人教版九年级数学上册海南省万宁市届期中考试答案.docx

合集下载

人教版九年级上册数学《期中》考试及答案【完美版】

人教版九年级上册数学《期中》考试及答案【完美版】

人教版九年级上册数学《期中》考试及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =4 4.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形5.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠36.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm8.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°10.如图,在平面直角坐标系中,ABCD 的三个顶点坐标分别为()()()1,04,22,3A B C ,,,第四个顶点D 在反比例函数()0k y x x=<的图像上,则k 的值为( )A .1-B .2-C .3-D .4-二、填空题(本大题共6小题,每小题3分,共18分)1.计算(331)的结果等于___________.2.分解因式:33a b ab -=___________.3.若a 、b 为实数,且b 2211a a -+-+4,则a+b =__________.4.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为__________.5.如图,在△ABC中,AB=AC=5,BC=45,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为__________.6.如图,在矩形ABCD中,8AD=,对角线AC与BD相交于点O,AE BD⊥,垂足为点E,且AE平分BAC∠,则AB的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:21 133x xx x=+ ++2.已知关于x,y的方程组231034axx y⎧+=-⎪⎨+=⎪⎩215x yx by-=⎧⎨+=⎩的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为26x的方程20x ax b++=的解.试判断该三角形的形状,并说明理由.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.4.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,3A 、()2,0B -、()2,0C ,BD 平分ABC ∠交AC 于点D ,点E 、F 分别是线段BD 、BC 上的动点,求CE EF +的最小值.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、A7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、22、ab(a+b)(a﹣b).3、5或34、72°5、86、.三、解答题(本大题共6小题,共72分)1、32 x=-2、(1)-;12(2)等腰直角三角形,理由见解析3、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m1,2.4、5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)35元/盒;(2)20%.。

海南省初三年级数学上册期中试卷(含答案解析)

海南省初三年级数学上册期中试卷(含答案解析)

