九年级上数学期中考试试卷及答案

合集下载

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

2024-2025学年第一学期期中考试九年级数学试题(满分150分,完卷时间120分钟)班级______姓名______成绩______一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2.用配方法解一元二次方程的过程中,配方正确的是( )A. B. C. D.3.如图,在中,,则等于( )A. B. C. D.4.抛物线与轴的交点是( )A. B. C. D.5.正多边形的中心角为,则正多边形的边数是( )A.4B.6C.8D.126.如图,将绕点逆时针旋转,得到.若点在线段的延长线上,则的度数为( )A. B. C. D.7.在平面直角坐标系中,三个顶点的坐标分别为,,,以原点为位似中心,把这个三角形缩小为原来的,可以得到,则点的坐标为( )A. B.或C.或 D.2450x x --=()221x +=()221x -=()229x +=()229x -=O e 60ABC ∠=︒AOC ∠30︒60︒120︒150︒223y x =+y ()0,5()0,3()0,2()2,145︒ABC △A 100︒ADE △D BC B ∠30︒40︒50︒60︒ABC △()4,2A ()2,0B ()0,0C O 12A B C '''△A '()2,1()1,2()1,2--()2,1()2,1--()1,2--8.如图,在中,为上一点,连接、,且、交于点,,则为( )A. B. C. D.9.已知抛物线,与的部分对应值如表所示,下列说法错误是( )01230343A.开口向下 B.顶点坐标为C.当时,随的增大而减小D.10.如图,在矩形中,,,以点为圆心作与直线相切,点是上一个动点,连接交于点,则的最小值是( ).A. B.1D.二、填空题(本大题共6小题,每小题4分,共24分)11.在直角坐标系中,若点,点关于原点中心对称,则______.12.已知关于的一元二次方程有一个根为,则______.13.如图,在中,分别交、于点、;若,,,则的长为______.14.如图,四边形为的内接四边形,,则的度数为______.ABCD □E CD AE BD AE BD F :4:25DEF ABF S S =△△:DF BF 2:52:33:53:22y ax bx c =++y x x1-y m()1,41x <y x 0m =ABCD 8AB =6AD =C C e BD P C e AP BD T AT PT3512()1,A a (),2B b -a b +=x 20x x m -+=2-m =ABC △MN BC ∥AB AC M N 1AM =2MB =9BC =MN ABCD O e 100A ∠=︒DCE ∠15.若圆锥的高为,母线长为,则这个圆锥的侧面展开图的弧长是______.(结果保留)16.关于的一元二次方程有两个整数根且乘积为正,关于的一元二次方程同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②③;④,其中正确结论的结论是______.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题8分)用适当的方法解下列方程:(1)(2)18.(本小题8分)已知是关于的一元二次方程,求证:方程总有两个不相等的实数根.19.(本小题8分)为了测量水平地面上一棵直立大树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在与树底端相距8米的点处,然后沿着直线后退到点,这时恰好在镜子里看到树梢顶点,再用皮尺量得米,观察者目高米,求树的高度.20.(本小题8分)如图1、图2,,均是等腰直角三角形,,(1)在图1中,求证:;(2)若绕点顺时针旋转一定角度后如图2所示,请问与还相等吗?为什么?图1 图221.(本小题8分)如图,是的直径,过点作的切线,点是射线上的一点,连接,过点作,交于点,连接.8cm 10cm cm πx 2220x mx n ++=y 2220y ny m ++=22m n <()()22112m n -+-≥1221m n -≤-≤2240x x +-=()3284x x x -=-()2310x a x a ++++=x B E BE D A 1.6DE = 1.5CD =AB AOB △COD △90AOB COD ︒∠=∠=AC BD =COD △O AC BD AB O e A O e AC P AC OP B BD OP ∥O e D PD(1)请补全图形;(要求:尺规作图,不写作法,保留作图痕迹)(2)证明:是的切线.22.(本小题10分)如图,四边形内接于,为的直径,平分,,点在的延长线上,连接.(1)求直径的长;(2)若.23.(本小题10分)施工队要修建一个横断面为抛物线的公路隧道,其最高点距离地面高度为8米,宽度为16米.现以点为原点,所在直线为轴建立直角坐标系(如图所示).(1)求出这条抛物线的函数解析式,并写出自变量的取值范围;(2)隧道下的公路是单向双车道,车辆并行时,安全平行间距为2米,该双车道能否同时并行两辆宽2.5米、高5米的特种车辆?请通过计算说明;24.(本小题12分)问题背景:如图1,已知,求证:;尝试运用:如图2,在中,点是边上一动点,,且,,,与相交于点,在点运动的过程中,连接,当时,求的长度;拓展创新:如图3,是内一点,,,,,求的长.PD O e ABCD O e BD O e AC BAD ∠CD =E BC DE BD BE =P OM O OM x x ABC ADE ∽△△ABD ACE ∽△△ABC △D BC 90BAC DAE ︒∠=∠=ABC ADE ∠=∠4AB =3AC =AC DE F D CE 12CE CD =DE D ABC △BAD CBD ∠=∠12CD BD =90BDC ∠=︒3AB =AC =AD图1 图2图325.(本小题14分)已知抛物线过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并直接写出点的坐标;(2)如图1,为线段上方的抛物线上一点,,垂足为,轴,垂足为,交于点.当时,求的面积;(3)如图2,与的延长线交于点,在轴上方的抛物线上是否存在点,使若存在,求出点的坐标;若不存在,请说明理由.图1 图22024-2025学年第一学期期中考试九年级数学参考答案及评分标准一、选择题(共10小题,每小题4分,满分40分)题号12345678910答案A D C B C B C A CD二、填空题(本大题共24分,每小题4分)11.112.13.314.15.16.①③④三、解答题(共8小题,满分86分)17.(1)解:.,,,22y ax ax c =-+()1,0A -()0,3C x B D D E BC EF BC ⊥F EM x ⊥M BC G BG CF =EFG △AC BD H x P OPB AHB ∠=∠P 6-100︒12π2240x x --=1a = 2b =-4c =-.,即,(2)解:或,.18.证明:,故方程总有两个不相等的实数根;19.解:根据题意,易得,则,则,即,解得:,答:树的高度为.20.解:(1)证明:,均是等腰直角三角形,,,,,;(2)答:相等.在图2中,,,,在和中,,,.21.解:(1)答:补全图形如图所示:()()2242414200b ac ∴∆=-=--⨯⨯-=>1x ∴===11x =+21x =()()3242x x x -=--()()32420x x x -+-=()()3420x x +-=340x +=20x -=12x ∴=243x =-()()()22223411694425140a a a a a a a a ∆=+-⨯⨯+=++--=++=++>90CDE ABE ∠=∠=︒CED AEB∠=∠ABE CDE ∽△△BE AB DE CD =81.6 1.5AB =7.5AB =AB 7.5m AOB △COD △90AOB COD ︒∠=∠=OA OB ∴=OC OD =OA OC OB OD ∴-=-AC BD ∴=90AOB COD ︒∠=∠=DOB COD COB ∠=∠-∠ COA AOB COB ∠=∠-∠DOB COA∴∠=∠DOB △COA △OD OC DOB COA OB OA =⎧⎪∠=∠⎨⎪=⎩()SAS DOB COA ∴≌△△BD AC ∴=(2)解:证明:连接,切于,,即,,,,,,在和中,,,,,即,是的半径,是的切线.22.(1)解:如图所示,连接,为的直径,平分,OD PA O e A PA AB ∴⊥90PAO ∠=︒OP BD ∥DBO AOP ∴∠=∠BDO DOP∠=∠OD OB = BDO DBO ∴∠=∠DOP AOP ∴∠=∠AOP △DOP △,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩()SAS AOP DOP ∴≌△△PDO PAO ∴∠=∠90PAO ︒∠= 90PDO ︒∴∠=OD PD ⊥OD O e PD ∴O e OC BD O e AC BAD ∠,,..,,,即...(2)解:如图所示,设其中小阴影面积为,大阴影面积为,弦与劣弧所形成的面积为,由(1)已知,,,,.,弦弦,劣弧劣弧..为的直径,,,,...23.(1)解:依题意:抛物线形的公路隧道,其高度为8米,宽度为16米,现在点为原点,点,顶点,设抛物线的解析式为,把点,点代入得:,90BAD ︒∴∠=11904522BAC DAC BAD ∠=∠=∠=⨯︒=︒OB OD=90COD ︒∴∠=CD = OC OD =222OD CD ∴=228OD =2OD ∴=224BD OD OB ∴=+=+=1S 3S CD CD 2S 90COD ∠=︒45DAC ∠=︒OC OD =4BD =()11180904522BDC COD ︒︒︒∴∠=-∠=⨯=DAC BDC ∠=∠ ∴BC =CD BC =CD 12S S ∴=BD O e CD =90BCD ECD ∴∠=∠=︒BC CD ==BE = CE BE BC ∴=-=-=11622ECD S CE CD ∴=⋅=⨯=△13236ECD S S S S S S ∴=+=+==阴影部分△OM O ∴()16,0M ()8,8P 2y ax bx =+()16,0M ()8,8P 6488256160a b a b +=⎧⎨+=⎩解得抛物线的解析式为,,自变量的取值范围为:.(2)解:当时,,故能同时并行两辆宽2.5米、高5米的特种车辆.24.证明:问题背景:,,,,,,.尝试应用:如图(2),连接,,,,,,,,,,,,,,,182a b ⎧=-⎪⎨⎪=⎩∴2128y x x =-+16OM = ()16,0M ∴x 016x ≤≤98 2.512x =--=21992072582232y ⎛⎫=-⨯+⨯=> ⎪⎝⎭ABC ADE ∽△△AB AC AD AE∴=BAC DAE ∠=∠BAD DAC DAC CAE ∴∠+∠=∠+∠BAD CAE ∴∠=∠AB AD AC AE=ABD ACE ∴∽△△CE 4AB = 3AC =90BAC ∠=︒5BC ∴===90BAC DAE ∠=∠=︒ ABC ADE ∠=∠ABC ADE ∴∽△△AB AC AD AE∴=43AB AD AC AE ∴==90BAC DAE ︒∠=∠= 90BAD CAE DAC ∴∠=∠=︒-∠BAD CAE ∴∽△△B ACE ∴∠=∠43AB BD AC CE ==设,,,,,,,,,,拓展创新:过点作的垂线,过点作的垂线,两垂线交于点,连接,图3,,,又,,,又,,即,,,,,,∴4BD x =3CE x =54CDx ∴=-90B ACB ︒∠+∠= 90ACE ACB ︒∴∠+∠=90DCE ︒∴∠=12EC DC = 31542x x ∴=-12x ∴=32EC ∴=3CD =DE ∴===A AB D AD M BM 90BAM ADM BDC ︒∴∠=∠=∠=BAD DBC ∠=∠ DAM BCD ∴∠=∠90ADM BDC ︒∠=∠= BDC MDA ∴∽△△BD DC MD DA∴=BDC ADM ∠=∠BDC CDM ADM CDM ∴∠+∠=∠+∠BDM CDA ∠=∠BDM CDA ∴∽△△BM DM BD AC AD DC∴==12CD BD = 2BD CD ∴=2BM AC ∴==2DM AD =,,,(舍去).25.解:(1)把点,代入中,,解得,,顶点;(2)方法一:如图1,抛物线,令,,或,.设的解析式为,将点,代入,得,解得,..设直线的解析式为,设点的坐标为,将点坐标代入中,得,,联立得.AM ∴===222AD DM AM += 22423AD AD ∴+=AD ∴=()1,0A -()0,3C 22y ax ax c =-+203a a c c ++=⎧⎨=⎩13a c =-⎧⎨=⎩223y x x ∴=-++∴()1,4D 223y x x =-++0y =1x ∴=-3x =()3,0B ∴BC ()0y kx b k =+≠()0,3C ()3,0B 330b k b =⎧⎨+=⎩13k b =-⎧⎨=⎩3y x ∴=-+EF CB ⊥ EF y x b =+E ()2,23m m m -++E y x b =+23b m m =-++23y x m m ∴=-++233y x y x m m =-+⎧⎨=-++⎩.把代入,得,..,即.解得或.点是上方抛物线上的点,(舍去).点,,,,,;方法二:图1如图所示,过点作、分别垂直,轴,分别交于,点设,由可知,则,则代入二次函数解析式化简的解得,(舍去)则22262m m x m m y ⎧-=⎪⎪∴⎨-++⎪=⎪⎩226,22m m m m F ⎛⎫--++∴ ⎪⎝⎭x m =3y x =-+3y m =-+(),3G m m ∴-+BG CF = 22BG CF ∴=()()2222223322m m m m m m ⎛⎫⎛⎫---+-=+ ⎪ ⎪⎝⎭⎝⎭2m =3m =- E BC 3,m ∴=-∴()2,3E ()1,2F ()2,1G EF ==FG ==112EFG S ∴==△F FR FH y x R H RF m =CF BG =CRF GMB ≌△△RF MB m ==32HM m ∴=-()232EG m =-()23263EM m m m ∴=-+=-()3,63E m m --2760m m -+=11m =26m =1121122EFG S EG FK ∴=⨯⨯=⨯⨯=△(3)如图2,过点作于,点,,.点,点,,联立得,.设,把代入,得,,联立得,,,..设点.过点作轴于点,在轴上作点使得,且点的坐标为.若在和中,,,.A AN HB ⊥N ()1,4D ()3,0B 26BD y x ∴=-+ ()1,0A -()0,3C 33AC y x ∴=+326y x y x =+⎧⎨=-+⎩35245x y ⎧=⎪⎪∴⎨⎪=⎪⎩324,55H ⎛⎫∴ ⎪⎝⎭12AN y x b =+()1,0-12b =1122y x ∴=+112226y x y x ⎧=+⎪⎨⎪=-+⎩11585x y ⎧=⎪⎪∴⎨⎪=⎪⎩118,55N ⎛⎫∴ ⎪⎝⎭2222211816815555AN ⎛⎫⎛⎫⎛⎫⎛⎫∴=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22281655HN ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭AN HN ∴=45H ∴∠=︒()2,23P n n n -++P PR x ⊥R x S RS PR =45RSP ︒∴∠=S ()233,0n n -++45OPB AHB ︒∠=∠=OPS △OPB △POS POB ∠=∠OSP OPB ∠=∠OPS OBP ∴∽△△...或或(舍去).,,.OP OS OB OP∴=2OP OB OS ∴=⋅()()()222213333n n n n n ∴++-=⋅-++0n ∴=n =3n =()10,3P∴2P3P。

