用画树状图法求概率

合集下载

【初中数学】第2课时 用画树状图法求概率 [人教版九年级上册] (练习题)

【初中数学】第2课时 用画树状图法求概率 [人教版九年级上册] (练习题)

第2课时用画树状图法求概率[人教版九年级上册](2912)1.妙妙上学经过两个路口,如果每个路口可直接通过和需等待的可能性相等,那么妙妙上学时在这两个路口都直接通过的概率是()A.14B.13C.12D.342.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()A.12B.23C.16D.563.一个不透明的口袋中有两个完全相同的小球,把它们分别标号为1,2.随机摸取一个小球后,放回并摇匀,再随机摸取一个小球,两次取出的小球标号的和等于4的概率为.4.江苏省第20届运动会将在泰州举办,“泰宝”和“凤娃”是运动会吉祥物.在一次宣传活动中,组织者将分别印有这两种吉祥物图案的卡片各2张放在一个不透明的盒子中并搅匀,卡片除图案外其余均相同.小张从中随机抽取2张换取相应的吉祥物,抽取方式有两种:第一种是先抽取1张不放回,再抽取1张;第二种是一次性抽取2张.(1)两种抽取方式抽到不同图案卡片的概率(填“相同”或“不同”);(2)若小张用第一种方式抽取卡片,求抽到不同图案卡片的概率.5.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,下一个人继续摸球.三人摸到球的颜色互不相同的概率是()A.127B.13C.19D.296.某市教育局为提高教师业务素质,扎实开展了“课内比教学”活动.在一次数学讲课比赛中,每个参赛选手都从两个分别标有“A”“B”内容的签中,随机抽出一个作为自己的讲课内容.某校有三个选手参加这次讲课比赛,则这三个选手中有两个抽中内容“A”,一个抽中内容“B”的概率是7.甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.8.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数.(2)甲、乙二人玩一个游戏,游戏规则是若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏规则公平吗?试说明理由.9.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.10.完成下列各题。

用画树状图法求概率(22张PPT)

用画树状图法求概率(22张PPT)

⑴.取出的3个小球上恰好有1个、2个和3个元音字母的概率 分别是多少? ⑵.取出的3个小球上全是辅音字母的概率是多少?
分析: 前面“两步试验的树状图”的例题和练习其实用“列表 法”也是可以的,但本例当一次试验是从三个口袋中取球时, 列表法就不方便了,为不重不漏地列出所有可能的结果,通常 采用画树状图法.
从树形图可以看出总共有(红1,红2),(红1,蓝1),……12 种等可能情矿,而都是蓝色球体有(蓝1,蓝2),(蓝2,蓝1) 两种,故:
用树状图法求概率的“四个步骤”:
1.定:确定该试验的几个步骤、顺序、每一步可能产生的结果. 2.画:列举每一环节可能产生的结果,得到树状图. 3.数:数出全部均等的结果数m和该事件出现的结果数n. 4.算:代入公式 .
1.学习用树形图法计算概率,并通过比较概率 大小作出合理的决策. 2.会运用树形图法计算事件的概率(重点);能 根据不同情况选择恰当的方法进行列举,解决 较复杂事件概率的计算问题(难点). 3.经历探索知识过程,感受数学知识的价值和 魅力,培养合作学习的意识和探索精神.
问:你知道孙膑给田忌将军的是怎样的建议吗?
6.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每 张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡 片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下 字母,用画树状图的方法,求小玲两次抽出的卡片上的字母相同的 概率. a b c 略解:画出树状图为
a
b
c
a
b
c
第一摸取 第二摸取 共12种等可能的情况;即:A 1 A 2 ,A 1 B2 ,……其中恰好能组
成一张完整图片的结果有4种,则:
新课引入的)
第一场

用列表法或画树状图法求概率

用列表法或画树状图法求概率

用列表法或画树状图法求概率(放回、不放回)
【方法】使用列表法或画树状图法求概率时,首先要通过列表或画树状图列出所有可能出现的结果数n ,然后找出符合事件A 出现的结果数m ,用公式求出
n
m A P )(即得所求事件的概率。

【出错点】求m 或n 的值。

【分类】放回、不放回
(一)明确写出放回、不放回类型
例1:(2018·威海中考)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是?
例2:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片后放回再抽取的一张卡片上数字之积为负数的概率是?
(二)隐含放回、不放回类型
例3:选人(不放回)(2019济南)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率。

