会对学生造成终身难以弥补的伤害,所以教师在与学生沟通时要时时注意自己的言行.三、解答题(本大题1小题,10分)14.非齐次线性方程组12312321232222x x x x x x x x x λλ⎧-++=-⎪-+=⎨⎪+-=⎩,当λ取何值时有解?并求出它的通解.14.【答案】见解析.解析:这里的系数矩阵A 是方阵,A 中不含参数,故对增广矩阵作初等行变换为宜,求解如下:()()()222121211212112121121211203322031112112112033000B λλλλλλλλλλλλ⎡⎤-⎢⎥⎡⎤⎡⎤⎡⎤----⎢⎥-⎢⎥⎢⎥⎢⎥=-----+⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+----⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦:::, 因为()2R A =,故当()2R B =时,即当12λλ==-或时,方程组有解;当1λ=时,012111110000111100000000B ⎡⎤⎡⎤--⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦::,则有13231x x x x =+⎧⎨=⎩,即()123111010x x c c R x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 当2λ=-时,012121120011211200000000B ⎡⎤⎡⎤---⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦::,则有132322x x x x =+⎧⎨=+⎩,即()123121210x x c c R x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.四、论述题(本大题1小题,15分)15.解释解析几何的含义,并说明解析几何的意义.15.【参考答案】解析几何是这样一个数学学科,在采用坐标法的同时,运用代数方法来研究几何对象.(1)解析几何使得数学的研究方向发生了一次重大的转折:以几何为主导的数学转变为宜代数和分析为主导的数学;(2)解析几何使得以常量为主的数学转变为以变量为主的数学为微积分到的诞生奠定了基础; (3)解析几何使代数与几何融为一体,实现了几何图形的数字化,是数学化时代的先声;(4)代数的几何化和几何的代数化,使得人们摆脱了现实的束缚,它带来了认识新空间的需要,帮助人们从现实空间进入虚拟空间,从三维空间进入更高维的空间.五、案例分析题(本大题1小题,20分)16.案例:阅读下列3个教师有关“代数式概念”的教学片断.教师甲的情境创设:“一隧道长l 米,一列火车长180米,如果该列火车穿过隧道所花的时间为t 分钟,则列车的速度怎么表示?”学生计算得出t l 180+,教师指出:“tl 180+”、“10a +2b”这类表达式称为代数式. 教师乙的教学过程:复习上节内容后,教师在黑板上写下代数式的定义:“由运算符号、括号把数和字母连接而成的表达式称为代数式”,特别指出“单独一个数或字母也称为代数式”;然后判断哪些是代数式,哪些不是;接着通过“由文字题列代数式”及“说出代数式所表示的意义”进一步解释代数式的概念;最后让学生练习与例题类似的题目.教师丙的教学过程:让学生自学教材,但是教材并没有说“代数式”是怎么来的,有什么作用.接着教师大胆地提出开放式问题:“我们怎样用字母表示一个奇数?”当时教室里静极了,学生们都在思考.先有一位男生举手回答:“2a -1”.“不对,若a =1.5呢?”一位男生说.沉默之后又有一位学生大声地说:“a 应该取整数!”有些学生不大相信:“奇数77能用这个式子表示吗?”不久,许多学生算出来:“a 取39”.此时,教师趁势作了一个简单的点拨:“只要a 取整数,2a -1定是奇数,对吗?那么偶数呢?”他并没有作更多的解说,点到为止,最后的课堂小结也很简单:“数和式有什么不同?”“式中的字母有约束吗?”“前面一节学过的式子很多都是代数式!……”从师生们自如的沟通来看,他们都已成竹在胸.问题:(1)你认可教师甲的情境创设吗?说明理由;(2)你认可教师乙的教学过程吗?说明理由;(3)你认可教师丙的教学过程吗?说明理由.16.【参考答案】(1)甲教师情境创设的优点在于运用学生熟悉的物理背景来进行情境导入,降低了认知的难度.缺点在于看似联系实际,其实脱离学生的现有认知水平,使学生的认知起点与数学逻辑起点失调,无法引起学生的思维共鸣,使问题情境中隐含的数学问题与数学方法不能与教学目标相衔接,不能形成学生原有认知水平及生活经验的正迁移.(2)乙教师的教学过程存在优点也存在缺陷.