25.2画树状图求概率
25.2第2课时画树状图法求概率

第一个因素
A
B
第二个因素 1
2
3
1
2
3
第三个因素 a b a b a b a b a b a b 树状图法:按事件发生的次序,列出事件可能出现的结果.
所有可能出现的情况 n=2×3×2=12
一、利用画树状图法求概率
引例示范 同时掷三枚质地均匀的硬币,求恰有两枚正面向上的概率?
解:根据题意,可画树状图得: 开始
第一枚
正
反
第二枚
正
反
正
反
第三枚 正 反 正 反 正 反 正 反
由上图可知,共有8种等可能的情况, 其中恰有两枚正面向上的情况有 3 种。 ∴P(两枚正面向上)=38
一、利用画树状图法求概率
方法归纳
画树状图求概率的基本步骤
(1)明确一次试验的几个步骤及顺序; (2)画树状图列举一次试验的所有可能结果; (3)数出试验的所有可能结果数n,随机事件A包含的结果数m; (4)用概率公式进行计算。
拓展训练
有两把不同的锁和三把钥匙,其中两把钥匙恰好能分别打开这两把锁,第三
把钥匙不能打开这两把锁。任意取一把钥匙去开任意一把锁,一次打开锁的
概率是多少?
解: 设有A,B两把锁和a,b,c三把钥匙,其中钥匙a,b分别可以打开锁A,B。
列出所有可能的结果如下:
开始
由树状图可知,共有6种等可能的情况,
锁
B. 1
C. 1
D. 3
4
3
2
4
课堂检测
4. 某班要派出一对男女混合双打选手参加学校的乒乓球比赛,准备在小娟、 小敏、小华三名女选手和小明、小强两名男选手中选男、女选手各一名组成 一对参赛,一共能够组成 6 对;采用随机抽签的办法,恰好选出小敏和
人教2011版初中数学九年级上册《25.2 用列举法求概率 画树状图求概率》教案_35

用树丫图求事件的概率教学目标理解并掌握树状图法求概率的方法.(重难点)课前预习(一)知识探究(二)预习反馈1. 小芳和小丽是乒乓球运动员,在一次比赛中,每人只允许报“双打”或“单打”中的一项,那么至少有一人报“单打”的概率为( )A. 14B. 13C. 12D. 342. 连续掷三枚质地均匀的硬币,三枚硬币都是正面朝上的概率是( )A. 12B. 14C. 18D. 193. 在不透明的袋子里装有红色、绿色小球各一个,小球除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随机摸出一个,则两次都摸到红色小球的概率为.4. 甲、乙两队实行乒乓球团体赛,比赛规则如下:两队之间实行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用画树状图法写出分析过程)例题精讲知识点1 用树状图法求概率例1 有一箱子装有3张分别标有4,5,6的号码牌,已知小南以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的两位数为5的倍数的概率为( )A. 16B. 14C. 13D. 12【归纳总结】理清事件中每一步可能出现的结果,尤其是要注重“放回”或“不放回”这两类因素对结果数量的干扰.变式训练一个不透明的袋子中有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并搅匀,再随机抽取一张,两次抽取的数字的积为奇数的概率是( )A. 12B. 14C. 310D. 16【思路点拨】“放回”与“不放回”抽取的结果是不一样的,解题时,要先列举出“放回”情形下所有可能出现的结果,然后再去找寻出符合事件特征的结果的个数,从而列式计算概率.知识点2 求三次事件的概率例2 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a,b,c,则以a,b,c为边长正好构成等边三角形的概率是( )A. 19B. 127C. 59D. 13【归纳总结】画树状图法适合于求两步或两步以上完成事件的概率,画树状图时,每一行表示一个步骤.为方便分析,一般把步骤中分支多的安排在上面.巩固训练1. 在6张卡片上分别写有1~6的整数.随机地抽取一张后放回,再随机地抽取一张.那么第二次取出的数字能够整除第一次取出的数字的概率是( )A. 718B. 1118C. 1336D. 122. 从长为10 cm、7 cm、5 cm、3 cm的四条线段中任选三条能够组成三角形的概率是3. 现有三张分别标有数字2,3,4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=12x+12图象上的概率为.4. 小明、小刚和小红各自打算随机选择元旦的上午或下午去红花湖景区游玩.画树状图解答下列问题:(1)小明和小刚都在元旦上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.课堂小结。
用树状图求概率

.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
2.小明是个小马虎,晚上睡觉时将两双不同的袜子放在 床头,早上起床没看清随便穿了两只就去上学,问小 明正好穿的是相同的一双袜子的概率是多少?
