高2020届高2017级高三文科数学三维设计一轮复习课时跟踪检测(十九)利用导数研究不等式证明问题
高2020届高2017级高三文科数学三维设计一轮复习课时跟踪检测(六十六) 变量间的相关关系与统计案例

课时跟踪检测(六十六) 变量间的相关关系与统计案例A 级——保大分专练1.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图如图①,对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图如图②.由这两个散点图可以判断( )A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关解析:选C 由散点图可得两组数据均线性相关,且图①的线性回归方程斜率为负,图②的线性回归方程斜率为正,则由散点图可判断变量x 与y 负相关,u 与v 正相关.2.(2019·长沙模拟)为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计表:根据上表可得回归方程y =b x +a ,其中b =0.59,a =y -b x ,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为( )A.1.795万元B.2.555万元C.1.915万元D.1.945万元解析:选A x =15×(2.09+2.15+2.50+2.84+2.92)=2.50(万元),y =15×(1.25+1.30+1.50+1.70+1.75)=1.50(万元),其中b ^=0.59,则a ^=y -b ^ x =0.025,y ^=0.59x +0.025,故年支出费用为 3.00万元的家庭购买水果和牛奶的年支出费用约为y ^=0.59×3.00+0.025=1.795(万元).3.下面四个命题中,错误的是( )A.从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样B.对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大C.两个随机变量相关性越强,则相关系数的绝对值越接近于0D.在回归直线方程y ^=0.4x +12中,当解释变量x 每增加一个单位时,预报变量平均增加0.4个单位解析:选C 两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1,故C 错误.4.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附表及公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .A.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”B.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”C.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”解析:选A 由列联表得到a =45,b =10,c =30,d =15,则a +b =55,c +d =45,a +c =75,b +d =25,ad =675,bc =300,n =100,计算得K 2的观测值k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(675-300)255×45×75×25≈3.030.因为2.706<3.030<3.841,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.5.为了研究工人的日平均工作量是否与年龄有关,从某工厂抽取了100名工人,且规定日平均生产件数不少于80件者为“生产能手”,列出的2×2列联表如下:有________以上的把握认为“工人是否为‘生产能手’与工人的年龄有关”. 解析:由2×2列联表可知,K 2=100×(25×30-10×35)240×60×35×65≈2.93,因为2.93>2.706,所以有90%以上的把握认为“工人是否为‘生产能手’与工人的年龄有关”.答案:90%6.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:则y 关于t 的回归方程是________________.解析:由表中数据得n =5,t =1n ∑i =1n t i =155=3,y =1n ∑i =1n y i =365=7.2.又∑i =1nt 2i -n t 2=55-5×32=10,∑i =1nt i y i -n t y =120-5×3×7.2=12. 从而b ^=∑i =1nt i y i -n t y ∑i =1nt 2i -n t2=1210=1.2, a ^=y -b ^t =7.2-1.2×3=3.6, 故所求回归方程为y ^=1.2t +3.6. 答案:y ^=1.2t +3.67.某电视厂家准备在元旦举行促销活动,现根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x (万元)和销售量y (万台)的数据如下:(1)若用线性回归模型拟合y 与x 的关系,求出y 关于x 的线性回归方程;(2)若用y =c +d x 模型拟合y 与x 的关系,可得回归方程y ^=1.63+0.99x ,经计算线性回归模型和该模型的R 2分别约为0.75和0.88,请用R 2说明选择哪个回归模型更好;(3)已知利润z 与x ,y 的关系为z =200y -x .根据(2)的结果,求当广告费x =20时,销售量及利润的预报值.参考公式:回归直线y ^=a ^+b ^x 的斜率和截距的最小二乘估计分别为b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a ^=y -b ^x .参考数据:5≈2.24.解:(1)∵x =8,y =4.2,∑i =17x i y i =279.4,∑i =17x 2i =708,∴b ^=∑i =17x i y i -7x y∑i =17x 2i -7x2=279.4-7×8×4.2708-7×82=0.17,a ^=y -b ^x =4.2-0.17×8=2.84, ∴y 关于x 的线性回归方程为y ^=0.17x +2.84.(2)∵0.75<0.88且R 2越大,反映残差平方和越小,模型的拟合效果越好, ∴选用y ^=1.63+0.99x 更好.(3)由(2)知,当x =20时,销售量的预报值y ^=1.63+0.9920≈6.07(万台),利润的预报值z =200×(1.63+0.9920)-20≈1 193.04(万元).B 级——创高分自选1.(2018·江门一模)为探索课堂教学改革,江门某中学数学老师用“传统教学”和“导学案”两种教学方式分别在甲、乙两个平行班进行教学实验.为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图.记成绩不低于70分者为“成绩优良”.(1)请大致判断哪种教学方式的教学效果更佳,并说明理由;(2)构造一个教学方式与成绩优良的2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .临界值表:解:(1)“理由1:乙班样本数学成绩大多在70分以上,甲班样本数学成绩70分以下的明显更多. 理由2:甲班样本数学成绩的平均分为70.2;乙班样本数学成绩的平均分为79.05. 理由3:甲班样本数学成绩的中位数为68+722=70,乙班样本数学成绩的中位数为77+782=77.5.(2)2×2列联表如下:由上表数据可得K 2=40×(10×4-10×16)20×20×26×14≈3.956>3.841,所以能在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.2.(2019·广州调研)某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量y (千克)与使用某种液体肥料的质量x (千克)之间的对应数据为如图所示的折线图.(1)依据折线图计算相关系数r (精确到0.01),并据此判断是否可用线性回归模型拟合y 与x 的关系;(若|r |>0.75,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较高,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量X 限制,并有如下关系:元;若某台光照控制仪未运行,则该台光照控制仪周亏损1 000元.若商家安装了3台光照控制仪,求商家在过去50周的周总利润的平均值.相关系数公式:r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2∑i =1n(y i -y )2,参考数据:0.3≈0.55,0.9≈0.95. 解:(1)由已知数据可得x =2+4+5+6+85=5,y =3+4+4+4+55=4.因为∑i =15(x i -x )(y i -y )=(-3)×(-1)+0+0+0+3×1=6,∑i =15(x i -x )2=(-3)2+(-1)2+02+12+32=25,∑i =15(y i -y )2=(-1)2+02+02+02+12=2,所以相关系数r =∑i =15(x i -x )(y i -y )∑i =15(x i -x )2∑i =15(y i -y )2=625×2=0.9≈0.95.因为|r |>0.75,所以可用线性回归模型拟合y 与x 的关系. (2)由条件可得在过去50周里,当X >70时,共有10周,此时只有1台光照控制仪运行, 每周的周总利润为1×3 000-2×1 000=1 000(元). 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行,每周的周总利润为2×3 000-1×1 000=5 000(元).当30<X<50时,共有5周,此时3台光照控制仪都运行, 每周的周总利润为3×3 000=9 000(元).所以过去50周的周总利润的平均值为1 000×10+5 000×35+9 000×550=4 600(元),所以商家在过去50周的周总利润的平均值为4 600元.。