2023-2024学年第一学期九年级期中质量监测数学试题及答案

2023-2024学年第一学期九年级期中质量监测数学试题及答案

注意事项:1、本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2、答案全部在答题卡上完成,答在本试卷上无效.2023-2024学年第一学期九年级期中质量监测试题(卷)数学3、考试结束后,只收回答题卡.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.下列方程是关于x 的一元二次方程的是A.B.02342=++xx 0122=--y x C.D.0122=++x ax ()024=-x x 2.如图,将含有30°角的三角尺ABC (∠BAC =30°),以点A 中心,顺时针方向旋转,使得点C ,A ,B ′在同一直线上,则旋转角的大小是A.30°B.60°C.120°D.150°3.方程的两个实数根是x x =2A.x 1=x 2=1B.x 1=1,x 2=-1C.x 1=0,x 2=1D.x 1=0,x 2=-14.将关于x 的方程配方成的形式,则的值是0862=+-x x ()p x =-23p A.1B.28C.17D.445.如果关于x 的一元二次方程有两个实数根,则k 的取值范围是032=+-k x x A.k≥B.k≤C.k>D.k<49494949C′B′CBA6.将二次函数的图象先向左平移2个单位,再向上平移1个单()2122---=x y 位,则所得到的二次函数的解析式是A.B.()1322---=x y ()1122-+-=x y C.D.()3122-+-=x y ()3322---=x y 7.冠状病毒属的病毒是具有囊膜、基因组为线性单股正链的RNA 病毒,是自然界广泛存在的一大类病毒,冠状病毒可感染多种哺乳动物、鸟类和人.在某次冠状病毒感染中,有3只动物被感染,后来经过两轮感染后共有363只动物被感染.若每轮感染中平均一只动物会感染x 只动物,则下面所列方程正确的是A.3x(x+1)=363B.3+3x+3x ²=363C.3(1+x)²=363D.3+3(1+x)+3(1+x)²=3638.已知二次函数(c 为常数)的图象与x 轴的一个交点为(1,0),c x x y +-=42则关于x 的一元二次方程的两个实数根是042=+-c x x A.x 1=1,x 2=-1B.x 1=-1,x 2=2C.x 1=-1,x 2=0D.x 1=1,x 2=39.二次函数的图象上部分点的坐标(x,y)对应值列表如下:c bx ax y ++=2则关于该二次函数的图象与性质,下列说法正确的是A.开口方向向上B.当x>-2时,y 随x 增大而增大C.函数图象与x 轴没有交点D.函数有最小值是-210.在同一平面直角坐标系中,二次函数与一次函数的图bx ax y +=2a bx y +=象可能是x …-3-2-101…y…-3-2-3-6-11…第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共15分)11.如图,在⊙O 中,AC =BC ,半径OC 与AB 交于点D ,若AB =8cm,OB =5cm,则CD =▲cm.13.已知点A (4,y 1)和点B (-1,y 212.2022年2月4日—2月20日,北京冬奥会隆重开幕,北京成为世界上第一个既举办过夏季奥运会,又举办过冬季奥运会的国家.下面图片是在北京冬奥会会徽征集过程中,征集到的一副图片,整个图片由“京字组成的雪花图案”、“beijing2022”、“奥运五环”三部分组成.对于图片中的“雪花图案”,至少旋转▲°能与原雪花图案重合.)是二次函数(m 为常数)()m x y +-=21-215.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,若四边形EFGH 是矩形,且其周长是20,则四边形ABCD 的图象上两点,则y 1和y 2的大小关系是▲.14.2021年我国高速铁路总里程为2.9万公里,2023年我国高速铁路总里程达到3.8万公里,高速铁路已经覆盖了全国80%以上的大城市,形成以“八纵八横”主通道为骨架、区域连接线衔接、城际铁路补充的高速铁路网.若设2021年到2023年我国高速铁路总里程的平均年增长率为x,则依题意可列方程为▲.的面积的最大值是▲.HG FED CBA⌒⌒三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)16.解方程(每小题5分,共10分)(1)()910-=+x x (2)()12832+=+x x x 17.(本小题5分)如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于点G .求证:EF =FG .18.(本小题8分)在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (5,4),B (1,3),C (3,1).点P (a,b)是△ABC 内的一点.(1)以点O 为中心,把△ABC 顺时针旋转90°,画出旋转后的△A 1B 1C 1,并写出A 1,B 1,C 1的坐标:A 1▲,B 1▲,C 1▲.注:点A 与A 1,B 与B 1,C 与C 1分别是对应点.(2)点P 的对应点P 1的坐标是▲;(3)若以点O 为中心,把△ABC 逆时针旋转则点P 的对应点P 2的坐标是▲,点P 1与点P 2关于▲对称.(填写“x 轴、y 轴或原点”)⌒⌒19.(本小题8分)阅读下列材料,并完成相应学习任务:一元二次方程在几何作图中的应用如图1,在矩形ABCD 中,AB =3,BC =4.求作一个矩形,使其周长和面积分别是矩形ABCD 的周长和面积的2倍.因为矩形ABCD 的周长是14,面积是12,所以所求作的矩形周长是28,面积是24.若设所求作的矩形一边的长为x,则与其相邻的一边长为14-x.所以,得x(14-x)=24.解得x 1=2,x 2=12.当x=2时,14-x=12;当x=12时,14-x=2.所以求作的矩形相邻两边长分别是2和12.如图2,在边AB 的延长线取点G ,使得AG =4AB .在AD 上取AE =AD .21以AG 和AE 为邻边作出矩形AGFE .则矩形AGFE 的周长和面积分别是矩形ABCD 的周长和面积的2倍.学习任务:(1)在作出矩形AGFE 的过程中,主要体现的数学思想是▲;(填出序号即可)A.转化思想B.数形结合思想C.分类讨论思想D.归纳思想(2)是否存在一个矩形,使其周长与面积分别是矩形ABCD 的周长和面积的?21若存在,请在图1中作出符合条件的矩形;若不存在,请说明理由.图1 图2GFEDCBA D CBA20.(本小题9分)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA =60米,在水面的跨度BC =80米,桥面距水面的垂直距离OE =7米,以桥面所在水平线为x 轴,OE 所在直线为y 轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?21.(本小题10分)下面是小明解决某数学问题的过程,请认真阅读并解决相应学习任务:数学问题:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:“,”现已知商品的进价为每件40元,如何定价才能使每个星期的利润达到6080元,且顾客能够得到更大的实惠?解:设….根据题意,所列出方程:.()6080402300-20=⎪⎭⎫⎝⎛⨯+x x …根据小明所列方程,完成下列任务:(1)填空:数学问题中“”处短缺的条件是▲,小明所列方程中未知数x 的实际意义是▲.(2)请你重新设一个未知数,要求所设未知数与小明所列方程中未知数的意义不同,并结合所补充的条件,解决上面的数学问题.图1图222.(本小题12分)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,点E 是边CD 上一点,将△ADE 以点A 为中心,顺时针旋转90°,得到△ABF ,连接EF .过点A 作AG ⊥EF ,垂足为G .试猜想FG 与GE 的数量关系,并证明.(1)独立思考:请你解决老师所提出的问题;(2)拓展探究:智慧小组在老师所提问题的基础上,连接DG ,他们认为DG 平分∠ADC .请你利用图2说明,智慧小组所提出的结论是否正确?请说明理由;(3)问题解决:在图2中,若AD +DE =28,则四边形AGED 的面积为▲.(直接写出答案即可)图1 图2AB CDEFGGFEDCBA23.(本小题13分)综合与探究已知抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 32-2-=x x y 轴交于点C ,点D 是y 轴右侧抛物线上一个动点.(1)求出点A ,B ,C 的坐标;(2)如图1,当点D 在第四象限时,求出△BCD 面积的最大值,并求出这时点D 坐标;(3)当∠DAB =∠ABC 时,求出点D的坐标.图1 备用图一、选择题:1—10:DDCAB BCDCC二、填空题:11.2;12.60°;13.y 1<y 2;14.2.9(1+x)²=3.8;15.50.三、解答题:16.解:(1)x 1=-1,x 22023~2024学年第一学期九年级期中质量监测试题数学参考答案=-9;…………………………………………………………5分(2)x 1=,x 2=4.…………………………………………………………………5分23-注:阅卷组自行制定评分细则17.证明:∵AB=AE,∴∠B=∠AEB.……………………………………………………………………1分∵四边形ABCD 是平行四边形,∴AD∥BC,……………………………………………………………………2分∴∠B=∠GAF,∠FAE=∠AEB,……………………………………………………………………3分∴∠GAF=∠FAE,…………………………………………………………………4分∴EF=FG.……………………………………………………………………5分18.解:(1)画图略,画图正确.………………………………………………2分A 1(4,-5),B 1(3,-1),C 1(1,-3).………………………………………5分(2)(b,-a).……………………………………………………………………6分(3)(-b,a),原点.………………………………………………………………8分19.解:(1)B;…………………………………………………………………2分(2)不存在.……………………………………………………………………3分理由如下:若存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的,21则所求的矩形周长为7,面积为6.………………………………………………4分设所求的矩形一边长为x,则与其相邻的另一边的长为-x.………………5分27所以,得x(-x)=6.……………………………………………………………6分27整理,得2x ²-7x+12=0.…………………………………………………………7分因为△=(-7)²-4×2×12=49-96<0.所以该方程无解.…………………………………………………………8分所以,不存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的……9分21⌒⌒20.解:(1)设桥拱所在抛物线的函数关系表达式为y=ax ²+bx.………………1分∵OA=60,∴A 点坐标为(60,0).∵BC=80,根据对称性可知,点C 坐标为(70,-7).…………………………2分把A(60,0),B(70,-7)代入y=ax ²+bx,得………3分⎩⎨⎧-=+=+77049000603600b a b a 解得………………………………………………………………4分⎪⎩⎪⎨⎧=-=531001b a ∴桥拱所在抛物线的函数关系表达式是.………………5分x x y 5310012+-=(2)∵x x y 5310012+-=……………………………………………………7分().93010012+--=x ∴该函数的顶点为(30,9).……………………………………………………8分∵9+7=16.∴桥拱最高点到水面的距离是16米.…………………………………………9分21.解:(1)每件商品的售价每降价2元,每个星期的销售量可增加40件;每件商品的售价降了x 元.………………………………………………………………2分(2)设每件商品的定价为x 元,根据题意可列方程…………………………3分.………………………………………6分()60804026030040=⎪⎭⎫ ⎝⎛⨯-+-x x 整理,得x ²-115x+3304=0.……………………………………………………7分解得x 1=59,x 2=56.……………………………………………………………8分为了让每位顾客得到更大的实惠,所以x=59舍去.…………………………9分答:每件商品的定价为56元,每个星期的利润能达到6080元,且顾客能够得到更大的实惠.…………………………………………………………………10分22.(1)FG=EG.………………………………………………………………1分证明:∵△ABF 是由△ADE 顺时针方向旋转90°得到的,∴△ABF≌△ADE,………………………………………………………………2分∴AF=AE. (3)分∵AG⊥EF,∴FG=EG.………………………………4分(2)连接CG.……………………………5分∵四边形ABCD 是正方形,∴AD=CD,∠FCE=90°.……………………6分由(1)可知,FG=EG,∴CG=EF.………………………………7分21∵∠EAF=90°,∴AG=EF.………………………………8分21∴AG=CG.∵DG=DG,∴△ADG≌△CDG,………………………………………………………………9分∴∠ADG=∠CDG,即DG 平分∠ADC.…………………………………………10分(3)196………………………………………………………………………12分23.解:(1)当y=0时,.032-2=-x x 解得x 1=-1,x 2=3.∴点A(-1,0),B(3,0).……………………………………………………2分当x=0时,y=-3,∴点C(0,-3)……………………………………………………………………3分(2)如图,过点D 作DE⊥x 轴,垂足为E,并且交直线BC 于点F.过点C 作CH⊥DE,垂足为H.……………………4分设BC 的解析式为y=kx+b.把点B(3,0),点C(0,-3)代入,得,⎩⎨⎧-==+33b b k 解得k=1,b=-3.∴直线BC 的解析式为y=x-3.……………………5分设点D(m,m ²-2m-3),则点F(m,m-3).则DF=m-3-(m ²-2m-3)=-m ²+3m.……………6分∵S △BCD =S △CDF +S △BDF =×DF×CH+×DF×BE=×DF(CH+BE)=21212121ACDEFG∴S △BCD =(-m ²+3m)×3=-m ²+m.………………………………7分212329=-(m-)²+.(0<m<3)…………………………………………8分2323827∵-<0,∴当m=时,S △BCD 有最大值,S △BCD 的最大值为.………9分2123827(3)∵点B(3,0),点C(0,-3).∴OB=OC.∵∠BOC=90°,∴∠OBC=∠OCB=45°.设点D(m,m ²-2m-3).如图,当点D 在x 轴下方时,过点D 作DP⊥OB,垂足为P.∵∠DAB=∠ABC=45°,∠APD=90°.∴∠PDA=∠PAD,∴PA=PD.∴m-(-1)=-(m ²-2m-3).……………………10分解得m=2或m=-1(舍去).当m=2时,m ²-2m-3=-3.∴点D 坐标为(2,-3).…………………………11分如图,当点D 在x 轴上方时,过点D 作DQ⊥OB,垂足为Q.∵∠DAB=∠ABC=45°,∠AQD=90°.∴∠QDA=∠QAD,∴QA=QD.∴m-(-1)=m ²-2m-3.…………………………………………………………12分解得m=4或m=-1(舍去).当m=4时,m ²-2m-3=5.∴点D 坐标为(4,5).∴当∠DAB=∠ABC 时,点D(2,-3)或(4,5) (13)分。