优点是一开始复习了上节内容,进行了新旧知识间的过渡,降低了学生对新知识的认知难度;采取了直接导入的方法,开门见山的介绍本节课题,引起学生的注意,使学生迅速进入学习状态,对本节内容的基本轮廓有了大致了解;整个教学过程条理清楚、重难点突出;最后进行巩固练习,加深了学生对新知识的识记和掌握.缺点在于没有进行合适的情境创设,将知识全盘塞给学生,剥夺了学生研究问题的策略,无法激发学生学习新知识的兴趣,学生只能机械地配合老师的教学,整个过程中,缺乏师生间的互动,忽略了学生的主体地位.(3)丙教师的教学过程存在优点也存在缺陷.优点是充分发挥了学生的主体地位,开放性问题激发了学生自主探究的兴趣,有利于培养他们的独立思考能力和创新意识.缺点在于首先教师没有给出学生自主探究的准备时间,没有提供丰富的自学素材;另外教师导入的开放式问题并不能充分突出代数式这节的核心——“数”与“式”的区别;在探究过程中,教师没有科学合理地发挥自己的主导作用,小结也显得过于潦草和模糊.六、教学设计题(本大题1小题,30分)17.在进行初中数学“一次函数(第一课时)”时,你将怎样展开教学,请完成下列教学设计:(1)谈谈一次函数在初中数学课程中的作用;(2)确定本节课的教学目标和教学重难点;(3)请设计一个引入“一次函数概念”的教学片段,要求引导学生经历从实际背景抽象概念的过程.17.【参考答案】(1)一次函数属于《数学课程标准》中“数与代数”领域,是最基本的、最简单的函数.教材在前面首先安排了函数及正比例函数的内容,讨论了正比例函数的定义、图象、性质等,接着本节学习一次函数的定义、图象、性质和函数解析式,它既是对函数概念的进一步理解,又是特殊的一次函数——正比例函数到一般的一次函数的拓展,它还是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用.它也是将来学习二次函数,反比例函数的基础.本节教学内容还是学生进一步体会“函数思想”“类比思想”“数形结合思想”的很好素材.(2)教学目标:知识与技能目标:能通过实例观察、比较、探索、归纳得出一次函数概念.能根据实际条件,分清两个变量间的关系,列出一次函数解析式.过程与方法目标:在经历一次函数概念的形成过程中,体会数学建模和特殊到一般的思想及类比思想,提高发现问题、解决问题的能力.情感态度与价值观目标:体验函数与人类生活的密切联系,增强对函数学习的求知欲,体验数学充满着探索性和创造性,增强学习数学的兴趣.教学重点、难点:教学重点:一次函数的概念,能利用一次函数解决简单的实际问题.教学难点:能根据具体条件写出一次函数解析式.(3)引例:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm时,他们所在的位置的气温是y℃,试写出y与x之间的关系式.引导学生得出正确结果:y=-6x+5追问:y是x的函数吗?引导学生回顾函数的定义,给出答案.提示并提问:我们看到实际问题中,两个变量之间的数量关系不总是k倍的关系,还有如引例中存在的数量关系.出示下列例题,让同学们自行写出其中变量对应的函数关系.①有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.②一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.③某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.1元/分收取).④把一个长10cm,宽5cm的矩形的长减少x cm,宽不变,矩形面积y(cm2)随x的值而变化.引导学生得出正确结果:①c=7t-35;②G=h-105;③y=0.01x+22;④y=-5x+50.提问并进行小组讨论:这四个关系式显然都是函数,这些函数有什么共同的特点?若把它们叫做一次函数,你能类比正比例函数的定义给出一次函数的定义吗?由此引出一次函数的概念并总结:一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.。
2018年数学高考模拟试题(共71张PPT)
∵|O→F|=|O→D|=|D→F|=4,
∴△DOF为等边三角形,
∴∠ODF=60°.
∴∠DFE=30°,且EF=4×sin60°×2=4 3.
∴向量
→
EF
在 F→D 方向上的投影为|E→F |cos〈
E→F,
→
FD
〉=
4 3cos150°=-6,故选B.
8.执行下面的程序框图,如果输入 的t=0.01,则输出的n=( )
614,n=5,S>t;第六次循环:S=312-614=614,m=1218,n=
6,S>t;第七次循环:S=614-1128=1128,m=2156,n=7,此
时不满足S>t,结束循环,输出n=7,故选C.