高2020届高2017级高三文科数学三维设计一轮复习课时跟踪检测(一)集 合

课时跟踪检测(一) 集 合1.(2019·福州质量检测)已知集合A ={x |x =2k +1,k ∈Z},B ={x |-1<x ≤4},则集合A ∩B 中元素的个数为( )A.1B.2C.3D.4解析:选B 依题意,集合A 是由所有的奇数组成的集合,故A ∩B ={1,3},所以集合A ∩B 中元素的个数为2.2.设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=( )A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}解析:选A 因为A ={1,3,5},B ={3,4,5},所以A ∪B ={1,3,4,5}.又U ={1,2,3,4,5,6},所以∁U (A ∪B )={2,6}.3.(2018·天津高考)设全集为R,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( )A.{x |0<x ≤1}B.{x |0<x <1}C.{x |1≤x <2}D.{x |0<x <2}解析:选B ∵全集为R,B ={x |x ≥1},∴∁R B ={x |x <1}.∵集合A ={x |0<x <2},∴A ∩(∁R B )={x |0<x <1}.4.(2018·南宁毕业班摸底)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A.M ∩N =MB.M ∪(∁R N )=MC.N ∪(∁R M )=RD.M ∪N =M解析:选D 由题意可得,N =(0,2),M =(-∞,4),所以M ∪N =M .5.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤2x <2,B ={x |ln x ≤0},则A ∩B 为( ) A.⎝⎛⎭⎫0,12 B.[-1,0) C.⎣⎡⎭⎫12,1 D.[-1,1]解析:选A ∵12≤2x <2,即2-1≤2x <212,∴-1≤x <12,∴A =⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x <12.∵ln x ≤0,即ln x ≤ln 1,∴0<x ≤1,∴B ={x |0<x ≤1},∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12.6.(2019·郑州质量测试)设集合A ={x |1<x <2},B ={x |x <a },若A ∩B =A ,则a 的取值范围是( )A.(-∞,2]B.(-∞,1]C.[1,+∞)D.[2,+∞)解析:选D 由A ∩B =A ,可得A ⊆B ,又因为A ={x |1<x <2},B ={x |x <a },所以a ≥2.7.已知全集U =A ∪B 中有m 个元素,()∁U A ∪()∁U B 中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A.mnB.m +nC.n -mD.m -n解析:选D 因为()∁U A ∪()∁U B 中有n 个元素,如图中阴影部分所示,又U=A ∪B 中有m 个元素,故A ∩B 中有m -n 个元素.8.定义集合的商集运算为A B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =m n ,m ∈A ,n ∈B ,已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2-1,k ∈A ,则集合B A ∪B 中的元素个数为( ) A.6B.7C.8D.9解析:选B 由题意知,B ={0,1,2},B A =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,则B A ∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素. 9.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z},则A ∩B =________.解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z}={-1,0}.答案:{-1,0}10.已知集合U =R,集合A =[-5,2],B =(1,4),则下图中阴影部分所表示的集合为________.解析:∵A =[-5,2],B =(1,4),∴∁U B ={x |x ≤1或x ≥4},则题图中阴影部分所表示的集合为(∁U B )∩A ={x |-5≤x ≤1}.答案:{x |-5≤x ≤1}11.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________.解析:法一:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.联立得方程组⎩⎪⎨⎪⎧ y =3x 2-3x +1,y =x ,解得⎩⎨⎧ x =13,y =13或⎩⎪⎨⎪⎧x =1,y =1, 故A ∩B =⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫13,13,(1,1),所以A ∩B 中含有2个元素. 法二:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.因为3x 2-3x +1=x 即3x 2-4x +1=0的判别式Δ>0,所以该方程有两个不相等的实根,所以A ∩B 中含有2个元素.答案:212.已知集合A ={x |log 2x ≤2},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________. 解析:由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B ={x |x <a },由于A ⊆B ,在数轴上标出集合A ,B ,如图所示,则a >4.答案:(4,+∞)13.设全集U =R,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1}.(1)分别求A ∩B ,A ∪(∁U B );(2)若B ∪C =B ,求实数a 的取值范围.解:(1)由题意知,A ∩B ={x |1≤x ≤3}∩{x |2<x <4}={x |2<x ≤3}.易知∁U B ={x |x ≤2或x ≥4},所以A ∪(∁U B )={x |1≤x ≤3}∪{x |x ≤2或x ≥4}={x |x ≤3或x ≥4}.(2)由B ∪C =B ,可知C ⊆B ,画出数轴(图略),易知2<a <a +1<4,解得2<a <3.故实数a 的取值范围是(2,3).。
《三维设计》高三数学湘教(文)一轮复习配套WORD文档:课时跟踪检测5函数的单调性与最值