浙江省温州市瓯海区部分学校2024届九年级上学期期中考试数学试卷(含解析)

浙江省温州市瓯海区部分学校2024届九年级上学期期中考试数学试卷(含解析)

2023学年第一学期温州市瓯海区部分学校期中考试九年级数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题(每题3分,共30分)1.下列各式中,y 是关于x 的二次函数的是()A .23y x =+B .2y x =C .()221y x x =--D .231y x =-2.已知:如图OA ,OB 是O 的两条半径,且OA OB ⊥,点C 在O 上,则ACB ∠的度数为()A .30︒B .45︒C .60︒D .15︒3.已知粉笔盒里只有3支黄色粉笔和2支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是().A .15B .25C .35D .234.如果将抛物线221y x =-向左平移1个单位,那么得到的新抛物线的表达式为()A .22y x =B .()2211y x =+-C .()2211y x =+-D .()2211y x =--5.在一次炮弹发射演习中,记录到一门迫击炮发射的炮弹的飞行高度y 米与飞行时间x 秒的关系式为21105=-+y x x ,当炮弹落到地面时,经过的时间为()A .40秒B .45秒C .50秒D .55秒6.下列说法正确的是()A .等弧所对的弦相等B .相等的弦所对的弧相等C .相等的圆心角所对的弧相等D .相等的圆心角所对的弦相等7.抛物线()2237y x =--的顶点坐标是()A .()37,B .()37-,C .()37-,D .()37--,8.如图,CD 是O 是直径,AB 是弦且不是直径,CD AB ⊥,则下列结论不一定正确.....的是()A .AE BE =B .OE DE=C .AO CO =D . AD BD =9.已知二次函数()231y x =--,则当14x ≤≤时,该函数()A .只有最大值3,无最小值B .有最大值3,有最小值0C .有最小值1-,有最大值3D .只有最小值1-,无最大值10.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知6,10OE DO ==,则CD 的长为()A .16B .12C .10D .8二、填空题(每题3分,共24分)11.抛物线22(1)3y x =---与y 轴交点的纵坐标为12.一个盒子中有m 个红球、3个白球,每个球除颜色外都相同.从中任取一个球,若取得白球的概率是14,则m =.13.已知抛物线()()223y x m x m =+--+的对称轴是y 轴,则m =.14.如图,四边形ABCD 内接于O ,E 为BC 延长线上的一点,若102A ∠=︒,则DCE ∠的度数为.15.如下图,函数2()y x h k =--+的图象,则其解析式为.16.如图,ABCD 是正方形,边长为2,以B 为圆心,以BA 为半径画弧,则阴影面积为.17.把二次函数2241y x x =-+通过配方化成2()y a x h k =-+的形式为.18.如图,A 、B 、C 为O 上的点,OC AB ∥,连接OA ,BC 交于点D ,若AC CD =,2OC =,则AB 的长为.三、计算题46分)19.(6分)已知拋物线2y x bx c =-+经过点()1,0A -,()3,0B ,求抛物线的解析式.20.(6分)如图,O 中,弦AB 与CD 相交于点H ,AB CD =,连接AD 、BC .求证:AH CH =.21.(8分)如图,用20米长的篱笆围成一个一边靠墙的矩形花圃(墙足够长),设垂直于墙的一边长为x 米矩形花圃的面积为y 平方米.(1)写出y 关于x 的函数解析式;(2)当x 为多少时,矩形花圈的面积最大?22.(8分)已知二次函数的解析式223y x x =+-,补充下表,并根据表中的数据在如图所示的平面直角坐标系中,利用描点法画出这个二次函数的示意图.x…-3-2-101…223y x x =+-…0_________0…23.(8分)临近毕业,甲、乙、丙三人相约去餐馆聚餐,丙先到达餐馆,选了一张方桌坐在如图所示的座位上,甲到达餐馆后,从座位①、②、③中随机选择一个坐下,乙到达餐馆后,从剩下的座位中再随机选择一个坐下.(1)甲坐在①号座位上的概率是______.(2)用列表法或画树状图的方法,求甲、乙两人恰好相邻而坐的概率..24.(10分)如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF AD(1)证明:E是OB的中点;AB ,求CD的长.(2)若6参考答案1.D解:A 、23y x =+是一次函数,故不符合题意;B 、2y x=是反比例函数,故不符合题意;C 、()22121y x x x =--=-+是一次函数,故不符合题意;D 、231y x =-是二次函数,故符合题意;故选D .2.B解:OA OB ⊥ ,90AOB ∠=︒∴,1452ACB AOB ∴∠=∠=︒.故选:B .3.C解:粉笔盒里只有3支黄色粉笔和2支红色粉笔,共5支粉笔,从中任取一支粉笔,有5种等可能的结果,取出黄色粉笔的结果有3种,∴取出黄色粉笔的概率是35p =,故选:C .4.C解:将抛物线221y x =-向左平移1个单位,得到的新抛物线的表达式为()2211y x =+-.故选:C5.C解:令0y =,则211005x x -+=,解得10x =(舍去),250x =,故选C .6.A解:A 、等弧所对的弦一定相等;故原说法正确;B 、在同圆和等圆中,相等的弦所对的弧相等,故原说法错误;C 、在同圆和等圆中,相等的圆心角所对的弧相等,故原说法错误;D 、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.故原说法错误;故选:A .7.C解:抛物线()2237y x =--的顶点坐标是()37-,.故选:C .8.B解:如图所示,∵CD AB ⊥,∴AE BE =, AD BD=,O 的半径都相等,那么AO CO =,不能得出OE DE =.故选:B .9.C解: 二次函数()231y x =--,开口向上,离对称轴越远函数值越大,∴当14x ≤≤时,在3x =时,函数取得最小值,此时1y =-,当1x =时,函数取得最大值,此时()21313y --==,故选:C .10.A解: 弦CD AB ⊥于点E ,12CE DE CD ∴==,90OED ∠=︒,8DE ∴==,216CD DE ∴==,故选:A .11.()0,5-解:将0x =代入22(1)3y x =---,得:22(01)35y =-⨯--=-,∴与y 轴交点的纵坐标为()0,5-.故答案为:()0,5-.12.9解:3134m =+,∴9m =,经检验9m =是原方程的解,∴9m =,故答案为:9.13.2解:根据题意可得()2022m b a ---==,解得2m =,故答案为:2.14.102︒解:∵四边形ABCD 是圆内接四边形,∴180A DCB ∠+∠=︒,又180DCE DCB ∠+∠=︒,∴102DCE A ∠∠==︒,故答案为102︒.15.2(1)5y x =-++解:由图象可知抛物线的顶点坐标为()15-,,∴函数的解析式为2(1)5y x =-++.故答案为:2(1)5y x =-++.16.4π-解:∵ABCD 是正方形,边长为2,∴ 2290224360BACS S S ππ⨯=-=-=-阴影面积正方形扇形.故答案为:4π-.17.()2211y x =--解:()()22224122121211y x x x x x =-+=-+-+=--,故答案为:()2211y x =--18.解:过点O 作OE AB ⊥交于点E ,如图:设ABC α∠=,∵ AC AC =,∴22AOC ABC α∠=∠=,∵OC AB ∥,∴2BAO AOC α∠=∠=,则23ADC BAO ABC ααα∠=∠+∠=+=,∵AC CD =,∴3ADC DAC α∠=∠=,∵=2OA OC =,∴3OCA OAC α∠=∠=,∵180AOC OCA OAC ∠+∠+∠=︒,即233180ααα++=︒,解得:22.5α=︒,∴222.545BAO ∠=⨯︒=︒,∵OE AB ⊥,∴90AEO ∠=︒,AE BE =,∴90EAO EOA ∠+∠=︒,即45EAO EOA ∠=∠=︒,∴AE OE =,在Rt AEO △中,222AE OE AO +=,即224AE =,解得:AE =∵OE AB ⊥,∴AE BE =,∴2AB AE ==故答案为:19.2=23y x x --解:将()1,0A -,()3,0B 代入2y x bx c =-+得:01093b c b c =++⎧⎨=-+⎩,解得:23b c =⎧⎨=-⎩,∴抛物线的解析式为:2=23y x x --.20.22(2)3y x =--解:根据题意,设二次函数的解析式为2(2)3y a x =--,把()5,15代入得215(52)3a =--,解得2a =,所以二次函数的解析式为22(2)3y x =--.21.(1)解:由题意可知,平行于墙的一边BC 的长为()202x -米,∴()2202220y AB BC x x x x =⋅=-=-+,2020x ->,∴010x <<,∴y 关于x 的函数表达式为2220y x x =-+()010x <<;(2)解: ()222202550y x x x =-+=--+(010)x <<,∴当5x =时,y 取得最大值,此时50y =,即当5x =时,苗圃的面积最大,最大值是50平方米.22.解:填表如下:x…-3-2-101…223y x x =+-…0-3-4-30…描点、连线,如图所示:23.(1)解:因为甲、乙、丙三人坐在①号座位上的概率相同故甲坐在①号座位上的概率是:13(2)解:画树状图如下∶由图可得共有6种等可能的结果,甲、乙两人恰好相邻而坐的有4种,所以甲、乙两人恰好相邻而坐的概率为4263=24.(1)证明:直径AB 垂直于弦CD 于点E ,连接AC ,∴ AC AD =,∴AC AD =,∵过圆心O 的直线CF AD ⊥,∴AF DF =,即CF 是AD 的中垂线,∴AC CD =,∴AC AD CD ==.即:ACD 是等边三角形,∴30FCD ∠=︒,在Rt COE △中,有12OE OC =,∴12OE OB =,∴点E 为OB 的中点;(2)解:∵6AB =,∴132OC OB AB ===,又∵BE OE =,∴32OE =,∴CE =AB CD ⊥ ,∴2CD CE ==。

山西省吕梁市临县多校2024-2025学年上学期期中测试九年级数学试卷(含答案)

山西省吕梁市临县多校2024-2025学年上学期期中测试九年级数学试卷(含答案)

