最新比和比例知识点归纳
比和比例知识点总结

比和比例知识点总结在数学中,比和比例是两个非常重要的概念,它们贯穿了整个数学学习的过程。
比和比例不仅在日常生活和实际问题中有着广泛的应用,也是进一步学习数学和其他科学学科的基础。
本文将对比和比例的知识点进行总结。
一、比1、比的定义比是指两个量之间的关系,通常用冒号或斜线表示。
例如,A与B的比是3:2,或者A/B=3/2。
2、比的性质比的性质包括交换律、结合律和分配律。
交换律是指比的前项和后项交换位置,比值不变;结合律是指比的运算可以结合在一起,没有顺序之分;分配律是指比可以分配到其他数学运算中。
3、比的应用比在日常生活和实际问题中有着广泛的应用。
例如,我们在比较两个物体的长度、高度或重量时,都会使用到比的概念。
在化学中,物质的浓度、酸碱度等也使用比来表示。
二、比例1、比例的定义比例是指两个量之间的比例关系,通常用等号表示。
例如,A与B的比例是3:2,或者A:B=3:2。
2、比例的性质比例的性质包括交叉乘积相等、交叉加法相等和交叉减法相等。
交叉乘积相等是指交叉相乘的两个数乘积相等;交叉加法相等是指交叉相加的两个数加起来相等;交叉减法相等是指交叉相减的两个数差相等。
3、比例的应用比例在日常生活和实际问题中也有着广泛的应用。
例如,我们在计算两个数的比例时,可以使用比例的基本性质来进行计算。
在工程、设计和科学实验等领域中,比例的概念也经常被使用。
比和比例是数学中非常重要的概念,它们在日常生活和实际问题中有着广泛的应用。
理解和掌握这两个概念对于提高数学素养和解决实际问题都具有重要的意义。
比和按比例分配知识点在我们的日常生活中,比和按比例分配是一种常见的数学概念。
无论是在购物、分发物品还是规划生产中,比和按比例分配都是非常实用的工具。
下面我们将详细介绍这两个重要的数学概念。
一、比比是数学中的一个基本概念,通常用于描述两个数之间的关系。
比如说,我们可以说一辆汽车每小时行驶50公里,那么它每分钟行驶的距离就是50/60公里,这里的50和60就是两个比。
比和比例知识点整理六年级

比和比例知识点整理六年级1. 比值:比的前项除以后项所得的商。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
(“:”是比号)。
比值通常用分数表示,也可以用小数或者整数表示。
例:6:5 或 65 ,读作6比5 2. 比的基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变。
运用:根据性质,将比化作最简单的整数比。
根据比的基本性质化解,遇到不是整数的先乘倍数10或者100等,变成整数再化解。
3. 比例的意义两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
4. 比例的基本性质在比例中,两个外项的积等于两个内项的积。
a:b=c:d → a ×d=b ×d 或 a b =c d→a ×d=b ×d5. 正比例和反比例(1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
y=kx(2)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应得两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
xy=k6.比例的运用(1)比例尺【绘制地图和其他平面图需要】一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实践距离=比例尺图上距离=比例尺实际距离注意:比例尺中要化成同样的单位(2)图形的放大与缩小(3)现实生活中的问题。
根据已知的量是正比例还是反比例关系,算出未知数。
比和比例知识点总结

比和比例知识点总结
嘿,朋友们!今天咱来好好聊聊比和比例这个超有意思的知识点!
咱先来说说比吧!就像你有 5 个苹果,我有 3 个苹果,那咱俩苹果数量的比就是 5:3 呀。
比就是表示两个数相除的关系呢!比如说,足球队里男生有 10 人,女生有 5 人,那男生和女生的人数比就是 10:5 啦。
再讲讲比例。
假如有个配方,说盐和面粉的比例是 1:4,那就是说每 1 份盐要搭配 4 份面粉哦。
就好像做蛋糕,得按照正确的比例来,不然味道可就不对喽!比如调和油漆的时候,颜色和稀释剂比例要是不对,那颜色可就没法达到想要的效果啦!
比和比例可是紧密相关的呢!比例不就是由两个或多个比组成的嘛。
想象一下,比赛跑步,你的速度和我的速度之比,再和别人的速度之比,如果能放在一起看,不就是个比例关系嘛。
那它们有啥用呢?用处可大啦!盖房子的时候,工人要根据设计图纸上的比例来施工,不然房子不就盖歪啦?还有做衣服,尺寸比例得拿捏得死死的,不然穿起来多别扭呀!
哎呀,比和比例真的超级重要,别小看它们哦!它们就像生活中的小魔法师,在各种地方发挥着神奇的作用。
大家一定要好好掌握呀,这样才能在生活和学习中游刃有余呢!咱可不能小瞧了这些知识点,它们能帮咱们解决好多实际问题呢,不是吗?。
比和比例知识点整理