课时跟踪检测(五) 函数的单调性与最值第Ⅰ组:全员必做题1.下列函数中,既是奇函数又是增函数的为( )A .y =x +1B .y =-x 3C .y =1xD .y =x |x |2.若函数f (x )=4x 2-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=( )A .-7B .1C .17D .253.(创新题)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12 4.若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]5.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A .f (4)>f (-6)B .f (-4)<f (-6)C .f (-4)>f (-6)D .f (4)<f (-6)6.已知函数f (x )=1a -1x(a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =__________. 7.设函数f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.8.使函数y =2x +k x -2与y =log 3(x -2)在(3,+∞)上具有相同的单调性,则实数k 的取值范围是________.9.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.10.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.第Ⅱ组:重点选做题1.设函数f (x )定义在R 上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f ⎝⎛⎭⎫13<f (2)<f ⎝⎛⎭⎫12 B .f ⎝⎛⎭⎫12<f (2)<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2)D .f (2)<f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫132.若函数f (x )=|log a x |(0<a <1)在区间(a,3a -1)上单调递减,则实数a 的取值范围是________.答 案第Ⅰ组:全员必做题1.选D y =x +1是非奇非偶函数,A 错;y =-x 3是减函数,B 错;y =1x在(0,+∞)上为减函数,C 错;y =x |x |为奇函数,当x ≥0时,y =x 2为增函数,由奇函数性质得y =x |x |在R 上为增函数,故选D.2.选D 依题意,知函数图像的对称轴为x =--m 8=m 8=-2,即 m =-16,从而f (x )=4x 2+16x +5,f (1)=4+16+5=25.3.选C 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.4.选D ∵函数f (x )=-x 2+2ax 在区间[1,2]上是减函数,∴a ≤1.又∵函数g (x )=a x +1在区间[1,2]上也是减函数,∴a >0.∴a 的取值范围是(0,1]. 5.选C 由(x 1-x 2)(f (x 1)-f (x 2))>0知f (x )在(0,+∞)上递增,所以f (4)<f (6)⇔f (-4)>f (-6).6.解析:由反比例函数的性质知函数f (x )=1a -1x(a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧ f ⎝⎛⎭⎫12=12,f (2)=2.即⎩⎨⎧ 1a -2=12,1a -12=2,解得a =25. 答案:25 7.解析:g (x )=⎩⎪⎨⎪⎧ x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).答案:[0,1)8.解析:由y =log 3(x -2)的定义域为(2,+∞),且为增函数,故在(3,+∞)上是增函数.又函数y =2x +k x -2=2(x -2)+4+k x -2=2+4+k x -2,使其在(3,+∞)上是增函数, 故4+k <0,得k <-4.答案:(-∞,-4)9.解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.10.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数.∴f (x )在[2,9]上的最小值为f (9).由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得, f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,∴f (9)=-2.∴f (x )在[2,9]上的最小值为-2.第Ⅱ组:重点选做题1.选C 由f (2-x )=f (x )可知f (x )的图像关于直线x =1对称,当x ≥1时,f (x )=ln x ,可知当x ≥1时f (x )为增函数,所以当x <1时f (x )为减函数,因为⎪⎪⎪⎪12-1<⎪⎪⎪⎪13-1<|2-1|,所以f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫13<f (2).故选C.2.解析:由于f (x )=|log a x |(0<a <1)的递减区间是(0,1],所以有0<a <3a -1≤1,解得12<a ≤23. 答案:⎝⎛⎦⎤12,23。
《三维设计》高三数学湘教(文)一轮复习配套WORD文档:课时跟踪检测54定点、定值、探索性问题

课时跟踪检测(五十四) 定点、定值、探索性问题(分Ⅰ、Ⅱ卷,共2页) 第Ⅰ卷:夯基保分卷1.已知椭圆C 过点M ⎝⎛⎭⎫1,62 ,点F (-2,0)是椭圆的左焦点,点P ,Q 是椭圆C 上的两个动点,且|PF |,|MF |,|QF |成等差数列.(1)求椭圆C 的标准方程;(2)求证:线段PQ 的垂直平分线经过一个定点A .2. (2013·济南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点(2,2).(1)求椭圆的标准方程;(2)四边形ABCD 的顶点在椭圆上,且对角线AC ,BD 过原点O ,若k AC ·k BD =-b 2a 2.求证:四边形ABCD 的面积为定值.3. (2013·北京东城区期末)在平面直角坐标系xOy 中,动点P 到两点(-3,0),(3,0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点E (-1,0)且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)△AOB 的面积是否存在最大值,若存在,求出△AOB 的面积的最大值;若不存在,说明理由.第Ⅰ卷:提能增分卷1.已知椭圆C :x 24+y 23=1,点F 1,F 2分别为其左、右焦点,点A 为左顶点,直线l 的方程为x =4,过点F 2的直线l ′与椭圆交于异于点A 的P ,Q 两点.(1)求AP ·AQ 的取值范围;(2)若AP ∩l =M ,AQ ∩l =N ,求证:M ,N 两点的纵坐标之积为定值,并求出该定值.2. (2013·合肥模拟)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 23-m 2=1(0<m 2<3)有公共的焦点,过椭圆E 的右顶点R 任意作直线l ,设直线l 交抛物线y 2=2x 于M ,N 两点,且OM ⊥ON .(1)求双曲线的焦点坐标和椭圆E 的方程;(2)设P 是椭圆E 上第一象限内的点,点P 关于原点O 的对称点为A 、关于x 轴的对称点为Q ,线段PQ 与x 轴相交于点C ,点D 为CQ 的中点,若直线AD 与椭圆E 的另一个交点为B ,试判断直线P A ,PB 是否相互垂直?并证明你的结论.答 案第Ⅰ卷:夯基保分卷1.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由已知,得⎩⎪⎨⎪⎧1a 2+64b 2=1,a 2-b 2=2,解得⎩⎪⎨⎪⎧a 2=4,b 2=2,∴椭圆的标准方程为x 24+y 22=1.(2)证明:设P (x 1,y 1),Q (x 2,y 2), 由椭圆的标准方程为x 24+y 22=1,可知|PF |=(x 1+2)2+y 21=()x 1+22+2-x 212=2+22x 1,同理|QF |=2+22x 2, |MF |=(1+2)2+⎝⎛⎭⎫622=2+22,∵2|MF |=|PF |+|QF |, ∴2⎝⎛⎭⎫2+22=4+22(x 1+x 2),∴x 1+x 2=2.(ⅰ)当x 1≠x 2时,由⎩⎪⎨⎪⎧x 21+2y 21=4,x 22+2y 22=4.得x 21-x 22+2(y 21-y 22)=0,∴y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2.设线段PQ 的中点为N (1,n ),由k PQ =y 1-y 2x 1-x 2=-12n ,得线段PQ 的中垂线方程为y -n =2n (x -1), ∴(2x -1)n -y =0, 该直线恒过一定点A ⎝⎛⎭⎫12,0. (ⅱ)当x 1=x 2时,P ⎝⎛⎭⎫1,-62,Q ⎝⎛⎭⎫1,62 或P ⎝⎛⎭⎫1,62,Q ⎝⎛⎭⎫1,-62, 线段PQ 的中垂线是x 轴, 也过点A ⎝⎛⎭⎫12,0.综上,线段PQ 的中垂线过定点A ⎝⎛⎭⎫12,0. 2.解:(1)由题意e =c a =22,4a 2+2b 2=1,又a 2=b 2+c 2,解得a 2=8,b 2=4,故椭圆的标准方程为x 28+y 24=1.