海南省2021初三年级数学上册期中试卷(含答案解析)海南省2021初三年级数学上册期中试卷(含答案解析) 一、选择题(每小题3分,共42分)1.化简的结果为()A. 2 B. 4 C. 4 D.±42.下列计算正确的是()A. 3 =2 B. C. =3 D.3.要使有意义,则x的范围为()A. B.x≥2 C. D. x>24.方程x2=3x的解是()A. x=3 B. x1=0,x2=3 C. x1=0,x2=3 D. x1=1,x2=3 5.若a<1,化简 1=()A. a2 B. 2a C. a D. a6.若二次根式与是同类二次根式,则k的值可以是()A. 3 B. 4 C. 5 D. 67.如果5是一元二次方程x2=c2的一个根,那么常数c是()A. 25 B.±5 C. 5 D. 258.用配方法解方程:x24x+2=0,下列配方正确的是()A.(x2)2=2 B.(x+2)2=2 C.(x2)2=2 D.(x2)2=69.关于x的一元二次方程x2+px+q=0的两个实数根分别是2和3,则()A. p=1,q=6 B. p=1,q=6 C. p=5,q=6 D. p=1,q=6 10.已知一元二次方程x28x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A. 13 B. 11或13 C. 11 D. 1211.如图,在△ABC中,D是AB的中点,DE∥BC,若△ADE 的面积为3,则△ABC的面积为()A. 3 B. 6 C. 9 D. 1212.如图,点D在△ABC的边AC上,添加下列哪个条件后,仍无法判定△ABC∽△ADB()A. B. C.∠C=∠ABD D.∠CBA=∠ADB13.如图,在?ABCD中,E为AD的三等分点,AE= AD,连接BE交AC于点F,AC=12,则AF为()A. 4 B. 4.8 C. 5.2 D. 614.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)二、填空题(每小题4分,共16分)15.计算: =.16.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=4,BC=3,DF=6,则DE=.17.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为.18.如图,等边三角形△ABC的边长为3,点P为BC上的一点,且PC=2,点D为AC上的一点,若∠APD=60°,则CD的长为.三、填空题(共62分)19.(12分)(2021秋?美兰区校级期中)计算:(1);(2);(3).20.(12分)(2021秋?美兰区校级期中)请从以下四个一元二次方程中任选三个,并用适当的方法解这三个方程.(1)x23x=1;(2)(2x1)216=0;(3)(a1)2=3a3;(4)x(x+4)=3x+2.四、解答题(共4小题,满分38分)21.关于x的一元二次方程x23xk=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.22.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.23.(11分)(2021秋?蜀山区校级期中)如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)以点E为中心,在位似中心的同侧画出△EDF的一个位似△ED1F1,使得它与△EDF的相似比为2:1;(3)求△ABC与△ED1F1的面积比.24.(13分)(2021秋?美兰区校级期中)如图,在△ABC中,∠B=90°,AB=6,BC=8,动点P从A点出发,沿AC向点C移动,速度为每秒2个单位长度,同时,动点Q从C点出发,沿CB向点B移动,速度为每秒1个单位长度,当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)当t=2.5秒时,求△CPQ的面积;(2)求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P、Q移动的过程中,当t为何值时,△CPQ是等腰三角形?海南省2021初三年级数学上册期中试卷(含答案解析)参考答案与试题解析一、选择题(每小题3分,共42分)1.化简的结果为()A. 2 B. 4 C. 4 D.±4考点:二次根式的性质与化简.专题:计算题.分析:原式利用二次根式的化简公式计算即可得到结果.解答:解:原式=|4|=4.故选B点评:此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.2.下列计算正确的是()A. 3 =2 B. C. =3 D.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断.解答:解:A、原式=2 ,所以A选项错误;B、原式= =2 ,所以B选项正确;C、原式= = ,所以C选项错误;D、与不能合并,所以D选项错误.故选B.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.3.要使有意义,则x的范围为()A. B.x≥2 C. D. x>2考点:二次根式有意义的条件.分析:根据二次根式有意义的条件可得2x1≥0,再解不等式即可.解答:解:由题意得:2x1≥0,解得:x≥ ,故选:C.点评:此题主要考查了二次根式有意义的条件.二次根式中的被开方数是非负数.4.方程x2=3x的解是()A. x=3 B. x1=0,x2=3 C. x1=0,x2=3 D. x1=1,x2=3 考点:解一元二次方程因式分解法.分析:移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:x2=3x,x23x=0,x(x3)=0,x=0,x3=0,x1=0,x2=3,故选:B.点评:本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.5.若a<1,化简 1=()A. a2 B. 2a C. a D. a考点:二次根式的性质与化简.专题:计算题.分析:根据公式 =|a|可知: 1=|a1|1,由于a<1,所以a1<0,再去绝对值,化简.解答:解: 1=|a1|1,∵a<1,∴a1<0,∴原式=|a1|1=(1a)1=a,故选:D.点评:本题主要考查二次根式的化简,难度中等偏难.6.若二次根式与是同类二次根式,则k的值可以是()A. 3 B. 4 C. 5 D. 6考点:同类二次根式.分析:根据题意,它们的被开方数相同,列出方程求解.解答:解:∵二次根式与是同类二次根式,∴6k3=3,或6k3=12或6k3=27,解得:k=1或或5.因为答案中只有5,故选C.点评:本题考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.7.如果5是一元二次方程x2=c2的一个根,那么常数c是()A. 25 B.±5 C. 5 D. 25考点:一元二次方程的解.分析:欲求常数c的值,只需把x=5代入一元二次方程x2=c2,即可求得.解答:解:∵x=5是一元二次方程x2=c2的一个根,∴c2=25,∴c=±5.故选:B.点评:本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.8.