9.已知简单组合体的三视图如图所示,则此简单组合 体的体积为( )
10π A. 3
B.14π
二、填空题
13.若a=πsinxdx,则二项式a
0
x- 1x6的展开式中常
数项是__-_1_6_0___.
解析
a=
π
sinxdx=(-cosx)|
π 0
=-cosπ+cos0=2,二
0
项式 2
x-
1
x
6的展开式的通项公式为Tr+1=C
r 6
(2
x )6-
r·-
1
x
r=(-1)r26-rC
44大二轮数学理2每一个城市都要由四个专家组分别对抽查情况进行评价并对所选取的城市进行评价每个专家组给检查到的城市评价为优的概率为若四个专家组均评价为优则检查通过不用复检否则需进行复检
2018年数学高考模拟试题(共71张 PPT)
一、选择题 1.设复数z1和z2在复平面内的对应点关于坐标原点对 称,且z1=3-2i,则z1·z2=( ) A.-5+12i B.-5-12i C.-13+12i D.-13-12i
精品解析:浙江2018年高考全真模拟数学试题(一)(解析版)
2018年浙江高考全真模拟高三数学试题卷一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合,,,则()A. B. C. D.【答案】C【解析】∵集合,∴集合,集合∴∵集合∴故选C2.设是虚数单位,若,,,则复数的共轭复数是()A. B. C. D.【答案】A【解析】,根据两复数相等的充要条件得,即,其共轭复数为,故选A.3.双曲线的焦点到其渐近线的距离为()A. 1B.C. 2D.【答案】A【解析】根据双曲线的方程得到焦点为,渐近线为:,根据点到直线的距离得到焦点到渐近线的距离为故答案为:A。
4.设,,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】∵∴当,时,满足,则当,时,,则当,时,,则当,时,无解∴可推出∵∴当时,,满足当时,满足当时,,满足∴可推出综上,“”是“”的充要条件故选C5.函数在的图象大致为()A. B.C. D.【答案】D【解析】∵函数,∴函数为偶函数∴当时,,故排除A和B当时,,则有解,即函数在上不是单调的,故排除C故选D点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.6.若数列满足,,则该数列的前2017项的乘积是()A. -2B. -3C. 2D.【答案】C【解析】∵数列{a n}满足a1=2,(n∈N∗),∴,同理可得:.∴a n+4=a n,a1a2a3a4=1.∴该数列的前2017项的乘积=1504×a1=2.本题选择C选项.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.7.如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且,若线段DE上存在点P使得,则边CG长度的最小值为A. 4B.C. 2D.【答案】D【解析】以DA,DC,DF为坐标轴建立空间坐标系,如图所示:设,则,即.又,所以.显然且.所以.因为,所以.所以当,取得最小值12.所以的最小值为.故选D.点睛:集合问题代数化是空间向量法解决问题的一般思路,通过向量将几何关系建立代数式,例如两直线垂直时即可转为向量的数量积为0,利用向量的坐标表示即可.8.设函数,,若对任意的,都存在实数,使得成立,则实数的取值范围为()A. B. C. D.【答案】D【解析】设函数的值域为A,函数的值域为,由已知有,又,所以或,所以,选D.点睛:本题主要考查如何求实数的范围,是中档题,解题时要认真审题,注意函数性质的运用。
【高考模拟】普通高等学校2018届高三招生全国统一考试仿真卷(一)数学(理)(word版有答案)
绝密★启用前2018届普通高等学校招生全国统一考试仿真卷理科数学(一)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N = () A .{}0,2B .()2,0C .(){}0,2D .(){}2,02A .B .C .12D 3.如图所示的阴影部分是由轴及曲线sin y x =围成,在矩形区域OABC 内随机取一点,则该点取自阴影部分的概率是()A.2πB.12C.1πD.3π4A.4-B.C.13-D.135.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A.2 B.4+C.4+D.4+6.已知实数,y满足2210x yxy+-⎧⎪⎨⎪⎩≥≤≥,若z x my=+的最大值为10,则m=()A.B.C.D.7.已知()201720162018201721f x x x x=++++,下列程序框图设计的是求()0f x的值,在“ ”中应填的执行语句是()开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+8.若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则的取值范围为() A .()0,4B .()0,+∞C .()3,4D .()3,+∞9.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A,B P,A ,B 不共线时,PAB △面积的最大值是() A .B CD 10.双曲线2222:1(0,0)x y C a b a b -=>>的离心率e =,右焦点为F ,点A 是双曲线C 的一条渐近线上位于第一象限内的点,AOF OAF ∠=∠,AOF △的面积为,则双曲线C 的方程为()A .2213612x y -=B .221186x y -=C .22193x y -=D .2213xy -=11.设锐角ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,2A C =,则ABC △周长的取值范围为() A.(0,2B .(0,3C .(2+D .(212.若关于的方程e 0e exx xx m x ++=+有三个不相等的实数解1x ,2x ,3x ,且1230x x x <<<,其中m ∈R ,e 2.71828= 为自然对数的底数,则3122312111e e e x x x xx x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为()A .1B .C .1m -D .1m +第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017秋—2018 中考数学综合训练1
班别 学号 姓名 成绩
一、选择题(每小题3分,共30分)
1. 的倒数是( ) A .﹣
B .