(2)证明:设直线AB 的方程为y =kx +m , A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2=8.得(1+2k 2)x 2+4kmx +2m 2-8=0,Δ=(4km )2-4(1+2k 2)(2m 2-8)=8(8k 2-m 2+4)>0, ①由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-81+2k2.∵k AC ·k BD =-b 2a 2=-12,∴y 1y 2x 1x 2=-12,∴y 1y 2=-12x 1x 2=-12·2m 2-81+2k 2=-m 2-41+2k 2. 又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 22m 2-81+2k 2+km -4km 1+2k2+m 2=m 2-8k 21+2k 2,∴-m 2-41+2k 2=m 2-8k 21+2k 2, ∴-(m 2-4)=m 2-8k 2, ∴4k 2+2=m 2.设原点到直线AB 的距离为d ,则 S △AOB =12|AB |·d =121+k 2·|x 2-x 1|·|m |1+k 2=|m |2(x 1+x 2)2-4x 1x 2=|m |2 ⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-81+2k 2=|m |28m 2(1+2k 2)2=22, ∴S 四边形ABCD =4S △AOB =82, 即四边形ABCD 的面积为定值.3.解:(1)由椭圆定义可知,点P 的轨迹C 是以(-3,0),(3,0)为焦点,长半轴长为2的椭圆.故曲线C 的轨迹方程为x 24+y 2=1.(2)△AOB 的面积存在最大值.因为直线l 过点E (-1,0),所以可设直线l 的方程为x =my -1或y =0(舍). 由⎩⎪⎨⎪⎧x 24+y 2=1,x =my -1.整理得(m 2+4)y 2-2my -3=0, Δ=(2m )2+12(m 2+4)>0.设点A (x 1,y 1),B (x 2,y 2),其中y 1>y 2. 解得y 1=m +2m 2+3m 2+4,y 2=m -2m 2+3m 2+4.则|y 2-y 1|=4m 2+3m 2+4. 因为S △AOB =12|OE |·|y 1-y 2|=2m 2+3m 2+4=2m 2+3+1m 2+3.设t =m 2+3,t ≥ 3,g (t )=t +1t,则g ′(t )=1-1t2,故当t ≥3时g ′(t )>0恒成立,则g (t )在区间[3,+∞)上为增函数,所以g (t )≥g (3)=433.所以S △AOB ≤32,当且仅当m =0时取等号. 所以S △AOB 的最大值为32. 第Ⅱ卷:提能增分卷1.解:(1)①当直线PQ 的斜率不存在时, 由F 2(1,0)可知PQ 的方程为x =1, 代入椭圆C :x 24+y 23=1,得点P ⎝⎛⎭⎫1,32,Q ⎝⎛⎭⎫1,-32, 又点A (-2,0),故AP =⎝⎛⎭⎫3,32,AQ =⎝⎛⎭⎫3,-32, AP ·AQ =274.②当直线PQ 的斜率存在时,设PQ 的方程为y =k (x -1)(k ≠0),代入椭圆C :x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0.设P (x 1,y 1),Q (x 2,y 2),得x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2,y 1y 2=k 2(x 1-1)(x 2-1)=k 2(-x 1-x 2+x 1x 2+1)=-9k 23+4k2, 故AP ·AQ =(x 1+2)(x 2+2)+y 1y 2=x 1x 2+2(x 1+x 2)+4+y 1y 2=27k 23+4k 2=273k 2+4∈⎝⎛⎭⎫0,274,综上,AP ·AQ 的取值范围是⎝⎛⎦⎤0,274. (2)证明:由(1)知,直线AP 的方程为y =y 1x 1+2(x +2),与直线l 的方程x =4联立,得M ⎝ ⎛⎭⎪⎫4,6y 1x 1+2,同理,得N ⎝ ⎛⎭⎪⎫4,6y 2x 2+2,故M ,N 两点的纵坐标之积y M y N =6y 1x 1+2·6y 2x 2+2=36y 1y 2x 1x 2+2(x 1+x 2)+4. ①当直线PQ 的斜率不存在时,y M y N =36×32×⎝⎛⎭⎫-321×1+2(1+1)+4=-9;②当直线PQ 的斜率存在时,由(1)可知,y M y N =-324k 23+4k 24k 2-123+4k 2+16k 23+4k 2+4=-9.综上所述,M ,N 两点的纵坐标之积为定值,该定值为-9. 2.解:(1)由题意可知c 双=m 2+3-m 2=3,故双曲线的焦点坐标为F 1(-3,0)、F 2(3,0).设点M (x 1,y 1)、N (x 2,y 2),设直线l :ty =x -a ,代入y 2=2x 并整理得y 2-2ty -2a =0,所以⎩⎪⎨⎪⎧y 1+y 2=2t ,y 1y 2=-2a .故OM ·ON =x 1x 2+y 1y 2=(ty 1+a )(ty 2+a )+y 1y 2 =(t 2+1)y 1y 2+at (y 1+y 2)+a 2=(t 2+1)(-2a )+2at 2+a 2=a 2-2a =0,解得a =2.又c 椭=c 双=3,所以椭圆E 的方程为x 24+y 2=1.(2)法一:判断结果:P A ⊥PB 恒成立. 证明如下:设P (x 0,y 0),则A (-x 0,-y 0), D (x 0,-12y 0),x 20+4y 20=4,将直线AD 的方程y =y 04x 0(x +x 0)-y 0代入椭圆方程并整理得(4x 20+y 20)x 2-6x 0y 20x +9x 20y 20-16x 20=0,由题意可知此方程必有一根为-x 0.于是解得x B =6x 0y 204x 20+y 20+x 0,所以y B =y 04x 0⎝ ⎛⎭⎪⎫6x 0y 204x 20+y 20+2x 0-y 0 =y 30-2x 20y 04x 20+y 20,所以k PB =y 30-2x 20y 04x 20+y 20-y 06x 0y 204x 20+y 2=-6x 20y 06x 0y 20=-x 0y 0, 故k P A k PB =-x 0y 0×y 0x 0=-1,即P A ⊥PB .法二:判断结果:P A ⊥PB 恒成立.证明如下:设B (x 1,y 1),P (x 0,y 0),则A (-x 0,-y 0),D ⎝⎛⎭⎫x 0,-y 02,x 214+y 21=1,x 204+y 20=1,两式相减得y 21-y 20x 21-x 20=-14,故k BA ·k BP =y 1+y 0x 1+x 0· y 1-y 0x 1-x 0=y 21-y 20x 21-x 20=-14.又k AB =k AD =-12y 0+y 0x 0+x 0=y 04x 0,代入上式可得k PB =⎝⎛⎭⎫-14÷y 04x 0=-x0y 0, 所以k P A k PB =y 0x 0·⎝⎛⎭⎫-x 0y 0=-1, 即P A ⊥PB .。
2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。
2020届高三数学(文)一轮总复习课时跟踪检测 古典概型 Word版含答案

课时跟踪检测古典概型1.投掷一枚质地均匀的骰子两次,若第一次向上的面上的点数小于第二次向上的面上的点数,我们称其为前效实验;若第二次向上的面上的点数小于第一次向上的面上的点数,我们称其为后效实验;若两次向上的面上的点数相等,我们称其为等效实验.那么一个人投掷该骰子两次后出现等效实验的概率是( )A .12B .16C .112D .136解析:选B 投掷一枚质地均匀的骰子两次的所有基本事件共36种,其中两次向上的面上的点数相等的有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6种,所以一个人投掷该骰子两次后出现等效实验的概率P =636=16. 2.(2019·浙江金丽衢十二校二联)4张卡上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为( )A.12B.13C.23D.34解析:选B 因为从四张卡片中任取出两张的情况为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种.其中两张卡片上数字和为偶数的情况为(1,3),(2,4)共2种,所以两张卡片上的数字之和为偶数的概率为13. 3.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为( )A .15B .25C .16D .18解析:选B 如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率P =615=25. 4.