比和比例知识点整理比和比例是初中数学中的重要概念,也是高中数学中的基础概念之一。
了解和掌握比和比例的相关知识,不仅是学好数学的前提,还是日常生活中进行比较和计算的基础。
本文将就比和比例的相关知识点进行整理和阐述。
一、比的概念比是指两个数之间的大小关系,通常用冒号“:”表示,如3:5。
其中,3称为比的前项,5称为比的后项。
比的大小可以用比的分数表示,即3:5=3/5。
二、比的性质1.比的前项和后项可以交换位置,但比的大小不变。
2.对比的前、后项同时乘以同一个非零数,比的大小不变。
3.对比的前、后项同时除以同一个非零数,比的大小不变。
三、比例的概念比例是指两个或两个以上的比之间的相等关系,通常用“=”号表示,如3:5=6:10。
其中,3和6称为比例的前项,5和10称为比例的后项。
四、比例的性质1.比例的前、后项同时乘以同一个非零数,比例不变。
2.比例的前、后项同时除以同一个非零数,比例不变。
3.如果两个比例的前项和后项分别相等,则它们相等。
五、比例的应用1.比例的简化:将比例的前、后项同时除以它们的最大公约数,得到的比例即为最简比例。
2.比例的扩大和缩小:将比例的前、后项同时乘以同一个数,得到的比例即为扩大或缩小后的比例。
3.求解未知量:利用已知比例中的三个量,可以求解出第四个量。
例如,已知3:5=6:x,可以通过横向对称法求解出x=10。
4.比例的混合运算:将比例和数值运算相结合,进行加减乘除等运算。
六、实际问题中的比例比例在实际问题中有广泛的应用,例如:1.商品打折:如一件原价为100元的商品打8折,其打折后的价格为80元,其中,原价和打折后的价格组成了一个比例关系。
2.地图比例尺:如1:50000表示地图上的1厘米对应实际地面上的50000厘米,这种比例关系是进行地图测量和规划的基础。
3.身高体重比例:如一个人身高为1.75米,体重为70公斤,则他的身高体重比例为1:40。
七、结语比和比例是数学中的基础概念,也是生活中经常使用的计算方法。
比与比例的知识点

比与比例的知识点一、比的定义及表示方法比是将两个或者多个量进行一一对应的关系表示出来的数学概念。
我们通常用“:”来表示“比”,例如,A∶B表示A和B之间的比。
在比的表示中,A通常为被比较量或被度量量,而B则为比量或度量量。
如果A和B之间的比为1∶2,则可以理解为B是A的2倍。
二、比的性质1. 比的性质:比具有相等和可加性的特性,即对于任意等量的两组对应量,其比是相等的;对于两个比,它们之间的比是可以加起来的。
2. 反比例:两个量之间如果成反比例,则一个量的变化量与另一个量的变化量成反比例关系,即当一个量增加时,另一个量会减少。
三、比的用途比是数学中很重要的基本概念,广泛应用于各个领域,例如:1. 商业领域:比常用于商品价格的比较和优选;2. 统计领域:比用于统计数据的比较和分析;3. 工程领域:比用于测量和计算数据的比例。
四、比例的定义及表示方法比例是指多个量相互关系的秩序关系。
多个量之间的比例表示为A∶B∶C…即A、B、C等多个量之间的比关系。
五、比例的性质1. 比例存在相等和可加性属性,即对于所有数量相等的数,其比例相等;对于两个比例,其比例也是可以相加的。
2. 比例可以通过类比来解决问题。
也就是说,比例关系可以通过类似或相似的形状或结构来解决问题。
3. 比例关系可以通过实际问题来解决问题。
例如,当在解决涉及两个变化之间的关系时,可以通过比例来解决问题。
六、比例应用比例在生活中的应用非常广泛,比如:1. 财务,组织和商业领域:比例用于支付购买商品或者项目的价格,如家庭预算、旅行、投资等。
2. 比例用于测量和计算体型和重量,如人类身高和体重、居住环境的空气品质、地震能量等。
3. 比例用于测量和计算地理的尺度和距离。
综上所述,比和比例是我们日常生活中常见的数学概念,不仅在教育、商业和工程领域中得到广泛应用,而且在实践中有着重要的意义和应用。
学习这两个概念,不仅可以加深我们对数学知识的理解,而且有助于我们更好地适应现代社会的发展。
六年级数学《比和比例》知识点

六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
3、比的应用通过比可以应用一些问题。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。
在一比例里,两外项的积等于两内项的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
这个求未知项的过程,叫做解比例。
三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。
比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。
定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。
比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数叫做比例的项。
两外两项叫做内项,中间两项叫做外项。
如果中间的两项是两个相同的数,这样的比例叫做对称比例。
比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。
我们把比例尺分为放大比例尺和缩小比例尺两种。
缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。
比和比例基础知识点总结