用配方法解方程:x24x+2=0,下列配方正确的是()A.(x2)2=2 B.(x+2)2=2 C.(x2)2=2 D.(x2)2=6考点:解一元二次方程配方法.专题:配方法.分析:在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数4的一半的平方.解答:解:把方程x24x+2=0的常数项移到等号的右边,得到x24x=2,方程两边同时加上一次项系数一半的平方,得到x24x+4=2+4,配方得(x2)2=2.故选:A.点评:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9.关于x的一元二次方程x2+px+q=0的两个实数根分别是2和3,则()A. p=1,q=6 B. p=1,q=6 C. p=5,q=6 D. p=1,q=6 考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到2+3=p,2×3=q,然后解方程即可得到p和q的值.解答:解:根据题意得2+3=p,2×3=q,所以p=1,q=6.故选A.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2= ,x1x2= .10.已知一元二次方程x28x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A. 13 B. 11或13 C. 11 D. 12考点:解一元二次方程因式分解法;三角形三边关系;等腰三角形的性质.分析:由一元二次方程x28x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,利用因式分解法求解即可求得等腰△ABC的底边长和腰长,然后分别从当底边长和腰长分别为3和5时与当底边长和腰长分别为5和3时去分析,即可求得答案.解答:解:∵x28x+15=0,∴(x3)(x5)=0,∴x3=0或x5=0,即x1=3,x2=5,∵一元二次方程x28x+15=0的两个解恰好分别是等腰△ABC 的底边长和腰长,∴当底边长和腰长分别为3和5时,3+3>5,∴△ABC的周长为:3+3+5=11;∴当底边长和腰长分别为5和3时,3+5>5,∴△ABC的周长为:3+5+5=13;∴△ABC的周长为:11或13.故选B.点评:此题考查了因式分解法解一元二次方程、等腰三角形的性质以及三角形三边关系.此题难度不大,注意分类讨论思想的应用.11.如图,在△ABC中,D是AB的中点,DE∥BC,若△ADE 的面积为3,则△ABC的面积为()A. 3 B. 6 C. 9 D. 12考点:相似三角形的判定与性质;三角形中位线定理.分析:由平行可知△ADE∽△ABC,且 = ,再利用三角形的面积比等于相似比的平方可求得△ABC的面积.解答:解:∵DE∥BC,∴△ADE∽△ABC,∵D是AB的中点,∴ =()2= ,且S△ADE=3,∴S△ABC=12,故选D.点评:本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.12.如图,点D在△ABC的边AC上,添加下列哪个条件后,仍无法判定△ABC∽△ADB()A. B. C.∠C=∠ABD D.∠CBA=∠ADB考点:相似三角形的判定.分析:由∠A是公共角,利用有两角对应相等的三角形相似,即可得C与D正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得B正确,继而求得答案,注意排除法在解选择题中的应用.解答:解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故C与D正确;当时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故B正确;当时,∠A不是夹角,故不能判定△ADB与△ABC相似,故A错误.故选A.点评:此题考查了相似三角形的判定.此题难度不大,注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.13.如图,在?ABCD中,E为AD的三等分点,AE= AD,连接BE交AC于点F,AC=12,则AF为()A. 4 B. 4.8 C. 5.2 D. 6考点:平行线分线段成比例;平行四边形的性质.分析:根据平行四边形的对边相等可得AD=BC,然后求出AE= AD= BC,再根据平行线分线段成比例定理求出AF、FC的比,然后求解即可.解答:解:在?ABCD中,AD=BC,AD∥BC,∵E为AD的三等分点,∴AE= AD= BC,∵AD∥BC,∵AC=12,∴AF= ×12=4.8.故选B.点评:本题考查了平行线分线段成比例定理,平行四边形的对边平行且相等的性质,熟记定理并求出AF、FC的比是解题的关键.14.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)考点:位似变换;坐标与图形性质.专题:几何图形问题.分析:利用位似图形的性质结合两图形的位似比进而得出C 点坐标.解答:解:∵线段AB的两个端点坐标分别为A(6,6),B (8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选:A.点评:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.二、填空题(每小题4分,共16分)15.计算: = 1 .考点:二次根式的混合运算.专题:计算题.分析:根据平方差公式计算.解答:解:原式=1()2=12=1.故答案为1.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.16.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=4,BC=3,DF=6,则DE= .考点:平行线分线段成比例.分析:直接利用平行线分线段成比例定理进而得出 = ,再将已知数据代入求出即可.解答:解:∵l1∥l2∥l3,∵AB=4,BC=3,DF=6,解得:DE= .故答案为:.点评:此题主要考查了平行线分线段成比例定理,得出 = 是解题关键.17.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为(352x)(20x)=600(或2x275x+100=0).考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:把阴影部分分别移到矩形的上边和左边,可得种植面积为一个矩形,根据种植的面积为600列出方程即可.解答:解:把阴影部分分别移到矩形的上边和左边可得矩形的长为(352x)米,宽为(20x)米,∴可列方程为(352x)(20x)=600(或2x275x+100=0),故答案为(352x)(20x)=600(或2x275x+100=0).点评:考查列代数式;利用平移的知识得到种植面积的形状是解决本题的突破点;得到种植面积的长与宽是解决本题的易错点.18.如图,等边三角形△ABC的边长为3,点P为BC上的一点,且PC=2,点D为AC上的一点,若∠APD=60°,则CD的长为.考点:相似三角形的判定与性质;等边三角形的性质.分析:由条件可得到∠BAP=∠DPC,且∠B=∠C,可证得△ABP∽△PCD,可得 = ,代入可求得CD的长.