如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复,则填入A 方格的数字大于B 方格的数字的概率为( )A .12B .14C .34D .38解析:选D 只考虑A ,B 两个方格的填法,不考虑大小,A ,B 两个方格有16种填法.要使填入A 方格的数字大于B 方格的数字,则从1,2,3,4中选2个数字,大的放入A 格,小的放入B 格,有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),共6种,故填入A 方格的数字大于B 方格的数字的概率为616=38. 5.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A .110B .310C .35D .910解析:选D 从5个球中任取三个共有10种结果,没有白球只有一种结果,所以至少有一个白球的概率为1-110=910.二保高考,全练题型做到高考达标1.(2019·全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .310B .15C .110D .120解析:选C 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110. 2.设m ,n 分别是先后抛掷一枚骰子得到的点数,则在先后两次出现的点数中有5的条件下,方程x 2+mx +n =0有实根的概率为( )A .1136B .736C .711D .710 解析:选C 先后两次出现的点数中有5的情况有:(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共11种.其中使方程x 2+mx +n =0有实根的情况有:(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共7种.故所求概率为711. 3.一个三位数的百位、十位、个位上的数字依次为a ,b ,c ,当且仅当a >b ,b <c 时称为“凹数”(如213,312)等.若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“凹数”的概率是( )A .16B .524C .13D .724解析:选C 由1,2,3组成的三位数有123,132,213,231,312,321,共6个;由1,2,4组成的三位数有124,142,214,241,412,421,共6个;由1,3,4组成的三位数有134,143,314,341,413,431,共6个;由2,3,4组成的三位数有234,243,324,342,423,432,共6个.所以共有6+6+6+6=24个三位数.当b =1时,有214,213,314,412,312,413,共6个“凹数”;当b =2时,有324,423,共2个“凹数”.故这个三位数为“凹数”的概率P =6+224=13. 4.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N),若事件C n 发生的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4解析:选D 分别从集合A 和B 中随机取出一个数,确定平面上的一个点P (a ,b ),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6种情况,a +b =2的有1种情况,a +b =3的有2种情况,a +b =4的有2种情况,a +b =5的有1种情况,所以可知若事件C n 发生的概率最大,则n 的所有可能值为3和4.5.(2019·太原二模)记连续投掷两次骰子得到的点数分别为m ,n ,向量a =(m ,n )与向量b =(1,0)的夹角为α,则α∈⎝⎛⎭⎪⎫0,π4的概率为( ) A .518B .512C .12D .712解析:选B 法一:依题意,向量a =(m ,n )共有6×6=36(个),其中满足向量a =(m ,n )与向量 b =(1,0)的夹角α∈⎝⎛⎭⎪⎫0,π4,即n <m 的(m ,n )可根据n 的具体取值进行分类计数:第一类,当n =1时,m 有5个不同的取值;第二类,当n =2时,m 有4个不同的取值;第三类,当n =3时,m 有3个不同的取值;第四类,当n =4时,m 有2个不同的取值;第五类,当n =5时,m 有1个取值,因此满足向量a =(m ,n )与向量b =(1,0)的夹角α∈⎝⎛⎭⎪⎫0,π4的(m ,n )共有1+2+3+4+5=15(个),所以所求概率为1536=512. 法二:依题意可得向量a =(m ,n )共有6×6=36(个),其中满足向量a =(m ,n )与向量b =(1,0)的夹角α∈⎝⎛⎭⎪⎫0,π4,即n <m 的向量a =(m ,n )有36-62=15(个),所以所求概率为1536=512. 6.(2019·广东高考)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.解析:从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色不同有5种结果,故所求概率为56. 答案:567.某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线x 2a 2-y 2b 2=1的离心率e >5的概率是________. 解析:由e =1+b 2a2>5,得b >2a .当a =1时,b =3,4,5,6四种情况;当a =2时,b =5,6两种情况,总共有6种情况.又同时掷两颗骰子,得到的点数(a ,b )共有36种结果.∴所求事件的概率P =636=16. 答案:168.(2019·海淀一模)现有7名数理化成绩优秀者,分别用A 1,A 2,A 3,B 1,B 2,C 1,C 2表示,其中A 1,A 2,A 3的数学成绩优秀,B 1,B 2的物理成绩优秀,C 1,C 2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A 1和B 1不全被选中的概率为________.解析:从这7人中选出数学、物理、化学成绩优秀者各1名,所有可能的结果组成的12个基本事件为:(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2).设“A 1和B 1不全被选中”为事件N ,则其对立事件N 表示“A 1和B 1全被选中”,由于N ={(A 1,B 1,C 1),(A 1,B 1,C 2)},所以P (N )=212=16,由对立事件的概率计算公式得P (N )=1-P (N )=1-16=56. 答案:569.(2019·兰州双基测试)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取一张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解:(1)由题意,(a ,b ,c )所有可能的结果为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P (A )=327=19, 因此,“抽取的卡片上的数字满足a +b =c ”的概率为19. (2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种,所以P (B )=1-P (B )=1-327=89, 因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89. 10.(2019·天津高考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数.(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.解:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35.三上台阶,自主选做志在冲刺名校1.已知函数f (x )=13x 3+ax 2+b 2x +1,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( )A .79B .13C .59D .23解析:选D 对函数f (x )求导可得f ′(x )=x 2+2ax +b 2,要满足题意需x 2+2ax +b 2=0有两个不等实根,即Δ=4(a 2-b 2)>0,即a >b .又(a ,b )的取法共有9种,其中满足a >b 的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),共6种,故所求的概率P =69=23. 2.在一个不透明的箱子里装有5个完全相同的小球,球上分别标有数字1,2,3,4,5.甲先从箱子中摸出一个小球,记下球上所标数字后,再将该小球放回箱子中摇匀后,乙从该箱子中摸出一个小球.(1)若甲、乙两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;(2)若规定:两人摸到的球上所标数字之和小于6,则甲获胜,否则乙获胜,这样规定公平吗?解:用(x ,y )(x 表示甲摸到的数字,y 表示乙摸到的数字)表示甲、乙各摸一球构成的基本事件,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25个.(1)设甲获胜的事件为A ,则事件A 包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10个.则P (A )=1025=25. (2)设甲获胜的事件为B ,乙获胜的事件为C .事件B 所包含的基本事件有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10个.则P (B )=1025=25, 所以P (C )=1-P (B )=35. 因为P (B )≠P (C ),所以这样规定不公平.。