解:设两双袜子分别为A1、A2、B1、B2,则
►
解:根据题意,我们可以画出如下的树形图
甲
A
B
乙C
D
丙 H IH I
E
CD
E
H I H IH I H I
根据树形图,可以看出,所有可能出现的结果是 12个,这些结果出现的可能性相等,
AAAAAABBBBBB CC DDEECCDDEE HI HI HIHIHI HI
(1)只有一个元音字母(记为事件A)的结果有5个,所以 P(A)=
► 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
率;(3)求这个家庭至少有一个男孩的概
率.
解:
(1)这个家庭的3个孩子都是男孩的概率为 1/8;
(2)这个家庭有2个男孩和1个女孩的概率
为3/8;
(3)这个家庭至少有一个男孩的概率为7/8.
例2.在一个不透Βιβλιοθήκη 的袋中装有除颜色外其余都相► 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19
画树状图求概率

3
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
4
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
5
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
当一次试验涉及3个因素或3个以上的因素时, 列表法就不方便了,为不重复不遗漏地列出所有
B A
甲口袋
D E
C
乙口袋
本题中元音字母: A E I
辅音字母: B C D H
I H
丙口袋
解:根据题意,我们可以画出如下的树形图
甲
A
B
乙C
D
E
CD
E
丙H I H I H I H I H I H I
解:由树形图得,所有可能出现的结果有12个, 它们出现的可能性相等。
解:根据树形图,可以看出,所有可能出现的结果 是12个,这些结果出现的可能性相等,
(1)三辆车全部继续直行的结果有1个,则
P(三辆车全部继续直行)=
1 27
(2)两辆车右转,一辆车左转的结果有3个,则
P(两辆车右转,一辆车左转)= 2=37
1 9
(3)至少有两辆车左转的结果有7个,则
7
P(至少有两辆车左转)= 27
4、不透明的口袋里装有红、黄、蓝三种颜色的小球 (除颜色不同外,其他都一样),其中红球2个,蓝球 1个,现在从中任意摸出一个红球的概率为 (1)求袋中黄球的个数;
作为升旗手,则小明和小红同时入选的概率 是.
练习2:在一个不透明的盒子里,装有3个小球,其中有2个白 球,1个红球,它们除颜色外完全相同.先从盒子里随机取出 一个小球,记下颜色不放回,把剩下的小球摇匀后再随机取 出一个小球,记下颜色.请你用列表的方法,求两次都摸到 白球的概率.
25.2.2+用画树状图求概率课件2024-2025学年人教版数学九年级上册

25.2.2 用画树状图求概率 (2)根据题意,列表如下:
由表格可知,共有12种等可能的结果,甲、丁同学都被选为宣传员
的结果有2种,
∴P(甲、丁同学都被选为宣传员)=
2 12
1 6
.
25.2.2 用画树状图求概率
一题多解 根据题意,画树状图如解图: 由树状图可得,共有12种等可能的结果,甲、丁同学都被选为宣传员 的结果有2种, ∴P(甲、丁同学都被选为宣传员)= 2 1
(2)这个游戏不公平.理由如下:画树状图如图,由树状图可知,共有 16种等可能的结果,其中
两数之积为偶数的结果有12种,两数之积为
奇 ∴P数(小的明结胜果)=有412种,3,P(小亮胜)= 4 1
16 4
16 4
∵ 31
44
∴这个游戏不公平
25.2.2 用画树状图求概率
课堂小结
步骤
①确定每一步有几种结果 ②在树状图下面对应写出所有可能的结果 ③利用概率公式进行计算
12 6
25.2.2 用画树状图求概率
4.如图,可以自由转动的转盘被4等分, 指针落在每个扇形内的机会 均等.