C .﹣6
D .6
2.下列 “禁止行人通行, 注意危险, 禁止非机动车通行, 限速60” 四个交通标志图中,为轴对称图形的是( )
A .
B .
C .
D .
3.若式子m ﹣3有意义,则m 的取值范围是( ) A .m ≥3 B .m ≤3
C .m ≥0
D .m ≤0
4.一元一次方程x ﹣1=0的解是( ) A .x=1 B .x=﹣1 C .x=±1 D .x=0
5.分解因式:2x 2﹣2=( ) A .2(x 2﹣1)
B .2(x 2+1)
C .2(x ﹣1)2
D .2(x +1)(x ﹣1) 6.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为( ) A .相离 B .相切
C .相交
D .无法确定
7.在△ABC 中,AB=3,BC=4,AC=2,D 、E 、F 分别为AB 、BC 、AC 中点,连接DF 、FE ,则四边形DBEF 的周长是( )
A .5
B .7
C .9
D .11
8.下列命题:
①对顶角相等;②同位角相等,两直线平行;
③若a=b,则|a|=|b|;④若x=0,则x2﹣2x=0
它们的逆命题一定成立的有()
A.①②③④B.①④C.②④D.②
9.三张背面完全相同的数字牌,它们的正面分别印有数字“1”、“2”、“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长正好构成等边三角形的概率是()
A .B.C.D.
10.青山村种的水稻2017年平均每公顷产7200 kg,2018年平均每公顷产8450 kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()
A.7200(1+x)=8450 B.7200(1+x)2=8450
C.7200+x2=8450 D.8450(1﹣x)2=7200
二、填空题(本大题共6小题,每小题4分,共24分)
11.计算:3a﹣2a= 。
12.2018年2月,肇庆市西江特大桥完成桥墩水下桩基础,累计完成投资53 000 000元,其中53 000 000用科学记数法表示为。
13.点P(2,﹣3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P′的坐标是.
14. 若一个正多边形的一个外角等于18°,则这个正多边形的边数是.
15.在函数y=x3
6 中,自变量x的取值范围是.
16.将一矩形纸条按如图所示折叠,若∠1 = 40°,则∠2 =°.
三、解答题(本大题共3小题,满分21分)
17.计算:|﹣3|﹣(﹣2018)0 + (﹣2)×(﹣3)+ tan45°.
18.解不等式组,并在数轴上表示不等式组的解集.
19.在“立德树人,志愿服务”活动月中,学校团委为了解本校学生一个月内参加志愿服务次数的情况,随机抽取了部分同学进行统计,并将统计结果分别分成A、B、C、D四类,根据统计结果绘制了如图所示的两幅不完整的统计图.
请根据图中信息解答下列问题:
(1)本次抽样调查了名学生,并请补全条形统计图;
(2)被调查学生“一个月内参加志愿服务次数”的人数的众数落在类.
四、解答题(本大题3小题,共25分)
20.先化简,再求值:÷•,其中a= 2017.
21. 如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.
22. (9分)如图,已知反比例函数y = 的图象与直线y =﹣x+b都经过
点A(1,4),且该直线与x轴的交点为B.
(1)求反比例函数的解析式和直线的解析式;
(2)求△AOB的面积.。