表示两个比相等的式子叫做比例.组成比例的四个数,叫做比例的项,两端的两项叫做比例的 外项,中间的两项叫做比例的內项.
2.比例的基本性质
在比例中,两个外项的积等于两个內项的积.通过这个性质可进一步得知:1、交换內项或外 项的位置等式仍成立;2、內项变外项、外项变內项等式仍成立 推论 交叉相乘: a : b c : d
三、比例应用题基础—按必分配
【例 7】 某化肥厂甲、乙、丙三个车间共有工人 820 人,如果三个车间人数的比是 8:12:21,问 甲、乙、丙三个车间各有多少人? 【真题】2008 年· 实外· 小升初考试· 6分 【答案】甲车间 160 人,乙车间 240 人,丙车间 420 人 【解析】甲车间有: 820 8 12 21 8 160 人; 乙车间有: 820 8 12 21 12 240 人; 丙车间有: 820 160 240 420 人.
【小结】化简最简比的几个技巧: (1) 小数和分数先化成整数. (2) 整数连比同时除以最大公约数. (3) 只有两项时,可将比看成除法.
3.比在生活中的应用
比在应用题中的体现了各个量的数量关系,例如 3 : 4 3:4 可表示 3 份和 4 份的倍数比例关 系.体会比在生活中的这种应用,对于今后解决分数、比例、百分数应用题打下基础有着重要的意 义。 【例 2】填空: (1) 小明的僵尸卡有 20 张,太阳卡有 10 张;小红的僵尸卡有 12 张,太阳卡有 30 张。那么小明与 小红僵尸卡之比是_______;太阳卡之比是________;总数量之比是_________。 (2) 从 A 地到 B 地,甲要 12 小时,乙要 18 小时,甲、乙两人时间之比是_________。 (3) 从 A 地到 B 地,甲乙所用时间之比是 3:4,甲用了 6 小时,那么乙用_________小时。 (4) 两个正方形边长之比是 1:2,周长之比是__________。 【答案】 (1) 5 : 3 1: 3 5 : 7;(2) 2 : 3 ;(3) 8;(2) 1: 2 【例 3】 (1) 甲数与乙数的比是 2:3,乙数与丙数的比是 4:5,则甲、乙、丙三数的比是______. 1 1 1 1 (2) 甲数与乙数的比是 : ,乙数与丙数的比是 : ,则甲、乙、丙三数的比是______. 3 4 2 4 【答案】(1) 8 :12 :15 ; (2) 8 : 6 : 3 【解析】乙是连接甲和丙的桥梁 (1) 甲:乙 2 : 3 8 :12
数学知识点比和比例