(1)若转动转盘一次,求转出的数字是
1
2的概率为____4____;(2)小明、小亮利用这个转盘做游戏.若采用下 列游戏规则,你认为这个游戏公平吗?请利用画树状图或列表的方法 说明理由.
25.2.2 用画树状图求概率
25.2.2 用画树状图求概率
甲
A
B
乙
CDE
CD E
丙 结果:
HIH I H I
A AA A A A C CD D E E HI HI H I
H I HIHI
B B BB B B C C DD E E H I HI H I
初中数学 25.2 用树状图法求概率

第2课时用画树状图法求概率1.理解并掌握列表法和树状图法求随机事件的概率,并利用它们解决问题,2.正确认识在什么条件下使用列表法,什么条件下使用树状图法。
3.经历用列表法或树状图法求概率的学习,培养学生分析问题和解决问题的能力。
4.通过求概率的学习,体验不同的数学问题采用不同的数学方法,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯。
会用列表法和树状图法求随机事件的概率。
区分什么时候用列表法,什么时候用树状图法求概率。
列表法是如何列表,树状图的画法。
列表法和树状图的选取方法。
一、情境导入,初步认识1.猜一猜:假定鸟卵孵化后,雏鸟为雌与为雄的概率相同.如果3枚卵全部成功孵化,则3只雏鸟中恰有3只雌鸟的概率是多少?你能用列表法列举所有可能出现的结果吗?2.用列表法求概率的条件和步骤是什么?上节课我们学习“同时抛掷两枚质地均匀的骰子”试验时,我们用怎样的方法才能比较快地既不重复又不遗漏地求出所有可能的结果呢?列表法:即当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法。
运用列表法求概率的步骤如下:①列表;②通过表格确定公式中m、n的值;③利用P(A)=m/n计算事件的概率。
思考把“同时掷两个骰子”改为“把一个骰子掷两次”,还可以使用列表法来做吗?答:“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能结果,因此,作此改动对所得结果没有影响。
二、思考探究,获取新知树状图法求概率。
课本第138页例3分析:①本次试验涉及到个因素,用列表法(能或不能)列举所有可能出现的结果。
②摸甲口袋的球会出现种结果,摸乙口袋的球会出现种结果,摸丙口袋的球会出现种结果。
如何能不重不漏地列出所有可能出现的结果呢?介绍树状图的方法:第一步:可能产生的结果为A 和B ,两者出现的可能性相同且不分先后,写在第一行;第二步:可能产生的结果有C 、D 和E ,三者出现可能性相同且不分先后,从A 和B 分别画出三个分支,在分支下的第二行分别写上C 、D 、E ;第三步:可能产生的结果有两个,H 和I ,两者出现的可能性相同且不分先后,从C 、D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I ;第四步:把各种可能的结果对应竖写在下面,就得到了所有可能的结果的总数,从中再找出符合要求的个数,就可以计算概率了。
数学九年级上册《25.2 用列举法求概率 画树状图求概率》教案_81

《概率初步》单元知识点复习·练习= ;可能事件A 的概率()P A = ;③.随机事件A 的概率 .特别提醒: 不管是“列表法”还是“树状图法”均要注意“放回”和“不放回”两种类型.(2)公式法(了解).4.用频率估计概率得关键词:①.大量重复试验:②.稳定;③.近似值. 例题解析及练习: 例1.1个不透明的袋中装有20个除颜色外其他都相同的球,其中5个黄球,8个黑球,7个红球. ⑴.求从袋中摸出一个球是黄球的概率; ⑵.现在从袋中取出若干个黑球,搅匀后,使从袋中摸出1个球是黑球的概率是13 .求从袋中取出黑球的个数. 追踪练习: 1.一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同. ⑴.求从袋中摸出一个球是黄球的概率;⑵.现从袋中取出若干黑球,并放入相同数量的黄球,搅拌均匀后使袋中摸出一个是黄球的概率不小于13,问至少取出了多少个黑球?2.在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒子中随机地取出一颗棋子,如果它是黑色棋子概率是38.⑴.试写出y 与x 的函数关系式;⑵.若往盒中放进10颗黑色棋子,则取得黑色棋子的概率变为12,求x 和y 的值例2.