例4:选课(放回)(2016济南中考)某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小容两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是?。

人教版九年级数学上册第25章 概率初步2 用画树状图法求概率

人教版九年级数学上册第25章 概率初步2 用画树状图法求概率
(3)数出随机事件A包含的结果数m,试验的所有可能结果数
n;
(4)用概率公式计算.
教师讲评
知识点2 选择合适的方法进行概率计算
对于那些可以通过顺序组合多个因素来产生结果的试验或事件,
画树状图法可以帮助更直观地理解和避免重复、遗漏.
列表法的优点在于操作简便、快捷,适合于简单的情况.相比之
下,画树状图法则提供了更加直观的分析方式,有助于避免重
3.分析解题过程,是如何画树状图的?
每一个步骤可能出现的结果,等可能且不分先后分别写到第一行、
第二行、第
三行,把各种可能的结果对应竖写在下面.
自主探究
4.请同学们思考:什么时候选择“列表法”,什么时候选择
“画树状图法”?
当一次试验涉及两个因素,且可能出现的结果数较多时,通常
用列表法;当一次试验涉及三个及三个以上的因素时,通常用
以胜的次数多者为赢.已知在同等级的马中,田
忌的马不如齐王的马,而田忌的上等马能胜齐
王的中等马,田忌的中等马能胜齐王的下等马.
田忌屡败后,接受了孙膑的建议,结果两胜一
负,赢了比赛.
你知道孙膑给出了怎样的建议吗?
假设齐王按上中下的顺序出马,而田忌的马随机出阵,则田忌
获胜的概率是多少呢?
荤菜有鸡肉和牛肉,三素有白菜、芹菜和油菜.我们需要在两
复和遗漏,特别是在涉及到多个因素的情况下.
因此,需要根据具体问题的实际情况来选择合适的分析方法.
【题型一】用画树状图法求概率
例1 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向
全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分
别从《童年周恩来》《我心飞扬》《穿过雨林》三部影片中随机选

用列表法或画树状图法求概率 (3)

用列表法或画树状图法求概率 (3)

用列表法或画树状图法求概率(放回、不放回)【方法】使用列表法或画树状图法求概率时,首先要通过列表或画树状图列出所有可能出现的结果数n ,然后找出符合事件A 出现的结果数m ,用公式求出nmA P =)(即得所求事件的概率。

【分类】放回、不放回类型一:明确写出放回、不放回类型例1:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是?例2:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片后放回再抽取的一张卡片上数字之积为负数的概率是?类型二:隐含放回、不放回类型例3:(指定特殊条件)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .12B .13C .16D .23答:根据题意,列表如下: 共有 6 种可能的结果,每种结果出现的可能性都相同。

其中恰好选中“A 入口进入、从C ,D 出口”的结果有2种,所以3162)出口D ,C 入口A (==P例4:选人(不放回)(2019济南)该年级学生会宣传部有 2 名男生和 2 名女生,现从中随机挑选 2 名同学参加“防控近视,爱眼护眼”宣 传活动,请用树状图法或列表法求出恰好选中“1 男 1 女”的概率.有 8 种,所以32128)(==选择一男一女P 出口出口【同类题】1.(2019历下一模)调查结果中,该校九年级(2)班有四名同学相当优秀,了解程度为“很了解”,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人去市里参加“舜文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.2.(2019年市中一模)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.3.(2019长清一模)已知受访的教师中,E 组只有2名女教师,F 组只有1名男教师,现要从E 组、F 组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.例5:选课(放回)(2018济南中考)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.A (A,A ) (B,A ) (C,A )B (A,B ) (B,B ) (C,B ) C(A,C )(B,C )(C,C )共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:39=13.【同类题】1. (2015年中考)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.2. (2014年中考)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( ) A .32 B .21 C .31 D .41。

人教九年级数学上册- 用画树状图法求概率(附习题)

人教九年级数学上册- 用画树状图法求概率(附习题)