2024-2025学年九年级上期中评估试卷数学试卷说明:共三大题,23小题,满分120分,考试时间120分钟.一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.把一元二次方程化成一般形式,则二次项系数、一次项系数、常数项分别为( )A .3,,1B .3,1,4C .3,D .3,4,12.2024年6月25日,嫦娥六号返回器准确着陆于预定区域,工作正常,标志着探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回.下列航天领域的图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.我们解一元二次方程时,可以运用因式分解法,将此方程化为,得到两个一元一次方程:,从而得到原方程的解为.这种解法体现的数学思想是( )A .公理化思想B .模型思想C .函数思想D .转化思想4.二次函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,在中,A 是的中点,点D 在上.若,则 ( )AB . C.D .6.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,,将绕点C 旋转得到,则点A 与点之间的距离为( )2314x x +=4-4,1--210x -=()()110x x -+=10,10x x -=+=121,1x x ==-25y x x =+O BCO AOB α∠=AD C ∠=α2α12α90α︒-4,16AC BD ==BOC △180︒B O C '''△B 'A .6B .8C .10D .127.下列方程没有实数根的是( )A .B .C .D .8.如图,学校课外生物小组的试验田的形状是长为、宽为的矩形,为了方便管理,要在中间开辟两横一纵共三条等宽的小路,小路与试验田的各边垂直或平行,要使种植面积为,则小路的宽为多少米若设小路的宽为x m ,根据题意可列方程( )A .B .C .D .9.石拱桥是中国传统的桥梁四大基本形式之一,是用天然石料作为主要建筑材料的拱桥,以历史悠久,形式优美,结构坚固等特点闻名于世,它的主桥是圆弧形.如图,某石拱桥的跨度AB (AB 所对的弦的长)约为,拱高CD (AB 的中点到弦AB 的距离)约为,则AB 所在圆的半径OA 为( )A .B .C .D .10.已知二次函数的图象如图所示,该抛物线的对称轴为直线,则下列结论不正确的是()()235x x -=2210x x -+=280x x --=()()230x x -+=36m 22m 2700m ()()3622700x x --=()()36222700x x --=()()36222700x x ++=()()36222700x x --=36m 6m 30m 27m 25m2y ax bx c =++1x =A .B .关于x 的方程的两根是C .当时,y 随x 的增大而减小D .二、填空题(本大题共5个小题,每小题3分,共15分)11.方程的解是___________.12.如图,四边形ABCD 内接于,若,则的度数为___________.13.若二次函数的图象经过点,利用抛物线可知不等式的解集是____________.14.铅球是利用人体全身的力量,将一定重量的铅球从肩上用手臂推出的田径运动项目之一,是集力量和技术于一体的运动,绝对力量和完美技术都是取得好成绩的因素,铅球行进高度和铅球行进曲线都影响着铅球投掷的成绩.如图,一位运动员推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是,此运动员投掷时,铅球的最大行进高度是_________m .15.如图,在矩形ABCD 中,E 是边CD 上一点,对角线AC ,BD 相交于点O ,于点F ,连接OF .若,则OF 的长为______.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)(1)解方程:.0a c <20ax bx c ++=121,3x x =-=0x >20a b +=()()430x x -+=O 125A ∠=︒C ∠22y x x m =-+()2,3-22y x x m =-+220x x m -+≤21251233y x x =-++EF AB ⊥15,5,12AB DE AD ===243x x +=(2)以下是小夏同学解方程的过程,请解决问题:解:原方程可变形为, 第一步方程两边同时除以得, 第二步∴原方程的解是.第三步上述解方程的过程从第_______步开始出错,错误的原因是____________②请直接写出方程的解:_________________________17.(本题9分)已知二次函数的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A ,B ,C ,D 的坐标,并在如图所示的平面直角坐标系中画出该二次函数的大致图象(每个小方格的边长都是1个单位长度).(2)描述抛物线是由抛物线如何平移得到的.(3)求四边形AOCD 的面积.18.(本题8分)如图,已知的直径AB 垂直弦CD 于点E ,连接CO 并延长交AD 于点F ,且F 为AD 的中点.(1)求证:.(2)若,求弦CD 的长.19.(本题7分)大豆,通称黄豆,属一年生草本,是我国重要粮食作物之一,已有五千年栽培历史,古称“菽”.某校综合实践小组以“探究大豆种植密度优化方案”为主题展开项目学习.在六块不同的试验田中种植株数不同的大豆,()()323x x x -=-()()323x x x -=--()3x -2x =-2x =-223y x x =+-223y x x =+-2y x =O AD CD=8AB =严格控制影响大豆生长的其他变量,在大豆成熟期,对每株大豆的产量进行统计,并记录如下:试验田编号123456单位面积试验田种植株数/株304050607080单位面积试验田单株的平均产量/粒514641363126(1)根据记录表中的数据分析单位面积试验田的单株平均产量与种植株数的变化规律,若设单位面积试验田种植x 株(),则单位面积试验田单株的平均产量为_________粒.(2)如果要想获得单位面积大豆的总产量达到2160粒,又相对减少田间管理,那么单位面积大豆应种植多少株?20.(本题8分〉某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系;乙种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系 (其中a ,b 为常数,),且当进货量为1吨时,销售利润为1.4万元,当进货量为2吨时,销售利润为2.6万元.如果该批发市场准备进甲、乙两种水果共10吨,问这两种水果各进多少吨时获得的销售利润之和最大?最大利润是多少?21.(本题8分)阅读与思考观察下列方程系数的特征及其根的特征,解决问题:方程及其根方程及其根方程及其关联方程方程的根方程及其关联方程方程的根①①②②…………(1)请描述一元二次方程和关联方程的系数特征及它们根的关系特征.(2)方程和是不是关联方程?求解两个方程并判断两个方程的根是否符合根的关系特征.(3)请以一元二次方程为例证明关联方程根的关系特征.22.(本题12分)综合与实践如图1,这是某广场中的喷水池,那随着音乐声此起彼伏的水线,一会儿高高跃起,一会儿盘旋而下,令人心旷神怡!边上各个方向向外喷出的水线可以看做一圈形状相同的抛物线,从这些抛物线中抽象出一条分析研究,若水线达到最大高度 (点P 距地面的距离)时,水线的跨度.3080x ≤≤y 甲0.3y x =甲y 乙2y ax bx =+乙0a ≠22310x x -+=121,12x x ==2230x x +-=123,1x x =-=22310x x ++=121,12x x =-=-2230x x --=123,1x x ==-2240x x --=2240x x +-=()2200,40axbx c a b ac ++=≠-≥3.2m 8m AB =请你结合所学知识解决下列问题:(1)在图2中建立以为单位长度,点A 为坐标原点,AB 所在直线为x 轴,过点A 与AB 垂直的直线为y 轴,构建平面直角坐标系,并求出抛物线的解析式.(2)若喷水池中心C 到A 的距离约为,则该喷水池的半径至少为多少米,才能使喷出的水流都落在水池内?(3)在(2)的条件下,身高为的清洁工王师傅在水池中清理漂浮物,为了不被淋湿,王师傅站立时必须在离水池中心点C 多少米范围内?(结果保留1位小数,参考数据:,)23.(本题13分)综合与探究问题情境:数学课上,老师提出一个问题:如图1,在中,,把绕点C 逆时针旋转到的位置,点A ,B 的对应点分别是与AB 相交于点D .在旋转过程中,线段之间存在一些特殊的位置关系和数量关系.如图2,在旋转过程中,当经过AB 的中点D 时,试判断四边形与AC 的位置关系,并加以证明.问题解决:(1)请你解答老师提出的问题.数学思考:(2)小明同学发现:在图形旋转过程中,有线段垂直关系的存在.如图3,在旋转过程中,当时,求点A 与点之间的距离.数学探究:(3)小敏同学发现:在旋转过程中,有特殊三角形的存在.在旋转过程中,当是等腰三角形时,请直接写出线段AD的长.1m 2.3m 1.8m 2.24≈≈≈2.45, 3.32≈≈≈Rt ABC △90,4,3ACB AC BC ∠=︒==ABC △()090αα︒≤≤︒ABC ''△,,A B AC'''A C 'A B ''A C A B '⊥A 'BCD △数学参考答案1.A2.B 3.D4.D5.C6.C7.A8.B 9.A10.C 提示:由抛物线开口方向可知,由抛物线与y 轴交点位置可知,∴,A 选项正确;根据抛物线的轴对称性可知抛物线与x 轴分别交于和,∴方程的两根是,B 选项正确;抛物线的对称轴是直线,变形可得,D 选项正确;抛物线的对称轴是直线,故时,y 随x 的增大而增大,时,y 随x 的增大而减小,C 选项不正确.故选C .11.12.13. 14.315.6.5 提示:如图,延长FO 交DC 于点G ,构造中心对称.在矩形ABCD 中,.在矩形AFED 中,,所以.根据矩形的中心对称性和线段的中心对称性可知,,有,∴.在中,根据勾股定理得,∴.16.(1)(解法不唯一)解:配方,得,3分直接开平方,得, 4分∴5分(2)解:①二;没有考虑为0而错误地运用等式的基本性质2进行变形.3分0a <0c >0a c <()3,0()1,0-20ax bx c ++=121,3x x =-=12bx a=-=20a b +=1x =01x <<1x >124,3x x ==-55︒13x -≤≤15AB C D ==5,12AF DE AD EF ====10C E B F ==AFO CGO △≌△15,2CG AF OF FG ===1055EG =-=Rt FEG △13FG ==16.52OF FG ==()227x +=2x +=1222x x =-=-()3x -②. 5分17.解:(1)当时,,解得.∵点A 在点B 的左侧,∴点,点.当时,,∴点.由可得点.2分二次函数的大致图象如下图所示.4分(2)(方法不唯一)抛物线可由抛物线先向左平移1个单位长度,再向下平移4个单位长度得到.6分(3)如图,直线DE 为该抛物线的对称轴,其中E 为对称轴与x 轴的交点,∴.由可得是直角三角形,四边形EOCD 是直角梯形,, 8分∴9分18.解:(1)证明:如图,连接AC .∵直径AB 垂直弦CD 于点E ,∴,∴,∴.2分又∵F 为AD 的中点,CF 经过圆心O ,∴,∴,∴,∴. 4分(2)由(1)可知,∴是等边三角形,∴.如图,连接BD ,可得. 6分122,3x x =-=0y =2230x x +-=123,1x x =-=()3,0A -()1,0B 0x =3y =-()0,3C -()222314y xx x =+-=+-()1,4D --223y x x =+-223y x x =+-2y x =()1,0E -()()()3,0,0,3,1,4A C D ----A D E △2,1,4AE OE DE ===()4312415222AED AOCD EOCDS S S =+⨯⨯+=+=△四边形梯形CE DE =AC AD = AC AD =C F A D ⊥CD AC = CD AC = AC CD=AC AD CD ==ACD △30D AB ∠=︒90AD B ∠=︒在中,,∴,∴,∴.8分19.解:(1).2分(2)根据题意可列方程:. 4分整理,得,解得.6分∵种植60株比种植72株的田间管理少一些,故应舍去,∴.答:单位面积大豆应种植60株.7分20.解:由题意可知,解得 2分∴.3分设乙种水果进货m 吨,则甲种水果进货吨,10吨水果销售利润之和为W 万元,根据题意,,5分配方,得.∵,∴当时,W 的最大值为6.6.∴.7分答:甲、乙两种水果分别进货4吨,6吨时获得的销售利润之和最大,最大利润是6.6万元. 8分21.解:(1)一元二次方程和关联方程的系数特征是二次项系数、常数项相同,一次项系数互为相反数;一元二次方程和关联方程的根的关系特征是对应根互为相反数.2分(2)方程和的二次项系数、常数项相同,一次项系数互为相反数,符合(1)中描述的特征,故它们是关联方程.3分Rt ABD △8AB =142BD AB ==AD ===CD AD ==()660.5x -()660.52160x x -=213243200x x -+=1272,60x x ==1x 60x =1.442 2.6a b a b +=⎧⎨+=⎩0.11.5a b =-⎧⎨=⎩20.1 1.5y x x =-+乙()10m -()220.1 1.50.3100.1 1.23W m m m m m =-++-=-++()20.16 6.6Wm =--+0.10-<6m =104m -=2240x x --=2240x x +-=方程的根是的根是它们的两个根对应互为相反数,符合根的关系特征.5分(3)一元二次方程的根是,它的关联方程的根是,它们的两个根对应互为相反数.8分22.解:(1)根据题意,构造平面直角坐标系如图所示. 2分由题意可知,抛物线的顶点,可设抛物线的函数解析式为,2分将点B 代入,得,解得,∴抛物线的解析式为.4分(2)由题可知,∴.6分答:喷水池的半径至少为,才能使喷出的水流都落在水池内. 7分(3)当时,,解得9分.答:王师傅站立时必须在离水池中心点C 约至的范围内. 12分23.解:(1). 1分证明:由旋转的性质可知.∵D 是的中点,∴,∴,2分∴,∴ 4分(2)如图,连接2240x x --=21211240x x x x =+=-+-=1211x x =--=-+()200ax bx c a ++=≠≥x =20ax bx c -+=x =()()00,0,8,0B ()4,3.2P ()24 3.2y a x =-+()284 3.20a-+=0.2a =-()220.24 3.20.2 1.6y x x x =--+=-+2.3,8CA AB ==10.3CB CA AB =+=10.3m 1.8y =20.2 1.6 1.8x x -+=1244x x ==+()()122.3 6.3 6.3 2.65 3.7m , 2.3 6.3 6.3 2.658.9m x x +=≈-≈+=≈+≈3.7m 8.9m A B AC ''∥A A ∠=∠'Rt ABC △12AD BD CD AB ===AC A A ∠'=∠ACA A ∠'=∠'A B AC ''∥AA '在中,根据勾股定理可得.根据三角形面积公式可得由旋转可知.∴6分在中,根据勾股定理可得,在中根据勾股定理可得∴点A 与点10分(3)AD 的长为2或或. 13分提示:①当时,;②当时,;③当时,Rt ABC △5AB ==341255CD ⨯==4A C A C '==128455A D A C CD '='-=-=Rt AD C △165AD ==Rt AD A '△AA '==A '7552BC BD =532AD AB BD =-=-=BC CD =9725255AD AB BD =-=-⨯=BC CD =1522AD AB ==。

重庆市开州初中教育集团2024-2025学年九年级上期中测试数学试卷(含答案)

重庆市开州初中教育集团2024-2025学年九年级上期中测试数学试卷(含答案)