甲、乙两人用如图的两个分格均匀的转盘A B 、做游戏,游戏的规则如下: 分别转动两个转盘,转盘停止后,指针分别指向一个数字(或指针停在等分线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你协助解决下列问题:⑴.用列表法表示游戏所有可能出现的结果; ⑵.这个游戏公平吗?请说明理由.例3. “手心、手背”是同学们常玩的一种游戏. 甲、乙、丙三个同学游戏时,当三个手势相同时,不分胜负,需继续比赛;当出现一个“手心”和两个“手背”或出现一个“手背”和两个“手心”时,则出现一种手势者为胜,两种相同手势者为负.假定甲、乙、丙三位同学每次都是等可能地做这两种手势,那么甲、乙、丙三位同学胜的概率是否一样?若公平,请说明理由.若不公平,如何修改规则才能使游戏对三方都公平?追踪练习: 1.小刚为赵化中学艺术节的联欢活动设计了一个用转盘“配紫色”游戏,下面是两个能够自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,若转盘A转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色. ⑴.利用列表的方法表示游戏者所有可能出现的结果; ⑵.游戏者获胜的概率是多少?2.2a □2ab □2b 的“□”内任意添上“+”或“-”符号后,其中代数式能够构成完全平方分解因式的概率为多少?变式:将“ □2a □2ab □2b ”改为“2a □2ab □2b ”呢?3. 在33⨯的方格纸中,点A B C D E F 、、、、、分别位于如图所示的小正方形的顶点上. ⑴. 从A D E F 、、、四点中任意取一点,以所取的这个点及点B C 、为顶点 画三角形,则所画三角形是等腰三角形的概率是 .⑵. 从A D E F 、、、四点中 先后任意取两个不同的点,以所取的这两点及 B C 、为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解).A 盘课外选练:1.下列属于随机事件的个数为 ( ) ①.氢气在空气中燃烧生成水;②.一鸡蛋从10米高的楼顶摔落在地面的水泥地板上不会摔破; ③.掷一枚硬币,反面向上;④.老王连续买了三期彩票都中奖;⑤.正三角形的外角和等于360°;⑥.2x 2x 6-+的值一定是正数;⑦.水中捞月;⑧.守株待兔;⑨.弧长相等的弧为等弧. A.4个 B.5个 C.6个 D.7个2.赵化中学决定从三名男生和两名女生中选出两名同学担任两周后将举行的艺术节交流演出专场的主持人,则选出的两名同学恰为一男一女的概率是 ( ) A.45 B.35 C.25 D.153.某养鱼户为了估计鱼池中有多少条鱼,养鱼者从鱼池中捕上100条做好标记,然后放回池中,待有标记的鱼完全混合于鱼群后,第二次从池中捕上120条,其中带有标记的鱼有15条,则该鱼池中的鱼约有 ( ) A.600条 B.700条 C.800条 D.900条4.袋中有一个红球和两个白球,它们除了颜色外都相同,任意摸出一个球,记下球的颜色,放回搅匀后再任意摸出一个球,第三次摸到白球的概率是 .5.一只不透明的布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个白球和5个黑球,每次摸出一个小球,观察后均放回搅匀,在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 .6.一个盒子中有红球m 个,白球8个,黑球n 个,三种球除颜色外都相同,从中任取一个球,如果取得白球的概率与不是白球的概率相同,那么m 与n 的关系是.7.一个均匀的立方体六个面上分别标有123456、、、、、,抛掷这个立方体,则 朝上一面的数字恰好等于朝下一面的数字的12的概率是 . 8.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0123、、、,先由甲心中任意选一个数字,记为“m ”,再由乙猜甲刚才所选的数字,记为“n ”.若m n 、满足m n 1-≤,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率为 .9. 有四张背面相同的红牌A B C D 、、、,其正面分别画有正三角形、圆、平行四边形、正五边形四个不同的几何图形;小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张;摸出两张牌面图形都是中心对称图形的纸牌的概率 .10. 