《三维设计》高三数学湘教(文)一轮复习配套WORD文档:课时跟踪检测45直线的倾斜角与斜率、直线的方程

课时跟踪检测(四十五) 直线的倾斜角与斜率、直线的方程第Ⅰ组:全员必做题1.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.232.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0D .ab <0,bc <03.若实数a ,b 满足a +2b =3,则直线2ax -by -12=0必过定点( ) A .(-2,8) B .(2,8) C .(-2,-8)D .(2,-8)4.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( ) A .y =-13x +13B .y =-13x +1C .y =3x -3D .y =13x +15.(2014·浙江诸暨质检)已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( )A .k ≥34或k ≤-4B .-4≤k ≤34C.34≤k ≤4 D .-34≤k ≤46.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________.7.已知两点A (0,1),B (1,0),若直线y =k (x +1)与线段AB 总有公共点,则k 的取值范围是________.8.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________________. 9.已知两点A (-1,2),B (m,3). (1)求直线AB 的方程; (2)已知实数m ∈⎣⎡⎦⎤-33-1,3-1,求直线AB 的倾斜角α的取值范围.10.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.第Ⅱ组:重点选做题1.(2014·哈尔滨模拟)函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax -by+c =0的倾斜角为( )A .45°B .60°C .120°D .135°2.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,则a =________.答 案第Ⅰ组:全员必做题1.选B 设P (x P,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13.2.选A 由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -c b .易知-a b<0且-cb>0,故ab >0,bc <0.3.选D a +2b =3⇒4a +8b -12=0,又2ax -by -12=0,比较可知x =2,y =-8故选D.4.选A 将直线y =3x 绕原点逆时针旋转90°得到直线y =-13x ,再向右平移1个单位,所得直线的方程为y =-13(x -1),即y =-13x +13.5.选A 如图所示,∵k PN =1-(-2)1-(-3)=34,k PM =1-(-3)1-2=-4, ∴要使直线l 与线段MN 相交,当l 的倾斜角小于90°时,k ≥k PN ;当l 的倾斜角大于90°时,k ≤k PM ,由已知得k ≥34或k ≤-4,故选A.6.解析:因为k AB =7-54-3=2,k AC =x -5-1-3=-x -54.A ,B ,C 三点共线,所以k AB =k AC , 即-x -54=2,解得x =-3.答案:-37.解析:y =k (x +1)是过定点P (-1,0)的直线,k PB =0,k P A =1-00-(-1)=1.∴k 的取值范围是[0,1]. 答案:[0,1]8.解析:(1)当过原点时, 直线方程为y =-53x ,(2)当不过原点时,设直线方程为x a +y-a =1,即x -y =a .代入点(-3,5),得a =-8.即直线方程为x -y +8=0. 答案:y =-53x 或x -y +8=09.解:(1)当m =-1时,直线AB 的方程为x =-1; 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1).(2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈⎣⎡⎭⎫-33,0∪(0, 3 ], ∴k =1m +1∈(-∞,- 3 ]∪⎣⎡⎭⎫33,+∞,∴α∈⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,2π3. 综合①②知,直线AB 的倾斜角α∈⎣⎡⎦⎤π6,2π3.10.解:(1)证明:法一:直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1). 法二:设直线l 过定点(x 0,y 0),则kx 0-y 0+1+2k =0对任意k ∈R 恒成立, 即(x 0+2)·k -y 0+1=0恒成立, ∴x 0+2=0,-y 0+1=0,解得x 0=-2,y 0=1, 故直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是[0,+∞). (3)依题意,直线l 在x 轴上的截距为 -1+2kk,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k (1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0. 第Ⅱ组:重点选做题1.选D 由函数y =f (x )=a sin x -b cos x 的一条对称轴为x =π4知,f (0)=f ⎝⎛⎭⎫π2, 即-b =a ,∴直线l 的斜率为-1, ∴倾斜角为135°.2.解析:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1的纵截距为2-a ,直线l 2的横截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,面积最小.1答案:2。
高2020届高2017级三维设计一轮复习理科数学课时跟踪检测(五) 函数的单调性与最值

课时跟踪检测(五) 函数的单调性与最值一、题点全面练1.下列函数中,在区间(-1,1)上为减函数的是( )A.y =11-xB.y =cos xC.y =ln(x +1)D.y =2-x 解析:选D 函数y =2-x =⎝⎛⎭⎫12x 在(-1,1)上为减函数.2.(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( )A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:选D 由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).3.若函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,则实数m 的值为( )A.-3B.-2C.-1D.1解析:选B 因为f (x )=(x -1)2+m -1在[3,+∞)上为增函数,且f (x )在[3,+∞)上的最小值为1,所以f (3)=1,即22+m -1=1,m =-2.故选B.4.函数f (x )=x 1-x 的单调递增区间是( ) A.(-∞,1)B.(1,+∞)C.(-∞,1),(1,+∞)D.(-∞,-1),(1,+∞) 解析:选C 因为f (x )=-(1-x )+11-x =-1+11-x, 所以f (x )的图象是由y =-1x 的图象沿x 轴向右平移1个单位,然后沿y 轴向下平移一个单位得到,而y =-1x 的单调递增区间为(-∞,0),(0,+∞);所以f (x )的单调递增区间是(-∞,1),(1,+∞).故选C.5.(2019·赣州模拟)设函数f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是( )A.(-∞,0]B.