开州初中教育集团2024-2025上九年级期中测试数学试卷(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色2B 铅笔完成.参考公式:抛物线的顶点坐标,对称轴:直线.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的代号填涂在答题卡上.1.下列实数中,最大的数是()A .B .0C .2D .2.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.下列方程中是一元二次方程的是()A .B .C .D .4.对于二次函数的图象,下列说法正确的是( )A .对称轴是直线B .当时,随的增大而增大C .顶点的坐标为D .图象与轴的交点坐标是5.估算的结果()A .在6和7之间B .在7和8之间C .在8和9之间D .在9和10之间6.若关于的一元二次方程没有实数根,则二次函数的大致图象是( )A .B .C .D .2(0)y ax bx c a =++≠24,24b ac b a a ⎛⎫-- ⎪⎝⎭2b x a=-13-2-20ax bx c ++=212x x -=23324x x x -=-250x =21(3)52y x =-++3x =3x <-y x (3,5)--y (0,5)-+x 2210x x k --+=2y kx k =-7.如图,点,,在上,若,则的度数为( )A .B .C .D .8.将一些完全相同的黑点按如图所示的规律摆放,第1个图形有5个黑点,第2个图形有8个黑点,第3个图形有13个黑点,...,按此规律排列下去,则第7个图形中共有黑点的个数是()A .39B .40C .53D .689.如图,为正方形ABCD 的对角线BD 上的一点,连接CM ,将线段CM 绕点顺时针旋转,点的对应点恰好落到边AB 上,线段MN 交对角线AC 于点,且为MN 的中点.若正方形的边长为4,则AG 的长为( )ABC .D .10.已知多项式,多项式,则下列结论正确的有( )①若,则代数式的值为;②当,时,代数式的最小值为;③当时,若,则关于的方程有两个实数根;④当时,若,则的取值范围是.A .1B .2C .3D .4二、填空题:本大题8个小题,每小题4分,共32分,把答案填写在答题卡相应的位置上.11.计算:______.12.已知一个正多边形的每个内角都比它相邻的外角多,则它是正______边形.A B C O 25C ∠=︒ABO ∠50︒55︒60︒65︒M M 90︒C N G G 2232M x x =--23N x ax =-+0M =2521x x x --10-3a =-5x ≥M N -10-0a =0M N ⋅=x 3a =2221513M N M N -++-+=x 723x -<<20223(1)--=100︒13.我国的乒乓球“梦之队”在巴黎奥运赛场上大放异彩,奥运会乒乓球比赛的第一阶段是团体赛,赛制为单循环赛(每两队之间都赛一场),每个组共安排28场比赛.设每个组邀请个球队参加比赛,则可列方程得为______.14.已知是一元二次方程的一个根,则的值为______.15.若,,为二次函数的图象上的三点,则,,的大小关系是(用“<”连接)______.16.若关于的不等式组有且仅有5个整数解,且关于的分式方程有整数解,则所有满足条件的整数的和是______.17.如图,矩形ABCD 中,BE 平分交AD 于点,把EB 绕点逆时针旋转交BC 于点,过点作于点,连接BG ,若,,则______.18.一个四位自然数,若满足,且,,则称四位数为“神奇数”.例如:四位自然数4312,因为,,,所以4312是“神奇数”.若是一个“神奇数”,且,则满足条件的的个数有______个,若是一个“神奇数”,设,,,和都是整数,则的值为______.三、解答题:本大题8个小题,19小题8分,其余每小题10分,共78分,解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.19.解下列方程(1)(用公式法解)(2).20.为了了解同学们的安全意识,我区某中学开展了“安全知识竞赛”,现从该校七、八年级中各随机抽取10名学生的比赛成绩(成绩为百分制,学生得分均为整数且用表示,)进行整理、描述和分析,并将其共分成四组:(:,:,:,:).下面给出了部分信息:七年级10名学生的比赛成绩是:84,85,86,87,88,92,95,97,98,98.八年级10名学生的比赛成绩在组中的数据是:90,94,94.七、八年级抽取的学生比赛成绩统计表:x a 2310x x -+=2263a a -++()15,A y -21,2B y ⎛⎫- ⎪⎝⎭()33,C y 267y x x =+-1y 2y 3y x 1(32)12532x x x a x⎧-≤+⎪⎨⎪+>-⎩y 2311y a y y --=--a ABC ∠E E 15︒F C CG EF ⊥G 2CF BF =6CE =BG =M abcd =b c ≥a b c =+d b c =-31>431=+231=-M abcd =1d =M M abcd =M badc '=()81M M F M '-=()99M M G M '+=()F M ()G M M 2260x x +-=(1)22x x x -=-x A 85x <B 8590x ≤<C 9095x ≤<D 95100x ≤≤C年级七年级八年级平均数9191中位数90众数100根据以上信息,解答下列问题:(1)______,______,______;(2)根据以上数据,你认为该校七、八年级中哪个年级安全意识更强?请说明理由(一条理由即可);(3)该校七年级有1300名学生、八年级有1500名学生参加了此次“安全知识竞赛”,请估计参加此次比赛成绩不低于90分的学生人数是多少?21.在学习了等腰三角形的相关知识后,小明同学进行了更深入的研究,他发现等腰三角形两底角的角平分线的交点到两底角角平分线与腰的交点的距离相等,可利用证三角形全等得此结论.根据她的想法与思路,完成以下作图与填空.(1)如图,在等腰中,BE 是的角平分线,用尺规作的角平分线分别交BE 、AB 于点、(不写作法,保留作图痕迹).(2)已知是等腰三角形,BE 平分交AC 于点,CD 平分交AB 于点,且BE、CD 交于点.求证:.证明:是等腰三角形①平分,CD 平分 ② ,,在和中b ca =b =c =ABC △ABC ∠ACB ∠O D ABC △ABC ∠E ACB ∠D O OD OE =ABC △∴BE ABC ∠ACB∠ABE ∴∠=12ABC =∠12BCD ACD ACB ∠=∠=∠ABE CBE BCD ACD∴∠=∠=∠=∠OB OC∴=OBD △OCE △( ④ )再进一步研究发现,等腰三角形两底角的外角角平分线所在直线的交点到外角平分线所在直线与两腰所在直线的交点的距离也满足该特点.即等腰三角形两底角的外角角平分线所在直线的交点到外角平分线所在直线与两腰所在直线的交点的距离 ⑤ .22.如图1.在中,,,,为BC 上一点,,动点以每秒1个单位长度的速度,沿着的路线运动.设点运动的时间为秒,的面积为,请解答下列问题:图1图2(1)请直接写出与之间的函数解析式及的取值范围,并在如图2所示的平面直角坐标系中画出该函数的图象;(2)观察该函数的图象,写出该函数的一条性质:__________________________________________.(3)根据图象,直接写出当时,的取值范围______________________________.23.双“十一”期间,商店纷纷搞促销活动,小亮发现某店有、两种玩具正在参加活动,已知每个款玩具的售价是每个款玩具售价的2倍,顾客用160元购买款玩具的数量比用160元购买款玩具的数量少1个.(1)求每个款玩具的售价为多少元?(2)经统计,该店每月卖出款玩具100个,每个款玩具的利润为50元.为了尽快减少库存,该店决定采取适当的降价措施.调查发现,每个款玩具的售价每降低5元,那么平均每月可多售出15个,该店想每月销售款玩具的利润达到5200元,则每个款玩具应降价多少元?24.周日早上,爷爷和小明约定到公园去锻炼身体,公园在小明家正东方向的处,但是由于AE 道路施工,爷爷先沿正北方向走了300米到达处,再从处沿北偏东方向行走300米到达处,从处沿正东方向走了150米到达处,最后沿方向到达处,已知点在点的南偏东方向.爷爷先出发3分钟后小明从家选择另一路线步行前往处,已知点在点的南偏东方向,且点在点的正南方向.OB OCBOD COE ⎧⎪=⎨⎪∠=∠⎩③OBD OCE ∴△≌△OD OE∴=Rt ABC △90B ∠=︒30C ∠=︒4AB =E 4BE =P B A C →→P t PBE △S S t t 2S ≤t A B A B A B B A A A A A E B B 60︒C C D D E →E E D 45︒A F E →→E F A 60︒F E(1)求AE 的长度(结果保留根号);(2)若爷爷步行速度为50米/分,小明步行速度为70米/分,小明和爷爷始终保持匀速行驶,请计算说明)25.如图,抛物线交轴于点和点,交轴于点.备用图(1)求抛物线的表达式;(2)若点是直线BC 下方抛物线上一动点,连接PC ,PB ,当的面积最大时,求点的坐标及面积的最大值;(3)在(2)的条件下,若点是直线BC 上的动点,在平面内的是否存在点,使得以、、、为顶点的四边形是㥿形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由.26.在中,,为AC 中点,为平面内一点.图1图2图3(1)如图1,点在边BC 上,连接AD ,FD ,若,,,求BD 的值;(2)如图2,连接AD ,将AD 绕点逆时针旋转到AE ,使得,连接DE ,DE 恰好过点,若,证明:;(3)如图3,点在边BC 上,将线段AD 绕点顺时针旋转得到线段AP ,后,,请直接写出FP 的最小值.开州初中教育集团2024-2025上九年级期中测试数学参考答案一、选择题(每小题4分,共40分)1.C 2.A 3.D 4.B 5.C 6.B 7.D 8.C 9.C 10.C二、填空题(每小题4分,共32分)1.4≈ 1.7≈22y ax bx =+-x (1,0)A -(2,0)B y C P PBC △P N Q P B N Q Q ABC △AC AB =F D D 30B ∠=︒4AB =DF =A DAE BAC ∠=∠F 2DF EF =2180ABD AFD ∠+∠=︒D A 60︒120BAC ︒∠=2AB =11.12.九13.14.515.16.17.18.5 909919.(1)(用公式法求解)(2)解:,,解:,,20.(1);;.(2)解:八年级安全意识更强.理由如下:八年级学生安全知识竞赛成绩中位数为94高于七年级学生安全知识竞赛成绩中位数为90.(同理分析众数)(3)(人)答:参加此次比赛成绩不低于90分的学生人数为1700人.21.(1)(2) 相等22.解:(1)函数图像如图所示(2)①当时,随的增大而增大;当时,随的增大而减小;2-(1)282x x -=123y y y <<4-2260x x +-=(1)22x x x -=-2a = 1b =6c =-(1)220x x x -+-=2142(6)49∴∆=-⨯⨯-=(1)2(1)0x x x -+-=174x -±∴=(2)(1)0x x +-=132x ∴=22x =-12x ∴=-21x =40a =94b =98c =513001500(120%10%)170010⨯+⨯--=ABC ACB ∠=∠CBE ∠DBO CEO ∠=∠ASA 2(04)12(412)t t S t t <≤⎧=⎨-+<<⎩04t <<y x 412t <<y x②当时,函数有最大值为8;无最小值.(回答一条即可)(3)当时,或.23.解:(1)设每个款玩具的售价为元.由题意得,解得经检验:是原分式方程的解,且符合题意答:每个款玩具的售价为80元.(2)设每个款玩具应降价元.由题意得,解得,为了尽快减少库存答:每个款玩具应降价10元.24.解:(1)延长AB 、DC 交于点,过点作于点.由题意得,米,米,,.在中,米,米,米在中,米(米)答:AE 的长度为米.(2)在中,,米在中,,米4t =2S ≤01t <≤1012t≤<B x 16016012x x -=80x =80x =B A a (50)1001552005a a ⎛⎫-+⨯= ⎪⎝⎭110a =2203a = 10a ∴=A M D DN AE ⊥N 300AB BC ==150CD =903060FAE ∠︒︒=︒=-45NDE ∠=︒Rt MBC △300BC =60MBC ∠=︒11502MB BC ∴==MC ==450AM DN AB MB ∴==+=Rt DNE △45NDE ∠=︒450DN NE ∴==600AE AN NE MC CD NE ∴=+=++=600)+Rt DNE △45NDE ∠=︒450DN NE ==DE ∴==Rt AEF △30FAE ∠=︒600AE =米,米爷爷到达所用时间:分钟小明到达所用时间:分钟小明先到达公园25.解:(1)抛物线交轴于点和点解得抛物线的表达式为(2)过点作轴交BC 于点在中,令,得 直线BC 的解析式为设,则当时,的面积有最大值为1,此时150EF AE ∴==+2300AF EF ==+27.650AB BC CD DE t +++==≈爷332470AF EF t +=+=+≈明2427.6< ∴ 22y ax bx =+-x (1,0)A -(2,0)B 204220a b a b --=⎧∴⎨+-=⎩11a b =⎧⎨=-⎩∴22y x x =--P //PE y E22y x x =--0x =2y =-(0,2)C ∴-(2,0)B ∴2y x =-()2,2P a a a --(,2)(02)E a a a -<<22222PE a a a a a∴=--++=-+()2212(1)12BCP B C S PE x x a a a ∴=⋅⋅-=-+=--+△10-< ∴1a =PBC △(1,2)P -(3)26.(1)解:过点作于点,过点作于点过程略(2)证明:取DF 中点,连接AM 、CE证证证,,,即(3)1(0,1)Q -212Q ⎛⎫- ⎪ ⎪⎝⎭312Q ⎛⎫- ⎪ ⎪⎝⎭4117,66Q ⎛⎫- ⎪⎝⎭A AH BC ⊥H F FG BC ⊥G 2BD =-M ABD ACE ABD ACE⇒∠=∠△≌△⇓ADM AEF AM AF⇒=△≌△⇓AMF CEF AM CE AF CF ⇒===△≌△CFE CEF ∠=∠⇓2ACE AFE ∠=∠2180AFE AFD ACE AFD ︒∠+∠=∠+∠=2180ABD AFD ∠+∠=︒32。