解答:解:∵△ABC为等边三角形,∴∠B=∠C=60°,∵∠APD=60°,∴∠BAP+∠APB=∠APB+∠DPC=120°,∴∠BAP=∠DPC,∴△ABP∽△PCD,又AB=BC=3,PC=2,可得BP=1,解得CD= ,故答案为:.点评:本题主要考查相似三角形的判定和性质及等边三角形的性质,由条件得到∠BAP=∠DPC证得△ABP∽△PCD是解题的关键.三、填空题(共62分)19.(12分)(2021秋?美兰区校级期中)计算:(1);(2);(3).考点:二次根式的混合运算.分析:(1)先化为最简二次根式,再计算即可;(2)先化为最简二次根式,再算乘除后算加减,计算即可;(3)先化为最简二次根式,再计算即可.解答:解:(1)原式= ×2 ×2=4 ;(2)原式=2 4 × +3×=2 4+=3 4;(3)原式=3=3 +2=2 +2.点评:本题考查了二次根式的混合运算,在二次根式的混合运算中,要掌握好运算顺序及分母有理化.20.(12分)(2021秋?美兰区校级期中)请从以下四个一元二次方程中任选三个,并用适当的方法解这三个方程.(1)x23x=1;(2)(2x1)216=0;(3)(a1)2=3a3;(4)x(x+4)=3x+2.考点:解一元二次方程因式分解法;解一元二次方程配方法.专题:开放型.分析:(1)利用求根公式法解方程;(2)利用因式分解法解方程;(3)先移项得(a1)23(a1)=0,然后利用因式分解法解方程;(4)先把方程整理为一般式,然后利用因式分解法解方程.解答:解:(1)x23x1=0,△=94×(1)=13,x= ,所以x1= ,x2= ;(2)(2x1+4)(2x14)=0,2x1+4=0或2x14=0,所以x1= ,x2= ;(3)(a1)23(a1)=0,(a1)(a13)=0,a1=0或a13=0,所以a1=1,a2=4;(4)x2x2=0,(x2)(x+1)=0,x2=0或x+1=0,所以x1=2,x2=1.点评:本题考查了解一元二次方程因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.四、解答题(共4小题,满分38分)21.关于x的一元二次方程x23xk=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.考点:根的判别式;解一元二次方程公式法.专题:开放型.分析:(1)因为方程有两个不相等的实数根,△>0,由此可求k的取值范围;(2)在k的取值范围内,取负整数,代入方程,解方程即可.解答:解:(1)∵方程有两个不相等的实数根,∴(3)24(k)>0,即4k>9,解得;(2)若k是负整数,k只能为1或2;如果k=1,原方程为x23x+1=0,解得,,.(如果k=2,原方程为x23x+2=0,解得,x1=1,x2=2)点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.22.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.考点:一元二次方程的应用.专题:增长率问题;压轴题.分析:本题是平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.如果设平均增长率为x,那么结合到本题中a就是400×(1+10%),即3月份的营业额,b就是633.6万元即5月份的营业额.由此可求出x的值.解答:解:设3月份到5月份营业额的月平均增长率为x,根据题意得,400×(1+10%)(1+x)2=633.6,解得,x1=0.2=20%,x2=2.2(不合题意舍去).答:3月份到5月份营业额的月平均增长率为20%.点评:本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“”).23.(11分)(2021秋?蜀山区校级期中)如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)以点E为中心,在位似中心的同侧画出△EDF的一个位似△ED1F1,使得它与△EDF的相似比为2:1;(3)求△ABC与△ED1F1的面积比.考点:作图位似变换;相似三角形的判定与性质.专题:几何变换.分析:(1)先利用勾股定理计算出两个三角形的所有边长,通过计算对应边的比得到 = = ,再根据相似三角形的判定方法即可得到△ABC∽△DEF;(2)根据画位似图形的方法画出△ED1F1;(3)易得△ABC∽△D1EF1,然后根据相似三角形面积的比等于相似比的平方进行计算.解答:解:(1)∵AB=2 ,AC= ,BC=5,EF= ,FD= ,ED=2 ,∴△ABC∽△DEF;(2)延长ED到点D1,使ED1=2ED,延长EF到点F1,使EF1=2EF,连结D1F1,则△ED1F1为所求,如图;(3)∵△ABC∽△DEF,△DEF∽△D1EF1,∴△ABC∽△D1EF1,∴△ABC与△ED1F1的面积比=()2=()2= .点评:本题考查了作图位似变化:确定位似中心;分别连接并延长位似中心和能代表原图的关键点;根据位似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.也考查了相似三角形的判定与性质.24.(13分)(2021秋?美兰区校级期中)如图,在△ABC中,∠B=90°,AB=6,BC=8,动点P从A点出发,沿AC向点C移动,速度为每秒2个单位长度,同时,动点Q从C点出发,沿CB向点B移动,速度为每秒1个单位长度,当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)当t=2.5秒时,求△CPQ的面积;(2)求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P、Q移动的过程中,当t为何值时,△CPQ是等腰三角形?考点:相似形综合题.分析:(1)首先利用勾股定理求得AC的长,然后过点P作PD⊥BC于D,利用三角形中位线定理即可求得PD的长;(2)过点Q,作QE⊥PC于点E,易知Rt△QEC∽Rt△ABC,从而可求得QE的长,然后利用三角形的面积公式即可求解;(2)PC=QC PQ=QC PC=PQ三种情况进行讨论求解即可.解答:解:(1)如图1,过点P,作PD⊥BC于D.在Rt△ABC中,AB=6米,BC=8米,由勾股定理得:AC =10米由题意得:AP=2t,则CQ=t,则PC=102t∵t=2.5秒时,AP=2×2.5=5米,QC=2.5米∴PD= AB=3米.∴S= QC?PD=3.75平方米;(2)如图1过点Q,作QE⊥PC于点E,∵∠C=∠C,∠QEC=∠ABC,∴Rt△QEC∽Rt△ABC.解得:QE= ,∴S= PC?QE= (102t)? = t2+3t(0<t<5)(3)①当PC=QC时,PC=102t,QC=t,即102t=t,解得t= 秒;②当PQ=CQ时,如图1,过点Q作QE⊥AC,则CE= =5t,CQ=t,由(2)可知△CEQ∽△CBA,故,即,解得t= 秒;③当PC=PQ时,如图2,过点P作PE⊥BC.∵PQ=PC,PE⊥QC,∴EC= .∴CE= .∵PE⊥QC,∴∠PEC=90°.∴∠PEC=∠ABC.∵∠C=∠C,∠PEC=∠ABC,∴△PCE∽△ACB.∴ ,即,解得t= 秒.点评:本题主要考查了相似三角形的性质,以及圆和圆的位置关系,正确把图形之间的位置关系转化为线段之间的相等关系是解题的关键.。