[0,1)C.[1,+∞)D.[-1,0] 解析:选B 由题知,g (x )=⎩⎪⎨⎪⎧ x 2,x >1,0,x =1,-x 2,x <1,可得函数g (x )的单调递减区间为[0,1).6.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B.[-6,-4] C.[]-3,-22 D.[]-4,-3解析:选B 由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知函数f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a 2∈[2,3],即a ∈[-6,-4].7.函数y =2-x x +1,x ∈(m ,n ]的最小值为0,则m 的取值范围是( ) A.(1,2)B.(-1,2)C.[1,2)D.[-1,2) 解析:选D 函数y =2-x x +1=3-x -1x +1=3x +1-1, 且在x ∈(-1,+∞)时单调递减,在x =2时,y =0;根据题意x ∈(m ,n ]时y 的最小值为0,所以-1≤m <2.8.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在区间(1,+∞)上一定( )A.有最小值B.有最大值C.是减函数D.是增函数 解析:选D 由题意知a <1,又函数g (x )=x +a x -2a 在[|a |,+∞)上为增函数,故选D. 9.(2019·湖南四校联考)若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是________.解析:∵f (x )=x 2+a |x -2|,∴f (x )=⎩⎪⎨⎪⎧x 2+ax -2a ,x ≥2,x 2-ax +2a ,x <2. 又∵f (x )在(0,+∞)上单调递增,∴⎩⎨⎧-a 2≤2,a 2≤0,∴-4≤a ≤0,∴实数a 的取值范围是[-4,0].答案:[-4,0]10.已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f (x )≤12. 令t =1-2f (x ),则f (x )=12(1-t 2)⎝⎛⎭⎫13≤t ≤12, 令y =g (x ),则y =12(1-t 2)+t , 即y =-12(t -1)2+1⎝⎛⎭⎫13≤t ≤12. ∴当t =13时,y 有最小值79; 当t =12时,y 有最大值78. ∴g (x )的值域为⎣⎡⎦⎤79,78.答案:⎣⎡⎦⎤79,78二、专项培优练(一)易错专练——不丢怨枉分1.函数y =log 13(-x 2+2x +3)的单调递增区间是( )A.(-1,1]B.(-∞,1)C.[1,3)D.(1,+∞)解析:选C 令t =-x 2+2x +3,由-x 2+2x +3>0,得-1<x <3.函数t =-x 2+2x +3的对称轴方程为x =1,则函数t =-x 2+2x +3在[1,3)上为减函数,而函数y =log 13t 为定义域内的减函数,所以函数y =log 13(-x 2+2x +3)的单调递增区间是[1,3).2.(2019·西安模拟)已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( )A.(0,1]B.[1,2]C.[1,+∞)D.[2,+∞)解析:选C 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.故选C.3.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12B.⎣⎡⎦⎤14,12C.⎝⎛⎦⎤0,12D.⎣⎡⎭⎫12,1 解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,则二次函数y =ax 2-x -14的图象开口向上, 所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧ 0<a <1,12a≥1,a ×12-1-14≥log a 1-1,即⎩⎪⎨⎪⎧ 0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.4.已知函数f (x )是定义在(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧ a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3,所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)(二)技法专练——活用快得分5.[构造法]已知减函数f (x )的定义域是实数集R,m ,n 都是实数.如果不等式f (m )-f (n )>f (-m )-f (-n )成立,那么下列不等式成立的是( )A.m -n <0B.m -n >0C.m +n <0D.m +n >0 解析:选A 设F (x )=f (x )-f (-x ),由于f (x )是R 上的减函数,∴f (-x )是R 上的增函数,-f (-x )是R 上的减函数,∴F (x )是R 上的减函数,∴当m <n 时,有F (m )>F (n ),即f (m )-f (-m )>f (n )-f (-n )成立.因此,当f (m )-f (n )>f (-m )-f (-n )成立时,不等式m -n <0一定成立,故选A.6.[三角换元法]函数y =x +-x 2+10x -23的最小值为________.解析:原函数可化为:y =x +2-(x -5)2.由2-(x -5)2≥0⇒|x -5|≤2,令x -5=2cos α, 那么|2cos α|≤2⇒|cos α|≤1⇒0≤α≤π,于是y =2cos α+5+2sin α=2sin ⎝⎛⎭⎫α+π4+5. 因为α+π4∈⎣⎡⎦⎤π4,5π4,所以sin ⎝⎛⎭⎫α+π4∈⎣⎡⎦⎤-22,1, 所以函数的最小值为5- 2.答案:5- 27.[数形结合法]设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是________.解析:因为函数f (x )=⎩⎪⎨⎪⎧ m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的大致图象如图所示,观察图象可知,当纵坐标在[0,+∞)上时,横坐标在(-∞,-1]∪[0,+∞)上变化.而f (x )的值域为[-1,+∞),f (g (x ))的值域为[0,+∞),因为g (x )是二次函数,所以g (x )的值域是[0,+∞).答案:[0,+∞)(三)素养专练——学会更学通8.[数学抽象]已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A.(-1,2)B.(1,4)C.(-∞,-1)∪[4,+∞)D.(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).9.[数学运算]已知函数f (x )=1a -1x(a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,因为f (x 2)-f (x 1)=⎝⎛⎭⎫1a -1x 2-⎝⎛⎭⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0, 所以f (x 2)>f (x 1),所以f (x )在(0,+∞)上是增函数.(2)因为f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2, 又由(1)得f (x )在⎣⎡⎦⎤12,2上是单调增函数,所以f ⎝⎛⎭⎫12=12,f (2)=2,解得a =25. 10.[数学运算]已知函数f (x )=lg ⎝⎛⎭⎫x +a x -2,其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解:(1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞);当a =1时,定义域为{x |x >0且x ≠1};当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-a x 2>0恒成立, 所以g (x )=x +a x -2在[2,+∞)上是增函数.所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x -2>1对任意x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在[2,+∞)上是减函数,所以h (x )max =h (2)=2,所以a >2. 即a 的取值范围为(2,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(十九) 利用导数研究不等式证明问题
1.设函数f (x )=ln x -x +1.