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

湖北省荆州市2024-2025学年九年级上学期11月期中考试数学试题(含答案)

2024~2025学年度上学期学情监测九年级数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。

一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )A.B. C. D.2.一元二次方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.两根互为相反数3.如图,紫荆花绕它的旋转中心,按下列角度旋转,能与其自身重合的是( )A. 60°B. 120°C. 144°D. 180°4.如图,是的直径,,则的度数是( )A. 30°B. 40°C. 50°D. 60°5.若是方程的一个根,则的值为( )A. 2024B. C. D. 10156.用配方法解方程时,配方正确的是()2210x x --=AB O e 30CDB ∠=︒ABC ∠x m =2210090x x --=2246m m -+2012-1003-2840x x --=A. B. C. D.7.函数和函数(a 是常数,且)在同一平面直角坐标系中的图象可能是( )A.B. C. D.8.小聪以二次函数的图象为模型设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A. B. C. D.9.如图,小程爸爸用一段长的铁丝网围成一个一边靠墙(墙长)的矩形鸭舍,其面积为,在鸭舍侧面中间位置留一个宽的门(由其它材料制成),则的长为( )A. 8m 或5mB. 4m 或2.5mC. 8mD. 5m 10.如图,开口向上的抛物线()与x 轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③当时,y 随x 的增大而减小;④当时,关于x 的一元二次方程有两个不相等的实数根.其中正确的结论是( )A.①③④ B.②③④ C.②③ D.①②④二、填空题(共5题,每题3分,共15分)11.在平面直角坐标系中,点关于原点对称的点的坐标是______.12.抛物线向左平移2个单位长度,向下平移1个单位长度后的图象解析式为______.13.如图,是的直径,弦于点E ,,,则的长为______cm.()2412x -=()2420x -=()2868x -=()2860x -=y ax a =+221y ax x =--+0a ≠()292616y x =-+8cm AB =4cm DE =CE 13cm 12cm 15cm 9cm12m 6m 220m 1m BC 2y ax bx c =++0a ≠()4,01x =a c b +>20a b +=0x <m a b c >++2ax bx c m ++=()2,3-()2234y x =-+AB O e CD AB ⊥16cm CD =4cm BE =OC14.已知关于x 的方程,若等腰三角形的一边长,另外两边长b ,c 恰好是这个方程的两个根,则这个三角形的周长为______.15.如图,的半径为2,圆心M 的坐标为,点P 是上的任意一点,,且,与x 轴分别交于A ,B 两点,若点A ,点B 关于原点O 对称,则的最小值为______.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知二次函数.(1)写出该函数图象的开口方向;(2)求出该函数图象的对称轴和顶点坐标;(3)当x 满足什么条件时,y 随x 增大而减小?18.(6分)如图,在平面直角坐标系中,已知点,,.(1)画出关于原点O 成中心对称的;(2)画出绕点逆时针旋转90°后得到的.19.(8分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为,,且,求m 的值.20.(8分)如图,已知抛物线和直线相交于点和.()23230x k x k -+++=4a =M e ()3,4M e PA PB ⊥PA PB AB 2240x x --=23100x x --=247y x x =-+-()2,0A ()1,1B ()4,2C ABC △111A B C △ABC △()0,1Q -222A B C △()222110x m x m -++-=1x 2x 22124x x +=21y x bx c =-++21522y x =+()1,A m -(),4B n(1)求m 和n 的值;(2)求抛物线的解析式;(3)结合图象直接写出满足的x 的取值范围.21.(8分)如图,为的直径,点C ,D 为直径同侧圆上的点,且点D 为的中点,过点D 作于点E ,交于点G ,延长,交于点F .图① 图②(1)如图①,若,求证:;(2)如图②,若,,求的半径.22.(10分)我市某镇是全国著名的蓝莓产地,某蓝莓基地近几年不断改良种植技术,产量明显增加,2022年的产量是5000千克,2024年的产量达到7200千克。

吉林省逐梦芳华系列2024-2025学年九年级上学期期中测试数学试卷(含答案)

吉林省逐梦芳华系列2024-2025学年九年级上学期期中测试数学试卷(含答案)

逐梦芳华——阶段性学业水平测评卷(吉林省九年级上学期期中考试A 卷)数学试题本试卷包括六道大题,共26道小题,共6页。

全卷满分120分,考试时间为120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必将自己的学校、姓名、班级、学号填写在答题卡上,并将条形码准确粘贴在条形码区域内。