人教版九年级初三数学上册期中检测试题卷及参考答案(Word最新版)

人教版九年级初三数学上册期中检测试题卷及参考答案(Word最新版)

人教版九年级初三数学上册期中检测试题卷及参考答案通过整理的人教版九年级初三数学上册期中检测试题卷及参考答案相关文档,渴望对大家有所扶植,感谢观看!上学期九年级数学试卷一、选择题(每小题3分,共24分)1.若在实数范围内有意义,则x的取值范围是A. x≥1B. x&gt;1C. x≤1D. x≠1 2.方程的解是A.B.C.D.3.如图,AD∥BE∥CF,直线a、b与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4,BC=6,DE=3,则EF的长为A.4B. 4.5C. 5D. 6(第3题)(第4题)(第5题)4.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB 上的中线.若CD=4,AC=6,则cosA的值是A.B.C.D. 5.如图,学校种植园是长32米,宽20米的矩形.为便于管理,现要在中间开拓一横两纵三条等宽的小道,使种植面积为600平方米.若设小道的宽为x米,则下面所列方程正确的是A. (32-x)(20-x)=600 B.(32-x)(20-2x)=600 C. (32-2x)(20-x)=600D.(32-2x)(20-2x)=600 6.已知点、在二次函数的图象上.若,则与的大小关系是A.B.C.D.7. 如图,在⊙O中,半径OA垂直弦BC于点D.若∠ACB=33°,则∠OBC的大小为A.24°B. 33°C. 34°D. 66°(第7题)(第8题)8.如图,△ABC和△ADE均为等边三角形,点D在BC上,DE与AC相交于点F.若AB=9,BD=3,则CF的长为A.1B.2C.3D.4 二、填空题(每小题3分,共18分)9.计算:=. 10.若关于的一元二次方程有实数根,则的取值范围是.11.将抛物线向下平移2个单位后,得到的抛物线所对应的函数表达式为.12.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD =105°,则∠DCE的大小是度.(第12题)(第13题)(第14题)13. 如图,在平面直角坐标系中,线段AB两个端点的坐标分别为(6,6),(8,2).以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点C的坐标为. 14.如图,在平面直角坐标系中,点A在其次象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,点C 在抛物线上,且位于点A、B之间(C不与A、B重合).若四边形AOBC 的周长为a,则△ABC的周长为(用含a的代数式表示).三、解答题(本大题共10小题,共78分)15.(6分)计算:. 16.(6分)解方程:.17.(6分)某工厂一种产品2021年的产量是100万件,支配2021年产量达到121万件.假设2021年到2021年这种产品产量的年增长率相同.求2021年到2021年这种产品产量的年增长率.18.(7分)图①、图②均是边长为1的正方形网格,△ABC的三个顶点都在格点上.按要求在图①、图②中各画一个三角形,使它的顶点均在格点上. (1)在图①中画一个△A1B1C1,满足△A1B1C1∽△ABC ,且相像比不为1. (2)在图②中将△ABC绕点C顺时针旋转90°得到△A2B2C,求旋转过程中B点所经过的路径长. 图①图②19.(7分)如图,AB是半圆所在圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC于E,交⊙O于D,连结BC、BE.(1)求OE 的长. (2)设∠BEC=α,求tanα的值.20.(7分)如图,在平面直角坐标系中,过抛物线的顶点A作x 轴的平行线,交抛物线于点B,点B在第一象限. (1)求点A的坐标. (2)点P为x轴上随意一点,连结AP、BP,求△AB P的面积.21.(8分)(8分)某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示.AE为台面,AC垂直于地面,AB表示平台前方的斜坡.斜坡的坡角∠ABC为43°,坡长AB为2m.为保障平安,又便于装卸货物,确定减小斜坡AB的坡角,AD是改造后的斜坡(D 在直线BC上),坡角∠ADC为31°.求斜坡AD底端D与平台AC的距离CD.(结果精确到0. 1m)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93;sin31°=0.52,cos31°=0.86,tan31°=0.60】22.(9分)(9分)如图,在Rt△ABC中,∠B=30°,∠ACB=90°,AB=4.延长CA到O,使AO=AC,以O 为圆心,OA长为半径作⊙O交BA延长线于点D,连结OD、CD.(1)求扇形OAD的面积.(2)推断CD所在直线与⊙O的位置关系,并说明理由.23. (10分)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点P从点B动身,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C动身,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2). (1)用含t的代数式表示BP、BQ的长. (2)连结PQ,如图①所示.当△BPQ与△ABC相像时,求t的值. (3)过点P作PD⊥BC于D,连结AQ、CP,如图②所示.当AQ⊥CP时,干脆写出线段PD的长. 图①图②24.(12分)如图,在平面直角坐标系中,抛物线与x轴交于A (4,0)、B(-3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式. (2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D为顶点的四边形面积为S,求S与m之间的函数关系式. (3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,干脆写出当n为何值时△BMN为等腰三角形.图①图② 一、1.A2. C3. B4. D5. C6. D7. A8. B二、9.10.11.(化成一般式也可)12. 10513.(3,3)14. a-4 三、15.原式=.(化简正确给2分,计算sin30°正确给1分,结果2分)16. .(1分)∵a=1,b=-3,c=-1,∴.(2分)(最终结果正确,不写头两步不扣分) ∴.(5分)∴(6分)【或,(2分) .(3分),.(5分)(6分)】17.设2021年到2021年这种产品产量的年增长率为x.(1分)依据题意,得.(3分)解得x1=0.1=10%,x2=﹣2.1(不合题意,舍去).(5分)答:2021年到2021年这种产品产量的年增长率为10%.(6分)18.(1)(2)画图略. (4分)(每个图2分,不用格尺画图总共扣1分,不标字母不扣分)(2)由图得.(5分)(结果正确,不写这步不扣分)旋转过程中B点所经过的路径长:.(7分)(过程1分,结果1分)19. (1)∵OD⊥AC,∴.(1分)在Rt△OEA中,. (3分)(过程1分,结果1分)(2)∵AB是⊙O的直径,∴∠C=90°.(4分)在Rt△ABC中,AB=2OA=10,∴.(5分)∵OD⊥AC,∴.(6分)在Rt△BCE中,tan=.(7分)20. (1).(3分)(过程2分,结果1分)(用顶点坐标公式求解横坐标2分,纵坐标1分)∴点A的坐标为(4,2). (4分)(2)把代入中,解得,(不合题意,舍去). (6分)∴.(7分)∴.(8分)21. 在Rt△ABC中,sin∠ABC=,∴AC=ABsin43°=2×0.68=1.36 (m) .(4分)(过程2分,有其中两步即可,结果2分)在Rt△ADC 中,tan∠ADC=,∴(m).(给分方法同上)∴斜坡AD底端D与平台AC的距离CD约为2.3m.(8分)(不答不扣分,最终不写单位扣1分)22. (1)在Rt△ABC中,∠ACB=90°,∠B=30°,∴,(1分)∠BAC=60°.(2分)∴AO=AC=2,∠OAD=∠BAC=60°.∵OA=OD,∴△OAD是等边三角形.(3分)∴∠AOD=60°.(4分)∴.(5分)(2)CD所在直线与⊙O相切.(只写结论得1分)理由:∵△OAD是等边三角形,∴ AO=AD,∠ODA=60°.(6分)∵AO=AC,∴ AC=AD.∴∠ACD=∠ADC=.(7分)∴∠ODC=∠ODA+∠ADC=60°+30°=90°,即OD⊥CD .(8分)∵OD为⊙O的半径,∴CD所在直线与⊙O相切.(9分)23. (1)BP=5t,BQ=8-4t.(2分)(2)在Rt△ABC中,.(3分)当△BPQ∽△BAC时,,即.(4分)解得.(5分)当△BPQ∽△BCA时,,即.(6分)解得.(8分)(3).(10分)24. (1)把A(4,0)、B(-3,0)代入中,得解得(2分)∴这条抛物线所对应的函数表达式为.(3分)(2)当-3&lt;m&lt;0时,.(6分)当0&lt;m&lt;4时,.(9分)(每段自变量1分,若加等号共扣1分,解析式2分)(3),,.(12分)ttp://。