CDE
丙 HI HI HI HI HI HI
用树形图求概率的基本步骤
1.明确试验的几个步骤及顺序; 2.画树形图列举试验的所有等可能的结果; 3.计算得出m,n的值; 4.计算随机事件的概率.
思考 求概率时,什么时候用“列表法”方便? 什么时候用 “树形图”方便?
一般地,当一次试验要涉及两个因素(或两 个步骤),且可能出现的结果数目较多时,可用 “列表法”,当一次试验要涉及三个或更多的因 素(或步骤)时,可采用“树形图法”.
(1)取出的2个球都是黄球;
解:分别从两个盒中随机取出1个球的可能结果 如下图所示.
第一个盒
第二个盒
记取出的2个球都是黄球为事件A.
P
(
A)
1 6
.
(2)取出的2个球中1个白球,1个黄球. 解:分别从两个盒中随机取出1个球的可能结果如下图所示.
第一个盒
第二个盒
取出的2个球中1个白球,1个黄球(记为事件B).
AB 甲
E CD

HI 丙
பைடு நூலகம்
(1)取出的3个小球上恰好有1个、2个、3个
元音字母的概率分别是多少? ?
本题中,A,E、 I是元音字母,B,C、 D,H是辅音字母.
AB 甲
E CD

HI 丙
分析:
如何能不重不漏地列出所
①本次试验涉及有到可能3出现个的因结素果,呢用?列表法 不能 (能
或不能)列举所有可能出现的结果.
剪断的两张分别为B1,B2.
A2 B2
解:列举出所有结果如下:
记恰好合成一张完整图片为事件A.
P(
A)
4 12
1 3
.
A1

大赛课-用画树状图法求概率(教学设计)

大赛课-用画树状图法求概率(教学设计)

§25.2.2用画树状图法求概率【知识与技能】理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.【教学重点】会用列表法和树状图法求随机事件的概率.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】列表法是如何列表,树状图的画法.列表法和树状图的选取方法.一、情境导入看图片知拍7娃娃机游戏规则,这与我们今天学习的游戏规则有关【教学说明】情境激趣,在最短时间内激起学生的求知欲和探索的欲望.把游戏规则简单化,变成一道数学问题有两排指示灯,按下启动键,随机选中第一排的一个数字,接着再按一次启动键选中第二排的一个数字,请问两排选中的指示灯数字相加和是4的概率是多少?【教学说明】由情景引入,带领学生复习列表法求概率的方法和适用条件,由此引出树状图法二、思考探究,获取新知当一次试验要涉及3个(因素或步骤)或更多的(因素或步骤)时,列表就不方便了,为不重不漏地列出所有可能的结果,通常采用树状图法.三、例题讲解课本第138页例3.甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C.D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I,从3个口袋中各随机地取出1个小球.(1)取出的3个小球上,恰好有1个,2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?分析:分步画图和分类排列相关的结论是解题的关键.弄清题意后,先让学生思考,从3个口袋中每次各随机地取出1个球,共取出3个球,就是说每一次试验涉及到3个步骤,这样的取法共有多少种呢?你打算用什么方法求得?介绍树状图的方法:第一步:可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行.第二步:可能产生的结果有C、D和E,三者出现可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D、E.第三步:可能产生的结果有两个,H和I.两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续.)第四步:把各种可能的结果对应竖写在下面,就得到了所有可能的结果的总数,从中再找出符合要求的个数,就可以计算概率了.“树状图”如下:由树状图可以看出,所有可能的结果共有12种,即:ACH、ACI、ADH、ADI、AEH、AEI、BCH、BCI、BDH、BDI、BEH、BEI,这些结果出现的可能性相等.P(一个元音)=5/12;P(两个元音)=4/12=1/3,P(三个元音)=1/12;P(三个辅音)=2/12=1/6.【教学说明】教师引导:元素多,怎样才能解出所有结果的可能性?引出树状图,详细讲解树状图各步的操作方法,学生尝试按步骤画树状图.学生结合列表法,理解分析,体会树状图的用法,体验树状图的优势.【归纳结论】画树状图求概率的基本步骤:①明确试验的几个步骤及顺序.②画树状图列举试验的所有等可能的结果.③计数得出m,n的值.④计算随机事件的概率.思考什么时候用“列表法”方便?什么时候用“树状图”法方便?一般地,当一次试验要涉及两个因素(或两步骤),且可能出现的结果数目较多时,可用“列表法”,当一次试验要涉及三个或更多的因素(或步骤)时,可采用“树状图法”.板书设计§25.2.2用画树状图法求概率例1解:根据题意,可以画出如下的树状图:学生练习:由树状图可以看出,所有可能的结果共有12种,即:ACH、ACI、ADH、ADI、AEH、AEI、BCH、BCI、BDH、BDI、BEH、BEI,这些结果出现的可能性相等.由于前面已学过一般的列举法,学生在小学或其他学科中接触过“列表法”,因此本节课除了继续探究更为复杂的列举法外,还引入了树状图这种新的列举方法,以学生的生活实际为背景提出问题,在自主探究解决问题的过程中,自然地学习使用这种新的列举方法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.。