有A B 、两枚均匀的小立方体(立方体的每个面上分别标有数字123456、、、、、),用小莉掷A 立方体朝上的数字为x ,小明掷B 立方体朝上的数字为y 来确定点(),P x y ,那么他们各掷一次所确定的点P 落在抛物线2y x 4x =-+上的概率为 .11.小颖有20张大小相同的卡片,上面写有1至 20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如表,则从盒中摸出一张卡片是3的倍数的频率估计是 .12.一个家庭有三个孩子,请用树状图法分析并求出: ⑴.求这个家庭有三个男孩的概率;⑵.求这个家庭有两个男孩一个女孩的概率; ⑶.求这个家庭至少有一个男孩的概率.13.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同,其中红球4个,绿球5个,任意摸出一个绿球的概率是13;求:⑴.口袋里黄球的个数;⑵.任意摸出1个红球的概率.14.在一次晚会上,大家玩飞镖游戏,靶子设计成如图所示的形式,已知从里到外的三个圆的半径分别为123、、,并且形成A B C 、、三个区域,如果飞镖没有落在最大圆内或落在圆周上,那么能够重新投镖.⑴.分别求出三个区域的面积;⑵.雨薇与方冉约定:飞镖落在A B 、区域,雨薇得1分;飞镖落在C 区域,方冉得1分,你认为这个游戏公平吗?为什么?如果不公平,请你修改得分规则,使这个游戏公平.15.有七张正面分别标有3210123---、、、、、、的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽取一张,记卡片上的数字为a ,则使关于一元二次方程()2x 2a 1-- ()x a a 30+-=有两个不相等的实数根,且以x 为自变量的二次函数()22y x a 1x a 2=-+-+的图象不经过(1,0),求满足以上条件的概率.16.如图,口袋有5张完全相同的卡片,分别写有1cm 2cm 3cm 4cm 5cm 、、、、,口袋外有2张卡片,分别写有4cm 和5cm ,现在随机从袋内取出一张卡片,与口袋外两张卡片放在一起,以卡片的数量分别作为三条线段的长度,回答下列问题: ⑴.求这三条线段能构成三角形的概率;⑵.求这三条线段能构成直角三角形的概率;⑶.求这三条线段能构成等腰三角形的概率.水平提升如图,小茶几的桌面上放置了红、黄、蓝三个不同颜色的杯子,杯口 朝上;若我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的 翻上为杯口朝上)的游戏.⑴.随机翻一个杯子,求翻到黄色杯子的概率;⑵.随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率和全部三个杯口全部向上的概率分别是多少?c m 5c m。
人教版初中数学九年级上册精品教学课件 第25章 概率初步 25.2 第2课时 用树状图法求概率

共有 8 种情况,其中 4 种情况至少有两瓶为红枣口味.故 P(至少有两 瓶为红枣口味)=12.
1
2
3
4
5
快乐预习感知
1.从长度分别为3,5,6,9的四条线段中任取三条,能组成三角形的概
率为( A )
A.12
B.34
C.13
D.14
1
2
3
4
5
快乐预习感知
2.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球
比赛,恰好选中甲、乙两位选手的概率是( C )
A.13
B.14
C.16
D.18
解析 画树状图如图所示:
解析 画树状图如图所示:
由树状图知,共有 4 种等可能结果,其中至少有一辆汽车向左转的 有 3 种等可能结果,所以至少有一辆汽车向左转的概率为34.
1
2
3
4
5
快乐预习感知
5.某乳品公司最新推出一款果味酸奶,共有红枣、木瓜两种口味,若 送奶员连续三天,每天从中任选一瓶某种口味的酸奶赠送给某住户 品尝,则该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率 是多少?(请用“画树状图”的方法给出分析过程,并求出结果)
互动课堂理解
解:画出树状图,如图. 由上图可知,共有6种等可能结果,其中正好是短袖上衣和红色裙 子的结果只有1种,故其概率是16 .
点拨:用树状图法求概率时,要考虑到所有可能的情况,做到不重 不漏,另外还要特别注意各种情况出现的可能性是否相同,只有在 等可能的情况下,才能得到正确的结果.树状图法适合两步或两步 以上完成的事件.
∴P(选中甲、乙两位)=122 = 16,故选 C.