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。

人教版九年级上册数学期中考试试卷及答案解析

人教版九年级上册数学期中考试试卷及答案解析

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A .1个B .2个C .3个D .4个2.若关于x 的一元二次方程2420x x a -+=有两个相等的实数根,则a 的值为()A .2B .-2C .4D .-43.下列函数:①23y =;②22y x =;③(35)y x x =-;④(12)(12)y x x =+-,是二次函数的有()A .1个B .2个C .3个D .4个4.下列语句中正确的是()A .长度相等的两条弧是等弧B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .经过圆心的每一条直线都是圆的对称轴5.当0ab >时,2y ax =与y ax b =+的图象大致是()A .B .C .D .6.用配方法解下列方程时,配方有错误的是()A .22990x x --=化为()21100x -=B .22740x x --=化为2781416x ⎛⎫-=⎪⎝⎭C .2890x x ++=化为()2+4=25x D .23-420x x -=化为221039x ⎛⎫-=⎪⎝⎭7.如图,将ABC ∆绕着点C 按顺时针方向旋转20︒,B 点落在'B 位置,A 点落在'A 位置,若''AC A B ⊥,则BAC ∠的度数是()A .50︒B .60︒C .70︒D .80︒8.如图,在⊙O 中,半径OC 与弦AB 垂直于点D ,且AB =8,OC =5,则CD 的长是A .3B .2.5C .2D .19.如图,正方形ABCD 的边长为5,点E 是AB 上一点,点F 是AD 延长线上一点,且BE =DF .四边形AEGF 是矩形,则矩形AEGF 的面积y 与BE 的长x 之间的函数关系式为()A .=5−B .=5−2C .=25−D .=25−210.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①ac >0;②当x≥1时,y 随x 的增大而减小;③2a+b=0;④b 2-4ac <0;⑤4a-2b+c >0,其中正确的个数是()A .1B .2C .3D .411.如图,O 是ABC 的外接圆,连结OA 、OB ,且点C 、O 在弦AB 的同侧,若50ABO ∠= ,则ACB ∠的度数为()A .50B .45C .40D .3012.关于x 的一元二次方程9x 2-6x+k=0有两个不相等的实根,则k 的范围是()A .k 1<B .k 1>C .k 1≤D .k 1≥二、填空题13.⊙O 的半径为3cm ,点O 到点P 10cm,则点P_________.14.某工厂第一年的利润是40万元,第三年的利润是y 万元,则y 与平均年增长率x 之间的函数关系式是___________.15.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB ,AD=1,,则BC 的长为____.16.如图,平面直角坐标系中,□OABC 的顶点A 坐标为(6,0),C 点坐标为(2,2),若经过点P(1,0)的直线平分□OABC 的周长,则该直线的解析式为_______________.三、解答题17.按要求解下列一元二次方程(1)24870x x +-=(用配方法)(2)2+52=0x x -(用公式法)18.如图,AB =AC ,AB 是⊙O 的直径,⊙O 交BC 于点D ,DM ⊥AC 于点M.求证:DM 与⊙O 相切.19.要建一个如图所示的面积为300m2的长方形围栏,围栏总长50m,一边靠墙(墙长25m).(1)求围栏的长和宽;(2)能否围成面积为400m2的长方形围栏?如果能,求出该长方形的长和宽,如果不能请说明理由.20.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?21.如图,在△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)请探究旋转角等于多少度时,四边形ABDF为菱形,证明你的结论;(3)在(2)的条件下,求CD的长.22.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△C ;平移△ABC ,若A 的对应点的坐标为(0,-4),画出平移后对应的△;(2)若将△C 绕某一点旋转可以得到△,请直接写出旋转中心的坐标;(3)在轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标.23.如图,四边形ABCD 内接于O ,AD ,BC 的延长线交于点E ,F 是BD 延长线上一点,1602CDE CDF ∠=∠=︒.()1求证:ABC 是等边三角形;()2判断DA ,DC ,DB 之间的数量关系,并证明你的结论.24.二次函数2y x bx c =++的图象经过点(1,-8),(5,0).(1)求b ,c 的值;(2)求出该二次函数图象的顶点坐标和对称轴.25.已知抛物线2y x bx c =++的图象如图所示,它与x 轴的一个交点的坐标为()1,0A -,与y轴的交点坐标为()0,3C -.(1)求抛物线的解析式及与x 轴的另一个交点B 的坐标;(2)根据图象回答:当x 取何值时,0y <?(3)在抛物线的对称轴上有一动点P ,求PA PB +的值最小时的点P 的坐标.参考答案1.C 【解析】试题解析:∵从左往右第二个图形不是中心对称图形,但是轴对称图形;第一、三、四个既是中心对称又是轴对称图形,∴四个图形中既是中心对称图形又是轴对称图形的有三个,故选C .2.A 【分析】根据一元二次方程根的判别式,即可求出a 的值.【详解】解:∵一元二次方程2420x x a -+=有两个相等的实数根,∴2(4)4120a ∆=--⨯⨯=,解得:2a =;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是掌握当△=0时,一元二次方程有两个相等的实数根.3.C 【分析】根据二次函数的定义,对每个函数进行判断,即可得到答案.【详解】解:①23y =是二次函数,正确;②22y x =不是二次函数,错误;③(35)y x x =-整理得253y x x =-+,是二次函数,正确;④(12)(12)y x x =+-整理得214y x =-,是二次函数,正确;∴一共有3个二次函数;故选择:C.【点睛】本题考查了二次函数的定义,解题的关键是掌握二次函数的定义.4.D 【详解】分析:根据垂径定理及逆定理以及圆的性质来进行判定分析即可得出答案.详解:A 、在同圆或等圆中,长度相等的两条弧是等弧;B 、平分弦(不是直径)的直径垂直于弦;C 、在同圆或等圆中,相等的圆心角所对的弧相等;D 、经过圆心的每一条直线都是圆的对称轴;故选D .点睛:本题主要考查的是圆的一些基本性质,属于基础题型.理解圆的性质是解决这个问题的关键.5.D 【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项.【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D 选项,抛物线开口向下,0a <,一次函数过二、三、四象限,0a <,0b <,满足ab>0,正确故选:D .【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.6.C 【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案.【详解】A 、由原方程,得22990x x --=,等式的两边同时加上一次项系数2的一半的平方1,得()21100x -=;故本选项正确;B 、由原方程,得22740x x --=,等式的两边同时加上一次项系数−7的一半的平方,得,2781416x ⎛⎫-= ⎪⎝⎭,故本选项正确;C 、由原方程,得2890x x ++=,等式的两边同时加上一次项系数8的一半的平方16,得(x +4)2=7;故本选项错误;D 、由原方程,得3x 2−4x =2,化二次项系数为1,得x 2−43x =23等式的两边同时加上一次项系数−43的一半的平方169,得221039x⎛⎫-=⎪⎝⎭;故本选项正确.故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7.C【分析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.【详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC⊥A’B’可得∠BAC=∠A’=90°-20°=70°,故选择C.【点睛】本题考查了旋转的性质.8.C【解析】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2,∴x=2,∴CD=2,故选C.点睛:本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.9.D【解析】∵BE=DF,BE=x(已知);∴DF=x;又∵AD=AB=5(已知),AF=AD+DF,AE=AB=BE(由图可得);∴AF=5+x,AE=5-x;∴S 长方形AEGF =AE ╳AF =(5+x)(5-x)=25-x 2;故选D 。

海南省万宁市2023—2024学年上学期九年级期中数学试卷(含解析)

海南省万宁市2023—2024学年上学期九年级期中数学试卷(含解析)