2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。

一、单项选择题(每小题2分,共12分)1.抛物线的顶点坐标是()A .(2,4)B .C .(0,4)D .2.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A .B .C .D .3.平面内,已知的半径是,线段,则点在()A .外B .上C .内D .无法确定4.如图,在中,弦于点,则的长为()(第4题)A BCD5.如图,一名男生推铅球,铅球行进高度(单位:与水平距离(单位:之间的关系是,则他将铅球推出的距离为( )224y x =-(0,4)-(2,4)-O 5cm 6cm OP =P O O O O OC ⊥AB ,4,1C AB OC ==OB y m)x m)y =21(4)312x --+(第5题)A .B .C .D .6.《九章算术》是我国传统数学的重要著作之一,奠定了我国传统数学的基本框架.《九章算术》中记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”大意:有一形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,问它的高与宽各是多少?利用方程思想,设矩形门高为尺,则根据题意,可列方程为(1丈尺,1尺寸)()A .B .C .D .二、填空题(每小题3分,共24分)7.点关于原点中心对称的坐标是______.8.如图,以点为旋转中心,将按顺时针方向旋转得到,若,则______°.(第8题)9.已知函数的图象过原点,则的值为______.10.把方程化成一般式,得,则的值为______.11.如图,为的直径,弦.若,则______°.(第11题)12.如图,四边形是内接四边形,点是延长线上一点,若,则=______°.3m 4m 7m 10mx 10=10=22( 6.8)10x x -=22( 6.8)10x x +=222( 6.8)10x x ++=222( 6.8)10x x +-=(3,2)P -O AOB ∠110︒COD ∠40AOB ∠=︒AOD ∠=232y x x c =++-c (2)5(2)x x x +=-2100x bx -+=b BC O CD OA ∥50C ∠=︒A ∠=ABCD O E BC 105BAD ∠=︒DCE ∠(第12题)13.当______时,代数式的值与代数式的值相等.14.若一个两位数的十位,个位上的数字分别为,则通常记作这个两位数为,如:,当的值最大时,的值为______.三、解答题(每小题5分,共20分)15.用适当的方法解方程:.16.若二次函数的图象经过点,求该函数的解析式并写出对称轴.17.如图,在中,,将绕点按逆时针方向旋转得到.(第17题)(1)线段的长是______,的度数是______°.(2)连接,求证:四边形是平行四边形.18.在平面直角坐标系中,抛物线经过点和.(1)求此抛物线的解析式.(2)若点都在该抛物线上,则______.(填“”“”或“”)四、解答题(每小题7分,共28分)19.如图,在的正方形网格纸中,已知格点和格点线段,请按要求画出格点四边形(顶点均在格点上)(1)在图①中画出四边形,使得四边形是中心对称图形,且点在四边形的内部(不包括边界上).,a b x =2421x x +-232x -ab (10)10(10)910a a a a a -=+-=+99(10)x x ⨯-x 2230x x --=2y ax =(2,4)P -Rt ABC △90,2ACB AC CB ∠=︒==ABC △A 90︒ADE △DE EAC ∠CD ACDE 21y ax bx =++(1,0)(1,4)-()()122,,3,A y B y 1y 2y ><=55⨯M AC AC ABCD ABCD M ABCD(2)在图②中画出四边形,使得四边形既是轴对称图形,又是中心对称图形,且点在四边形的边界上(不包括顶点上).(第19题)20.如图,是半径为6的上的四点,且满足.(第20题)(1)求证:是等边三角形.(2)直接写出圆心到的距离的长度.21.如图,在平面直角坐标系中,的三个顶点的坐标分别为.(1)将向左平移5个单位长度得到,请画出.(2)画出绕原点顺时针方向旋转后得到的.(3)的度数为______°.(第21题)22.如图,二次函数的图象经过点,其对称轴为直线,与轴的另一个交点为,与轴交于点.(1)点的坐标为______.(2)将二次函数的图象向下平移3个单位长度,求平移后的二次函数的解析式.AECF AECF M ABCD ,,,A P B C O 60BAC APC ∠=∠=︒ABC △O BC OD OAB △(6,3),(0,5),(0,0)A B O OAB △111O A B △111O A B △OAB △O 90︒22OA B △OAB ∠2y x bx c =-++(1,0)A -1x =x C y B C(第22题)五、解答题(每小题8分,共16分)23.如图,足球场上守门员在处开出一高球,球从离地面的处飞出,运动员乙在距点的处发现球在自己头的正上方达到最高点,距地面约高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的解析式.(2)足球第一次落地点距守门员______.(取(3)运动员乙要抢到第二个落点,他应再向前跑多远?______m .(第23题)24.(1)如图①,在中,,过上一点作交于点,则_____.(填“”“”或“”)(2)发现:图②中的绕点顺时针旋转到图②位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展应用:如图③,是等腰直角内一点,,且.直接写出的度数.(第24题)六、解答题(每小题10分,共20分)O 1m A O 6m B M 4m C m 7)=D ABC △AB AC =A B D DE BC ∥AC E DB EC ><=ADE △A ()090αα︒<<︒P ABC △90ACB ∠=︒1,2,3PB PC PA ===BPC ∠25.如图,在中,.点从点出发,以的速度沿向终点运动,过点作直线的垂线交于点,当点与不重合时,作点关于点的对称点,设点的运动时间为与重叠部分图形的面积是.(1)的长为______.(2)当点与点重合,求的值.(3)求关于的函数解析式,并写出自变量的取值范围.(第25题)26.如图,在平面直角坐标系中,点分别在轴,轴的正半轴上,.经过点的抛物线交于点,点的横坐标为1.点在线段上,当点与点不重合时,过点作轴,与抛物线交于点.以为边向右侧作矩形,且.设点的横坐标为时,解答下列问题.(1)求此抛物线的解析式.(2)当抛物线的顶点落在边上时,求的值.(3)矩形为正方形时,直接写出的值.(第26题)Rt ABC △90,30,2cm ACB A BC ∠=︒∠=︒=P A 2cm /s A B C →→C P AC AC D P AC A D Q P s(03),x x APQ <<△ABC △2cm y A B Q C x y x x ,A B x y 3OA OB ==,O A 2:L y ax bx =+A B C C P A B P C P P y ∥Q PQ PQMN 1PN =P m L PN m PQMN m逐梦芳华——吉林省版九年级上期中考试A 试题参考答案及评分标准一、单项选择题(每小题2分,共12分)1.B 2.C 3.A 4.C 5.D 6.D二、填空题(每小题3分,共24分)7.(3,-2) 8.150 9.2 10.3 11.25 12.105 13.-1 14.5三、解答题(每小题5分,共20分)15.解:.或,16.解:根据题意,得解得.所求的函数解析式为. 对称轴是轴.17.解:(1)2 135(2)证明:由旋转性质,可得,四边形是平行四边形18.解:(1)根据题意,得解得此函数的抛物线的解析式为.(2)四、解答题(每小题7分,共28分)19.解:(1)如图所示.(答案不唯一)(2)如图所示(3)(1)0x x -+=30x ∴-=10x +=123, 1.x x ∴==-34(2)a =⨯-1a =∴2y x =∴y ,90DE BC DAC ADE ACB =∠=∠=∠=︒AC DE ∴∥,,AC CB DE AC =∴= ∴ACDE 10,14a b a b ++=-+=⎧⎨⎩1,2a b ==-⎧⎨⎩∴221y x x =-+<20.解:(1)证明:,是等边三角形(2)3.21.解:(1)如图所示(2)如图所示(3)4522.解:(1)(3,0)(2)根据题意,得解得此函数向下平移3个单位得到的二次函数为五、解答题(每小题8分,共16分)23.解:(1)设第一次落地时,抛物线的解析式为.点在该抛物线上,,解得.,60AC AC APC =∠=︒ 60.APC ABC ∴∠=∠=︒60.BAC ∠=︒ 18060.ACB ABC BAC ∴∠=︒-∠-∠=︒60.ACB BAC ABC ∴∠=∠=∠=︒ABC ∴△10.30.b c b --+=⎧⎨-+=⎩ 2.3.b c =⎧⎨⎩=22 3.y x x ∴=-++∴22y x x=-+2(6)4y a x =-+ ()0,1A 1364a ∴=+112a =-(或).(2)13 (3)1724.解:(1)= (2)成立.证明:由(1)易知,旋转性质可知.又.(3)提示:六、解答题(每小题10分,共20分)25.解:(1)(2)根据题意,得,解得.当时,点与点重合.(3)如图①,当时,.如图②,当时,如图③,当时,26.解:(1),线段所在的直线的解析式为,∴21112y x x =-++AD AE =DAB EAC ∠=∠,AD AE ABAC ==DABEAC ∴△≌△.DB CE ∴=135︒4cm224x x +=1x =∴1x =Q C 01x <≤2y =12x <≤2+-23x <<1(62)2y x =-=-+3,(3,0),(0,3)OA OB A B ==∴ ∴A B 3y x =-+点的横坐标为1,当时,.点在抛物线的图象上解得抛物线的解析式为.(2)根据题意,得.又抛物线的顶点落在边上,,解得.(3)2 C ∴1x =13 2.(1,2)y C =-+=∴ ,A C L 930.2.a b a b +=⎧∴⎨+=⎩13,a b =-=⎧⎨⎩∴L 23y x x =-+(,3)P m m -+22393.24y x x x ⎛⎫=-+--+ ⎪⎝⎭∴ PN 934m ∴-+=34m =2-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期期中考试数学试题一.