(1)讨论f (x )的单调性;
(2)求证:当x ∈(1,+∞)时,1<x -1ln x
<x . 解:(1)f ′(x )=1x
-1(x >0). 由f ′(x )>0,解得0<x <1;由f ′(x )<0,解得x >1.
∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.
(2)证明:要证当x ∈(1,+∞)时,1<x -1ln x
<x , 即证ln x <x -1<x ln x .
由(1)得f (x )=ln x -x +1在(1,+∞)上单调递减,
∴当x ∈(1,+∞)时,f (x )<f (1)=0,即有ln x <x -1.
设F (x )=x ln x -x +1,
则F ′(x )=1+ln x -1=ln x .
当x ∈(1,+∞)时,F ′(x )>0,F (x )单调递增.
∴F (x )>F (1)=0,即有x ln x >x -1.
∴原不等式成立.
2.(2019·武汉调研)已知函数f (x )=ln x +a x
,a ∈R . (1)讨论函数f (x )的单调性;
(2)当a >0时,求证:f (x )≥2a -1a .
解:(1)f ′(x )=1x -a x 2=x -a x 2(x >0). ①当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.
②当a >0时,若x >a ,则f ′(x )>0,函数f (x )在(a ,+∞)上单调递增; 若0<x <a ,则f ′(x )<0,函数f (x )在(0,a )上单调递减.
综上所述,当a ≤0时,f (x )在(0,+∞)上单调递增;
当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.
(2)证明:由(1)知,当a >0时,f (x )min =f (a )=ln a +1.
要证f (x )≥2a -1a ,只需证ln a +1≥2a -1a .
即证ln a +1a -1≥0.
令函数g (a )=ln a +1a -1(a >0),则g ′(a )=1a -1a 2=a -1a 2, 当0<a <1时,g ′(a )<0;当a >1时,g ′(a )>0,
所以g (a )在(0,1)上单调递减,在(1,+∞)上单调递增,
所以g (a )min =g (1)=0.
所以ln a +1a -1≥0恒成立,
所以f (x )≥2a -1a 成立.
3.已知f (x )=x ln x ,g (x )=-x 2+ax -3.
(1)若对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围.
(2)求证:对一切x ∈(0,+∞),ln x >1e x -2e x
恒成立. 解:(1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立,
则a ≤2ln x +x +3x
. 设h (x )=2ln x +x +3x (x >0),
则h ′(x )=(x +3)(x -1)x 2
. 当x ∈(0,1)时,h ′(x )<0,h (x )单调递减;
当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增.
所以h (x )min =h (1)=4,
因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,
所以a ≤h (x )min =4,故实数a 的取值范围是(-∞,4].
(2)证明:问题等价于证明x ln x >x e x -2e
(x >0). 因为f (x )=x ln x (x >0),f ′(x )=ln x +1,
当x ∈⎝⎛⎭
⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,
所以f (x )min =f ⎝⎛⎭⎫1e =-1e
. 设m (x )=x e x -2e
(x >0), 则m ′(x )=1-x e x
, 当x ∈(0,1)时,m ′(x )>0,m (x )单调递增;
当x ∈(1,+∞)时,m ′(x )<0,m (x )单调递减,
所以m (x )max =m (1)=-1e
, 从而对一切x ∈(0,+∞),f (x )>m (x )恒成立,
即x ln x >x e x -2e
恒成立. 所以对一切x ∈(0,+∞),ln x >1e x -2e x
恒成立. 4.(2018·黄冈模拟)已知函数f (x )=λln x -e -
x (λ∈R ). (1)若函数f (x )是单调函数,求λ的取值范围;
(2)求证:当0<x 1<x 2时,e1-x 2-e1-x 1>1-x 2x 1
. 解:(1)函数f (x )的定义域为(0,+∞),
∵f (x )=λln x -e -
x , ∴f ′(x )=λx +e -x =λ+x e -x x
, ∵函数f (x )是单调函数,
∴f ′(x )≤0或f ′(x )≥0在(0,+∞)上恒成立,
①当函数f (x )是单调递减函数时,f ′(x )≤0,
∴λ+x e -x x ≤0,即λ+x e -x ≤0,λ≤-x e -x =-x e x . 令φ(x )=-x e x ,则φ′(x )=x -1e x , 当0<x <1时,φ′(x )<0;当x >1时,φ′(x )>0,
则φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,
∴当x >0时,φ(x )min =φ(1)=-1e ,∴λ≤-1e
. ②当函数f (x )是单调递增函数时,f ′(x )≥0,
∴λ+x e -
x x ≥0,即λ+x e -x ≥0,λ≥-x e -x =-x e x , 由①得φ(x )=-x e x 在(0,1)上单调递减,在(1,+∞)上单调递增, 又φ(0)=0,x ―→+∞时,φ(x )<0,∴λ≥0.
综上,λ的取值范围为⎝
⎛⎦⎤-∞,-1e ∪[)0,+∞. (2)证明:由(1)可知,当λ=-1e 时,f (x )=-1e
ln x -e -x 在(0,+∞)上单调递减, ∵0<x 1<x 2,∴f (x 1)>f (x 2),
即-1e ln x 1-e -x 1>-1e
ln x 2-e -x 2, ∴e1-x 2-e1-x 1>ln x 1-ln x 2.
要证e1-x 2-e1-x 1>1-x 2x 1
, 只需证ln x 1-ln x 2>1-x 2x 1,即证ln x 1x 2>1-x 2x 1
. 令t =x 1x 2
,t ∈(0,1),则只需证ln t >1-1t , 令h (t )=ln t +1t -1,则h ′(t )=1t -1t 2=t -1t 2, 当0<t <1时,h ′(t )<0,∴h (t )在(0,1)上单调递减, 又∵h (1)=0,
∴h (t )>0,即ln t >1-1t
,原不等式得证.。