2023-2024学年海南省万宁市九年级(上)期中数学试卷一、单项选择题。

(每小题3分,共36分)1.(3分)把x2=2x﹣3化为一般形式,得( )A.x2﹣2x+3=0B.x2+2x﹣3=0C.x2+3=2x D.x2+2x=3 2.(3分)抛物线y=﹣x2﹣2x+1的对称轴为( )A.x=﹣1B.x=1C.x=﹣2D.x=23.(3分)点A(3,﹣4)关于原点的对称点为( )A.(3,4)B.(﹣3,4)C.(﹣3,﹣4)D.(4,3)4.(3分)下列方程中有实数根的为( )A.x2+1=0B.x2+x+1=0C.x2﹣x+1=0D.x2+2x=0 5.(3分)把y=x2﹣4x+5化为顶点式,得( )A.y=(x﹣2)2+5B.y=(x﹣2)2+1C.y=(x+2)2+1D.y=(x+2)2+56.(3分)下列字母,不是中心对称图形的为( )A.H B.N C.W D.X7.(3分)已知x2+ax+16=0,有两等实根,则a=( )A.4B.±4C.8D.±88.(3分)如图为y=ax2+bx+c,则( )A.a<0,b>0,c>0B.a<0,b<0,c<0C.a<0,b<0,c>0D.a<0,b>0,c<09.(3分)将点(1,1)绕原点顺时针转90°,所得的点为( )A.(1,﹣1)B.(1,0)C.(0,1)D.(﹣1,1)10.(3分)关于x的方程x2+bx+c=0的两根分别为x1=1,x2=2,则x2+bx+c因式分解的结果为( )A.(x+1)(x+2)B.(x﹣1)(x+2)C.(x+1)(x﹣2)D.(x﹣1)(x﹣2)11.(3分)如图的抛物线的解析式为( )A.y=x2﹣1B.y=x2+1C.y=(x﹣1)2D.y=(x+1)2 12.(3分)直线y=bx+c(bc≠0)关于原点对称的直线为( )A.y=cx+b B.y=﹣bx+c C.y=﹣bx﹣c D.y=bx﹣c二、填空题。

海南初三初中数学期中考试带答案解析

海南初三初中数学期中考试带答案解析

海南初三初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、解答题1.(本小题满分8分)如图11-1,正方形ABCD是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图11-2的程序移动.(1)请在图11-1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).2.(本小题满分9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角等于 °.(2)请你将图12-2的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?3.(本小题满分9分)如图13,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.4.(本小题满分10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OH ⊥l于点H,并测得OH = 4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q与点O间的最小距离是分米;点Q与点O间的最大距离是分米;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是分米.(2)如图14-3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么?(3)①小丽同学发现:“当点P运动到OH上时,点P到l的距离最小.”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是分米;②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.5.(本小题满分10分)在图15-1至图15-3中,直线MN与线段AB相交于点O,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB,请写出AO与BD 的数量关系和位置关系;(2)将图15-1中的MN绕点O顺时针旋转得到图15-2,其中AO = OB.求证:AC = BD,AC ⊥ BD;(3)将图15-2中的OB拉长为AO的k倍得到图15-3,求的值.6.(本小题满分12分)如图16,在直角梯形ABCD中,AD∥BC,,AD = 6,BC = 8,,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.7.(本小题满分12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y =" " 元/件,w内 =" " 元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是.8.(本小题满分8分)统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):上海世博会前20天日参观人数的频数分布直方图上海世博会前20天日参观人数的频数分布表(1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.9.计算 (每小题4分,共12分)(1); (2);(3).10.(6分) 已知1<a <4, 化简:.11.解下列方程(每小题4分,共12分)(1)(2x -1)2-25=0;(2)y 2=2y +3;(3)x (x +3)=2-x .12.(8分)如图7,一个农户用24m 长的篱笆围成一排一面靠墙、大小相等且彼此相连的三个矩形鸡舍.要使这三个鸡舍的总面积为36m 2,求每个鸡舍的长和宽各是多少.13.(10分)如图8,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在方格纸的格点上.(1)判断△ABC 和△DEF 是否相似,并说明理由;(2)P 1,P 2,P 3,P 4,P 5,D ,F 是△DEF 边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC 相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).14..(10分)如图9,正方形ABCD 边长为10cm ,P 、Q 分别是BC 、CD 上的两个动点,当P 点在BC 上运动时,且A P⊥PQ.(1)求证:△ABP∽△PCQ;(2)当BP等于多少时,四边形ABCQ的面积为62cm2.二、选择题1.计算 (– 1)2 + (– 1)3 =A.– 2B.– 1C.0D.22. 4的平方根是A.2B.±2C.16D.±163.方程x2 + x– 1 = 0的一个根是A.1 –B.C.–1+D.4.“是实数, ”这一事件是A.必然事件B.不确定事件C.不可能事件D.随机事件5.如图,在△ABC中,D、E两点分别在BC、AC边上.若BD=CD,∠B=∠CDE,DE=2,则AB的长度是A.4 B.5 C.6 D.76.16位参加百米半决赛同学的成绩各不相同, 按成绩取前8位进入决赛. 如果小刘知道了自己的成绩后, 要判断能否进入决赛,其他15位同学成绩的下列数据中,能使他得出结论的是A.平均数B.极差C.中位数D.方差7.如图,5个圆的圆心在同一条直线上, 且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为A.48πB.24πC.12πD.6π8.如图,在△中, .在同一平面内, 将△绕点A旋转到△的位置, 使得, 则A.B.C.D.9.已知a,b为实数,则解可以为– 2 < x < 2的不等式组是A.B.C.D.10.定义[]为函数的特征数, 下面给出特征数为 [2m,1 –m , –1–m]的函数的一些结论:①当m =" –" 3时,函数图象的顶点坐标是(,);②当m > 0时,函数图象截x轴所得的线段长度大于;③当m < 0时,函数在x >时,y随x的增大而减小;④当m¹ 0时,函数图象经过同一个点.其中正确的结论有A.①②③④B.①②④C.①③④D.②④11.计算的结果是A.3B.9C.-9D.±912.下列运算正确的是A.+=B.C.×=6D.13.下列二次根式中, 与是同类二次根式的是A.B.C.D.14.若二次根式在实数范围内有意义,则x的取值范围是A.x≠5B.x<5C.x≥5D.x≤515.方程x2=16x的解是A.x=0B.x=16C.x1=0,x2=16D.x1=-4,x2=416.用配方法解方程x2-6x-7=0,下列配方正确的是A.(x-3)2=16B.(x+3)2=16C.(x-3)2=7D.(x-3)2=2 17.某药品经过两次降价,每瓶零售价由100元降为81元,则平均每次降价A.8.5%B.9%C.9.5%D.10%18.下列各组长度的线段中,成比例线段的是A.1cm,2cm, 3cm, 4cm B.1cm, cm, cm,cmC.2cm, 4cm, 6cm, 8cm D.cm, cm, cm, cm19.如图1所示,若△ABC∽△DEF,则∠E的度数为A.28°B.32°C.42°D.52°20.如图2,将△ABC沿DE翻折,折痕DE∥BC,若,BC=6,则DE长等于A.1.8B.2C.2.5D.321.如图3,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是A.2-2B.3-2C.2-1D.6-2三、填空题1.至2009年末,杭州市参加基本养老保险约有3422000人,用科学记数法表示应为人.2.分解因式m3– 4m = .3.如图,已知∠1=∠2=∠3=62°,则 .4.一个密码箱的密码, 每个数位上的数都是从0到9的自然数, 若要使不知道密码的人一次就拨对密码的概率小于, 则密码的位数至少需要位.5.先化简, 再求得它的近似值为 .(精确到0.01,≈1.414,≈1.732)6.如图, 已知△,,.是的中点,⊙与AC,BC分别相切于点与点.点F是⊙与的一个交点,连并延长交的延长线于点. 则 .7.如图4,等腰梯形ABCD中,AD∥BC,AB=DC=5,中位线EF的长为6,则这个等腰梯形的周长为A.11B.16C.17D.228.计算:=.9.若,则= .10.已知两数和为10,积为24,则这两个数分别为 .11.已知关于x的一元二次方程x2+x-k=0的一个根为2,则它的另一根为.12.为了估算河的宽度,小明画了测量示意图(如图5).若测得BD =120m,DC =60m,EC =50m,则两岸间的距离AB等于 m.13.如图6,在△ABC中,∠BAC=90°,AB=8,BC=10,AD是BC边上的高,则△ABD与△CAD的面积比为 .海南初三初中数学期中考试答案及解析一、解答题1.(本小题满分8分)如图11-1,正方形ABCD是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图11-2的程序移动.(1)请在图11-1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).【答案】(1)图略(2)6π【解析】解:(1)如图1;【注:若学生作图没用圆规,所画路线光滑且基本准确即给4分】(2)∵,∴点P经过的路径总长为6 π.2.(本小题满分9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角等于 °.(2)请你将图12-2的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?【答案】(1)144(2)略(3)乙校(4)甲校【解析】解:(1)144;(2)如图2;(3)甲校的平均分为8.3分,中位数为7分;由于两校平均分相等,乙校成绩的中位数大于甲校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.(4)因为选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校.3.(本小题满分9分)如图13,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.【答案】(1)(2)在(3)4≤ m ≤8【解析】解:(1)设直线DE的解析式为,∵点D ,E的坐标为(0,3)、(6,0),∴解得∴.∵点M在AB边上,B(4,2),而四边形OABC是矩形,∴点M的纵坐标为2.又∵点M在直线上,∴2 = .∴ x = 2.∴M(2,2).(2)∵(x>0)经过点M(2,2),∴.∴.又∵点N在BC边上,B(4,2),∴点N的横坐标为4.∵点N在直线上,∴.∴N(4,1).∵当时,y == 1,∴点N在函数的图象上.(3)4≤ m ≤8.4.(本小题满分10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OH ⊥l于点H,并测得OH = 4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q与点O间的最小距离是分米;点Q与点O间的最大距离是分米;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是分米.(2)如图14-3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么?(3)①小丽同学发现:“当点P运动到OH上时,点P到l的距离最小.”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是分米;②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.【答案】(1)4 5 6(2)不对(3)① 3②120°【解析】解:(1)4 5 6;(2)不对.∵OP = 2,PQ = 3,OQ = 4,且42≠32 + 22,即OQ2≠PQ2 + OP2,∴OP与PQ不垂直.∴PQ与⊙O不相切.(3)① 3;②由①知,在⊙O上存在点P,到l的距离为3,此时,OP将不能再向下转动,如图3.OP在绕点O左右摆动过程中所扫过的最大扇形就是OP.连结P,交OH于点D.∵PQ,均与l垂直,且PQ =,∴四边形PQ是矩形.∴OH⊥P,PD =D.由OP = 2,OD = OH HD = 1,得∠DOP = 60°.∴∠PO = 120°.∴所求最大圆心角的度数为120°.5.(本小题满分10分)在图15-1至图15-3中,直线MN与线段AB相交于点O,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB,请写出AO与BD 的数量关系和位置关系;(2)将图15-1中的MN绕点O顺时针旋转得到图15-2,其中AO = OB.求证:AC = BD,AC ⊥ BD;(3)将图15-2中的OB拉长为AO的k倍得到图15-3,求的值.【答案】(1)AO = BD,AO⊥BD(2)AC = BD,AC ⊥ BD,证明略。