数学知识点比和比例为大家带来比和比例,希望可以帮到您!比和比例1.比的意义和性质(1)比的意义两个数相除又叫做两个数的比。
:是比号,读作比。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3)求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2、比例的意义和性质(1)比例的意义表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
3、正比例和反比例(1)成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比和比例知识点归纳
1、比的意义和性质
比的意义:两个数相除又叫做两个数的比。
例如:9 : 6 = 1.5
前比后比
项号项值
比的基本性质:比的前项和后项都乘以或除以相同的数(零除外),比值不变。
应用比的基本性质可以化简比。
习题:
一、判断。
1、比的前项和后项同时乘一个相同的数,比值不变。
()
2、比的基本性质和商的基本性质是一致的。
()
3、10克盐溶解在100克水中,这时盐和盐水的比是1:10. ()
4、比的前项乘5,后项除以1/5,比值不变。
()
5、男生比女生多2/5,男生人数与女生人数的比是7:5. ()
6、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达不同。
()
7、2/5既可以看做分数,也可以看做是比。
()
二、应用题。
1.一项工程,甲单独做20天完成,乙单独做30天完成。
(1)写出甲、乙两队完成这项工程所用的时间比,并化简。
(2)写出甲、乙两队工作效率比,并化简。
2.育才小学参加运动会的男生人数和女生人数的比是5∶3,其中女生72人。
那么男生比女生多多少人?
3.食品店有白糖和红糖共360千克,红糖的质量是白糖的。
红糖和白糖各有多少千克?
4.甲、乙两个车间的平均人数是162人,两车间的人数比是5∶7。
甲、乙两车间各有多少人?
5.有一块长方形地,周长100米,它的长与宽的比是3∶2。
这块地有多少平方米?
6.建筑用混凝土是由水泥、沙、石子按5∶4∶3搅拌而成,某公司建住宅楼需混凝土2400吨,需水泥、沙、石子各多少吨?
外项
2、比例的意义和性质:
比例的意义:表示两个比相等的式子叫做比例。
例如:9 :6 = 3 : 2
内项
比例的基本性质:在比例中两个内项的积等于两个外项的积。
应用比例的基本性质可以解比例。
3、比和分数、除法的关系:
一、填空
(1)两个数相除又叫做两个数的()。
(2)在5:4中,比的前项是(),后项是(),比值是()
(3)8:9读作:(),这个比还可以写成()。
(4)比的前项和后项同时乘或除以相同的数(0除外),比值()。
这叫做()。
(5)比的前项相当于除法里的(),分数的(),比的后项相当于除法里的(),分数的(),比值相当于除法里的(),分数的()。
(6)因为除法里的()不能是零,分数的()不能为零,所以比的()不能为零。
(7)甲数是乙数的5倍,甲数与乙数的比是(),乙数与甲数的比是()。
一、求比值。
18:15 6.4:1.25 20分:1/3时 35:45 360:450
0.3:0.15 18:2/3 3/20:4/5 6.4:0.16
二、化简比
(1)56 :1524 (2)30分钟:1.5小时(3)15 吨:400千克(4)0.875:74 (5)6400 :2400 (6) 80 :2000 (7)1.44:1.8 (8)3/8:5/6 5、比例尺:
一幅地图的图上距离和实际距离的比,叫做这幅地图的比例尺。
即:
图上距离:实际距离=比例尺或图上距离/实际距离=比例尺
比例尺分为(线段比例尺)和(数值比例尺)
习题:
一、填空。
1.图上距离2厘米表示实际距离10千米,这幅图的比例尺是()。
2.上海到延安的实际距离是1258千米,在一幅比例尺是1 :37000000的地图上应是()厘米。
3.千米改写成数值比例尺是()。
4.在一幅地图上,5厘米长的线段表示8千米的实际距离,这幅地图的比例尺是()。
5.比例尺是
1
3000
,它表示地面实际距离是图上的()。
二、选择题。
1.图上距离()实际距离。
A.一定大于 B. 一定小于 C. 一定等于 D. 可能大于、小于或等于2.在一幅比例迟是1 :1000000的地图上,用()表示60千米。
A.0.6厘米 B. 6厘米 C. 60厘米
3.在一张图纸上,用6厘米的线段表示3毫米,这张图纸的比例尺是()
A.1 :2 B. 1 :20 C. 20 :1 D. 2 :1
4线段比例尺千米改写成数值比例尺是()。
A.
1
50
B.
1
500000
C.
1
5000000
D.
1
150
5.下列叙述中,正确的是()
A.比例尺是一种尺子。
B. 图上距离和实际距离相比,叫做比例尺。
C. 由于图纸上的图上距离点小于实际,所以比例尺点小于1。
6.在一幅地图上用1厘米的线段表示50千米的实际距离,这幅地图的比例尺是
() A.
1
5000
B.
1
50000
C.
1
5000000
三、填表。
六、正比例和反比例
正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的比值一定,这两种量就叫做成正比例的量。
用字母表示为:y/x=k(一定)
反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
用字母表示为:x×y=k(一定)
习题:
判断下面的量成什么比例。
1、份数一定,每份数和总数成()比例。
2每份数一定,份数和总数成()比例。
3、总数一定,每份数和份数成()比例。
4、商一定,除数和成()比例。
5、除数一定,商和被除数成()比例。
6、积一定,两个因数成()比例。
7、差一定,被减数和减数成()比例。
8、三角形的面积一定,底和高成()比例
9、圆柱的底面直径一定,侧面积和高成()比例。
李阿姨是剪纸艺人。
平时李阿姨每天工作6小时,剪出72张剪纸,节日期间,李阿姨每天要工作8小时,能剪出96张剪纸。
(1)写出李阿姨平时和节日期间剪纸张数及相应工作时间的比。
(2)上面两个比能组成比例吗?为什么?
(3)如果李阿姨要剪120张剪纸,需要多少小时?
七、找规律。
根据给定的图形或数字,探索其中简单的排列规律,解决生活中的实际问题。
6个点可以连成多少条线段?8个点呢?
3个点连成线段的条数:1+2=3
4个点连成线段的条数:1+2+3=6
5个点连成线段的条数:1+2+3+4=10
6个点连成线段的条数:1+2+3+4+5=15
7个点连成线段的条数:1+2+3+4+5+6=21
8个点连成线段的条数:1+2+3+4+5+6+7=28
规律:(n-1)个连续自然数相加。
12个点、20个点能连成多少条线段?
点数-1÷2×点数
习题:
学校为文艺节选送节目,要从4个合唱节目中选出1个,从3个舞蹈节目中选出一个,一共有多少种选送方案?。