1
2
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合作学习
例3 甲口袋中装有2个相同的小球,它们分 别写有字母A和B;乙口袋中装有3个相同的 小球,它们分别写有字母C、D和E;丙口袋 中装有2个相同的小球,它们分别写有字母H 和I.从两个口袋中各随机地取出1个小球.
(1)取出的3个小球上恰好有1个、2个和3个 元音字母的概率分别是多少? (2)取出的3个小球上全是辅音字母的概率 是多少?
合作学习 画树状图求概率的基本步骤 (1)明确一次试验的几个步骤及顺序; (2)画树状图列举一次试验的所有可能结果; (3)数出随机事件A包含的结果数m,试验的所 有可能结果数n; (4)用概率公式进行计算.
反
馈
反
馈
反
馈
反
馈
小
结
当试验包含两个因素时,列表法比较方便; 当然,此时也可以用树形图法;当事件涉及 多个(三个或三个以上)因素时,应选用树状 图法求事件的概率. 画树状图求概率的基本步骤 (1)明确一次试验的几个步骤及顺序; (2)画树状图列举一次试验的所有可能结果; (3)数出随机事件A包含的结果数m,试验的所 有可能结果数n; (4)用概率公式进行计算.
合作学习
解:由树状图可以看出,抛掷3枚硬币的结果有 8种,它们出现的可能性相等. (1)满足三枚硬币全部正面朝上(记为事件A)的 结果只有1种 1 所以 P(A) = 8 (2)满足两枚硬币正面朝上而一枚硬币反面朝上 (记为事件B)的结果有3种, 3 所以P(B) = 8 (3)满足至少有两枚硬币正面朝上(记为事件C) 的结果有4种,
n
情境导入
1、同时抛掷两枚硬币,两枚硬币全部正面 朝上的概率是______。
2、若同时抛掷三枚硬币,试列举出所有可 能出现的结果。
若再用列表法表示所 有结果已经不方便!
学习目标
1
进一步理解等可能事件概率的意义,学 习运用树状图计算事件的概率 进一步学习分类思想方法,能正确选取 列表法或画树状图求随机事件的概率。 理的决策。
合作学习 解:根据题意,我们可以画出如下的树形图 甲
A B
乙
C
H I H
D
E
I H IH
C
IH
D I H
E I
丙
合作学习 根据树形图,可以看出,所有可能出现的结 果是12个,这些结果出现的可能性相等,
A A A A A A B B B B B B C C D D E E C C D D E E H I H I H I H I H I H I (1)只有一个元音字母 (记为事件A)的结果有5个, 5 所以P(A)= 12 . 有两个元音字母 (记为事件B)的结果有4个,所以 1 P(B)= 3 . 有三个元音字母 (记为事件C)的结果有1个,所以 1 P(C)= 12 . (2)全是辅音字母(记为事件D)的结果有2个,所以 1 P(D)= 6
2
3 实际问题中能通过比较概率大小作出合
合作学习 同时抛掷三枚硬币,求下列事件的概率: (1) 三枚硬币全部正面朝上; (2) 两枚硬币正面朝上一枚硬币反面朝上; (3) 至少有两枚硬币正面朝上.
解:根据题意可以画出如下的树状图
开始 第①枚 第②枚
正 正 反 正
反 反
第③枚 正 反 正 反 正 反 正 反
பைடு நூலகம்复习回顾
直接列举法比较适合用于最多涉及两个试验因素 或分两步进行的试验,且事件总结果的种数比较 少的等可能性事件. 列表法对于列举涉及两个因素或分两步进行的试 验结果是一种有效的方法. 列表法求概率的基本步骤 第一步:列表格; 第二步:在所有可能情况n中,再找到满足条件的 事件的个数m; m 第三步:代入概率公式 P( A)= 计算事件的概率.
4 1 所以P(C) = 8 = 2
合作学习 思考:想一想,什么时候用“列表法”方便, 什么时候用“树状图”方便?
当一次试验涉及两个因素时,且可能出现的 结果较多时,为不重复不遗漏地列出所有可 能的结果,通常用列表法.
当试验包含两个因素时,列表法比较方便; 当然,此时也可以用树形图法;当事件涉及 多个(三个或三个以上)因素时,应选用树状 图法求事件的概率.