画树状图法求概率教案

画树状图法求概率教案

画树状图法求概率教案教案标题:画树状图法求概率教案目标:1. 了解概率的基本概念和计算方法;2. 掌握使用树状图法求解概率问题;3. 培养学生的逻辑思维和问题解决能力。

教学重点:1. 树状图的构建和使用;2. 利用树状图法解决概率问题。

教学难点:1. 复杂问题的树状图构建;2. 确定正确的概率计算方法。

教学准备:1. 教师准备:白板、彩色粉笔/白板笔、树状图示例;2. 学生准备:笔记本、铅笔、橡皮擦。

教学过程:Step 1: 引入概率概念1. 教师简要介绍概率的定义和基本概念,如样本空间、事件等。

2. 引导学生举例说明概率的应用场景,如掷骰子、抽牌等。

Step 2: 树状图法概述1. 教师通过示意图或实际例子介绍树状图法的基本思想和步骤。

2. 强调树状图的层次结构和分支表示不同的可能性。

Step 3: 树状图的构建1. 教师通过一个简单的问题示例,引导学生一起构建树状图。

2. 解释如何根据问题的条件和可能性分支来构建树状图。

Step 4: 树状图法求解概率问题1. 教师通过示例问题演示如何使用树状图法求解概率问题。

2. 强调计算概率的方法,如乘法原理、加法原理等。

Step 5: 练习与巩固1. 学生个人或小组练习,使用树状图法解决给定的概率问题。

2. 教师提供反馈和指导,纠正学生的错误和困惑。

Step 6: 拓展应用1. 学生尝试解决更复杂的概率问题,如多次独立事件的概率计算。

2. 教师提供挑战性问题,鼓励学生探索更高级的概率计算方法。

Step 7: 总结与评价1. 教师与学生一起总结树状图法求解概率问题的基本步骤和注意事项。

2. 学生进行自我评价,检查自己对概率和树状图法的理解程度。

教学延伸:1. 学生可以在课后继续探索更复杂的概率问题,并尝试使用树状图法进行求解。

2. 学生可以与同学分享自己的概率问题解决过程,互相学习和提供反馈。

教学评估:1. 教师观察学生在课堂上的参与程度和问题解决能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时用画树状图法求概率
教学目标:1.学习用树形图法计算概率.2.并通过比较概率大小作出合理的决策.
重点:会运用树形图法计算事件的概率.
难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题.
导学过程:
1.自主学习
自学教材学习三个及三个以上因素求概率的方法——树形图
例1:甲口袋中装有2个相同的球,它们分别写有字母A和B;乙口袋中3个相同的球,它们分别写有字母C、D和E;丙口袋中2个相同的球,它们分别写有字母H和I.从三个口袋中各随机地取出1个球.
(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?
(2)取出的三个球上全是辅音字母的概率是多少?
此题与前面两题比较,要从三个袋子里摸球,即涉及到3个因素.此时用列表法就不太方便,可以尝试树形图法.
2、巩固练习
假定鸟卵孵化后,雏鸟为雌与为雄的概率相同,如果三枚卵全部成功孵化,则三只雏鸟中有两只雄鸟的概率是多少?
3.学以致用:
经过某十字路口的汽车,它可能继续前行,也可能向左或向右,如果这三种可能性大小相同.三辆汽车经过这个十字路口,求下列事件的概率:
①三辆车全部继续前行;
②两辆车向右转,一辆车向左转;
③至少有两辆车向左转.
4、深化提高
把三张形状、大小相同但画面不同的风景图片都平均剪成三段,然后带上、中、下三段分别混合洗匀.从三堆图片中随机地各抽出一张,求着三张图片恰好组成一张完整风景图片的概率.
课堂小结:
当一次试验要涉及3个或更多的因素时,通常采用“画树形图”.运用树形图法
求概率的步骤如下:
①画树形图 ; ②列出结果,确定公式P(A)=n m 中m 和n 的值; ③利用公式P(A)=n
m 计算事件概率.。

相关文档
最新文档