选择题(每小题3分,共30分) 在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1. 若x=2是关于x 的一元二次方程08mx x 2=+-的一个解,则m 的值是( )A .6B .5C .2D .-62. 对于反比例函数y = 1x ,下列说法正确的是( )A .图象经过点(1,-1) B .图象位于第二、四象限C .图象是中心对称图形 D .当x <0时,y 随x 的增大而增大 3.如图,空心圆柱的左视图是( )4.反比例函数y = 6x 与y = 3x 在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )A .32B .2C .3D .15. 如图(二)所示,□ABCD 中,对角线AC ,BD 相交于点O ,且AB ≠AD ,则下列式子不正确的是( ) A.AC ⊥BD B.AB =CD C. BO=OD D.∠BAD=∠BCD6. 如图,在梯形ABCD 中,AB ∥CD ,AD=BC ,点E,F,G ,H 分别是AB,BC ,CD ,DA 的中点,则下列结论一定正确的是( ).A. ∠HGF = ∠GHEB. ∠GHE = ∠HEFC. ∠HEF = ∠EFGD. ∠HGF = ∠HEF7.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-8. 如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点若60APD ∠=︒,则CD 的长为( )A.12 B.23 C.34D.19. 如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( ) A .3 B .4 C .5 D .610. 根据图5中①所示的程序,得到了y 与x 的函数图象,如图5中②,若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图象于点P 、Q ,连接OP 、OQ ,则以下结论:①x <0时,y =2x②△OPQ 的面积为定值③x >0时,y 随x 的增大而增大 ④MQ =2PM⑤∠POQ 可以等于90° 其中正确结论是( ) A .①②④ B .②④⑤C .③④⑤D .②③⑤二.填空题(每小题3分,共15分) 将结果直接填写在答题卡相应的横线上. 11.将121222--=x x y 变为n m x a y +-=2)(的形式,则n m ⋅=________。

12. 如图,菱形ABCD 的边长是2㎝,E 是AB 中点,且DE ⊥AB ,则菱形ABCD 的面积为_____ ____㎝2.13. 已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .14. 如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的硬长为AC (假定AC >AB ),影长的最大值为m ,最小值为n ,那么下列结论:①m >AC ;②m =AC ;③n =AB ;④影子的长度先增大后减小. 其中,正确的结论的序号是 . 15.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数6(0)y x x=>的图象上,则点C 的坐标为 .三.解答题 (共9小题,满分75分)16. (6分)(2010 重庆江津)在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x 的方程()2260x b x b +++-=有两个相等的实数根,求△ABC 的周长.17. (6分)如图,在等腰直角三角形ABC 中,∠ABC =90°,D 为AC 边的中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F 。

若AE =4,FC =3,求EF 长。

(第12题)A① ②CAB第14题第15题第6题 第8题(第9题图)ECBA第4题 第3题18.(6分)汽车产业是我市支柱产业之一,产量和效益逐年增加.据统计,2008年我市某种品牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011年的年产量为多少万辆?19.(8分)如图已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1) 求证:四边形AECF是平行四边形;(2) 若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.20.(9分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点.求:(1)根据图象写出A、B两点的坐标并求出反比例函数的解析式;(2分)(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.(3分)(3)求△AOB的面积。

(4分)21. (9分)如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB•在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的影长时,同时测量出DE在阳光下的影长为6cm,请你计算DE的长.22.(9分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(4分)(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P 运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.(5分)23.(11分)如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB 与反比例函数的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式.(2)求∠ACO的度数.(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少时,OC′⊥AB,并求此时线段AB’的长.24. (11分)如图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角板的一边交CD 于点F ,另一边交CB 的延长线于点G .(1)求证:EF =EG ;(2)如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变.(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)如图3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”,且使三角板的一边经过点B ,其他条件不变,若AB =a,BC =b ,求EGEF的值.图1 图2 图3潜江市2012—2013学年九年级上学期期中考试参考答案一、填空题1.A;2.C ;3.C ;4.A ;5.A ;6.D ;7.A ;8.B ;9.D ;10.B ; 二、选择题11.-90;12.13.15°或75°;14.①③④;15.(3,6); 三.解答题16.解:根据题意得:△()()2246b b =+--28200b b =+-=解得:2b = 或10b =-(不合题意,舍去)∴2b =…(1)当2c b ==时,45b c +=<,不合题意 (2)当5c a ==时, 12a b c ++=………17.解:连接BD .∵三角形ABC 是等腰直角三角形,D 为AC 边的中点。

∴BD =DC , ∠ABD =∠C =45°,BD ⊥AC 。

∴∠BDF +∠FDC =90°。

又∵DE ⊥DF∴∠BDF +∠BDE =90°。

∴∠FDC =∠BDE . ∴△BED ≌△CFD∴BE =FC =3,BF =BC -FC =AB -BE =AE =4 ∴EF =518.设该品牌汽车年产量的年平均增长率为x ,由题意得10)1(4.62=+x ·········································································· 2分 解之,得25.225.021-==x x , . ·················································· 4分 ∵025.22<-=x ,故舍去,∴x =0.25=25%. ··································· 5分 10×(1+25%)=12.5答:2011年的年产量为12.5万辆.6分19.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,且AD=BC ,∴AF ∥EC ,∵BE=DF , ∴AF=EC ,∴四边形AECF 是平行四边形.(2)∵四边形AECF 是菱形,∴AE =CE ,∴∠1=∠2,∵∠BAC =90°,∴∠3=∠90°-∠2,∠4=∠90°-∠1,∴∠3=∠4,∴AE =BE ,∴BE =AE =CE =12BC =5.20.解:(1)由图象可知:点A 的坐标为(2,) 点B 的坐标为(﹣1,﹣1)(2分) ∵反比例函数(m ≠0)的图象经过点(2,)∴m=1∴反比例函数的解析式为:(4分)(2)由图象可知:当x >2或﹣1<x <0时一次函数值大于反比例函数值(3)∵一次函数y=kx+b (k ≠0)的图象经过点(2,)点B (﹣1,﹣1) ∴解得:k=b=﹣ ∴一次函数的解析式为(6分)直线AB 与y 轴的交点为(0,21-), S=43=+∆∆AOC BOC S S 21.(1)(连接AC ,过点D 作DF ∥AC ,交直线BC 于点F ,线段EF 即为DE 的投影) (2)∵AC ∥DF ,∴∠ACB=∠DFE ,∴∠ABC=∠DEF=90°,∴△ABC ∽△DEF .∴53,6AB BC DE EF DE =∴=, ∴DE=10(m ).22.【答案】(1)证明:四边形ABCD 是矩形,∴AD ∥BC ,∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB , ∴△POD ≌△QOB , ∴OP=OQ 。

相关文档
最新文档