最新人教版九年级数学上册期中考试试题(含答案)

最新人教版九年级数学上册期中考试试题(含答案)

最新人教版九年级数学上册期中考试试题(含答案)一、选择题(每小题4分,共80分)1. 题目1a. A选项b. B选项c. C选项d. D选项答案:B2. 题目2a. A选项b. B选项c. C选项d. D选项答案:C...二、填空题(每小题4分,共40分)1. 题目1:_______是一个素数。

答案:132. 题目2:32的约数有_______个。

答案:6...三、计算题(每小题10分,共50分)1. 题目1:已知两个角的度数为45°和120°,这两个角的补角之和为多少度?答案:60°2. 题目2:某商店原价100元的商品打8折出售,实际售价为多少元?答案:80元...四、应用题(每小题12分,共60分)1. 题目1:甲、乙两个人同时从相距800千米的地点出发,甲每小时行40千米,乙每小时行50千米。

请问他们多长时间后会相遇?答案:8小时2. 题目2:一个矩形的长是宽的3倍,如果宽为6米,求该矩形的面积。

答案:108平方米...五、解答题(每小题15分,共75分)1. 题目1:如图所示,已知AB是⊙O的直径,CD是弧AB的弦,∠ACD=90°,AB=8,AD=6,请计算弧CD的长度。

![题目1图片](image1.jpg)答案:42. 题目2:根据下列计算过程,填写下表中的数据:计算过程:2*(-5) - 3*(-4) + 6*(-10) = ?...以上是最新人教版九年级数学上册期中考试试题及答案,希望对你有帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档