杂化轨道理论
杂化轨道理论

杂化轨道理论价键理论简明地阐明了共价键的形成过程和本质,成功解释了共价键的方向性和饱和性,但在解释一些分子的空间结构方面却遇到了困难。
例如CH 4分子的形成,按照价键理论,C 原子只有两个未成对的电子,只能与两个H 原子形成两个共价键,而且键角应该大约为90°。
但这与实验事实不符,因为C 与H 可形成CH 4分子,其空间构型为正四面体,∠HCH = 109.5°。
为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林提出了杂化轨道理论(hybrid orbital theory ),丰富和发展了现代价键理论。
1953年,我国化学家唐敖庆等统一处理了s-p-d-f 轨道杂化,提出了杂化轨道的一般方法,进一步丰富了杂化理论的内容。
1.杂化轨道理论的基本要点杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心原子所用的原子轨道(即波函数)不是原来纯粹的s 轨道或p 轨道,而是若干不同类型、能量相近的原子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的原子轨道——杂化轨道(hybrid orbital),以满足化学结合的需要。
这一过程称为原子轨道的杂化(hybridization )。
下面以CH 4分子的形成为例加以说明。
基态C 原子的外层电子构型为2s 22p x 12p y 1。
在与H 原子结合时,2s 上的一个电子被激发到2p z 轨道上,C 原子以激发态2s 12p x 12p y 12p z 1参与化学结合。
当然,电子从2s 激发到2p 上需要能量,但由于可多生成二个共价键,放出更多的能量而得到补偿。
在成键之前,激发态C 原子的四个单电子分占的轨道2s 、2p x 、2p y 、2p z 会互相“混杂”,线性组合成四个新的完全等价的杂化轨道。
此杂化轨道由一个s轨道和三个p 轨道杂化而成,故称为sp 3杂化轨道。
能带理论--杂化轨道理论

能带理论--杂化轨道理论是1931年由Pauling L等人在价键理论的基础上提出,它实质上仍属于现代价键理论,但它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。
1.在成键过程中,由于原子间的相互影响,同一原子中几个能量相近的不同类型的原子轨道(即波函数),可以进行线性组合,重新分配能量和确定空间方向,组成数目相等的新的原子轨道,这种轨道重新组合的过程称为,杂化后形成的新轨道称为(hybrid orbital)。
2.杂化轨道的角度波函数在某个方向的值比杂化前的大得多,更有利于原子轨道间最大程度地重叠,因而杂化轨道比原来轨道的成键能力强。
3.杂化轨道之间力图在空间取最大夹角分布,使相互间的排斥能最小,故形成的键较稳定。
不同类型的杂化轨道之间的夹角不同,成键后所形成的分子就具有不同的空间构型。
按参加杂化的原子轨道种类,轨道的杂化有sp和spd两种主要类型。
按杂化后形成的几个杂化轨道的能量是否相同,轨道的杂化可分为等性杂化和不等性杂化。
sp型和spd型杂化能量相近的ns轨道和np轨道之间的杂化称为。
按参加杂化的s轨道、p轨道数目的不同,sp型杂化又可分为sp、23sp 、sp 三种杂化。
1sp由1个s轨道和1个p轨道组合成2个sp杂化轨道的过程称为,所形成的轨道称为sp杂化轨道。
每个sp杂化轨道均含0有的s轨道成分和的p轨道成分。
为使相互间的排斥能最小,轨道间的夹角为180 。
当2个sp杂化轨道与其他原子轨道重叠成键后就形成直线型分子。
图9-3 sp杂化过程及sp杂化轨道的形状22spsp2杂化轨道的空间取向示意图2(图9-4 BF的平面三角形构型和sp杂化轨道的空间取向) 322 由1个s轨道与2个p轨道组合成3个sp 杂化轨道的过程称为。
每个sp 杂化轨道含有的s轨道成分和的p202轨道成分,为使轨道间的排斥能最小,3个sp杂化轨道呈正三角形分布,夹角为120[图9-4]。
当3个sp杂化轨道分别与其他3个相同原子的轨道重叠成键后,就形成正三角形构型的分子。
杂化轨道理论完整ppt课件

•杂化轨道理论基本概念•s-p 杂化轨道•p-d 杂化轨道•d-f 杂化轨道•杂化轨道理论与分子构型关系•杂化轨道理论在化学领域应用•总结与展望目录01杂化轨道理论基本概念原子轨道与杂化轨道原子轨道杂化轨道sp 杂化sp2杂化sp3杂化030201杂化类型及特点杂化轨道形成过程激发原子中能量相近的不同类型原子轨道在成键过程中重新分配能量和确定空间方向,组成数目相等的新的原子轨道。
杂化重新组合后的原子轨道称为杂化原子轨道,简称杂化轨道。
成键杂化后的原子轨道能量相等、成分相同,仅空间方位不同。
杂化轨道成键时,要满足原子轨道最大重叠原理。
02s-p杂化轨道s-p杂化原理及类型s-p杂化原理s-p杂化类型根据参与杂化的s和p轨道数目不同,可分为sp、sp²、sp³等类型。
s-p杂化实例分析乙烯分子中的C=C双键炔烃分子中的C≡C三键s-p杂化性质总结s-p杂化轨道具有方向性和饱和性01s-p杂化影响分子构型和性质02s-p杂化与化学键稳定性0303p-d杂化轨道p-d杂化原理及类型p-d杂化原理p-d杂化类型p-d杂化实例分析实例一PCl5分子。
磷原子中的3个p轨道和1个d轨道发生杂化,形成5个sp3d杂化轨道,分别与5个氯原子形成共价键。
这种杂化解释了PCl5分子的三角双锥构型。
实例二SF6分子。
硫原子中的3个p轨道和2个d轨道发生杂化,形成6个sp3d2杂化轨道,分别与6个氟原子形成共价键。
这种杂化解释了SF6分子的八面体构型。
化学键性质p-d 杂化轨道中的电子分布和键合情况决定了分子的化学键性质,如键长、键角、键能等。
这些性质与分子的稳定性和反应性密切相关。
几何构型p-d 杂化轨道形成的分子具有特定的几何构型,如三角双锥、八面体等,这些构型与参与杂化的轨道数目和类型密切相关。
光学性质p-d 杂化轨道对分子的光学性质也有影响,如吸收光谱、发射光谱等。
这些性质与分子中的电子跃迁和能级结构有关。
杂化轨道理论

杂化轨道理论杂化轨道理论基本介绍核外电子在一般状态下总是处于一种较为稳定的状态,即基态。
而在某些外加作用下,电子也是可以吸收能量变为一个较活跃的状态,即激发态。
在形成分子的过程中,由于原子间的相互影响,单个原子中,具有能量相近的两个电子亚层中,具有能量较低的电子亚层的一个或多个电子会激发而变为激发态,进入能量较高的电子亚层中去,即所谓的跃迁现象,从而新形成了一个或多个能量较高的电子亚层。
此时,这一个与多个原来处于较低能量的电子亚层的电子所具有的能量增加到与原来能量较高的电子亚层中的电子相同。
这样,这些电子的轨道便混杂在一起,这便是杂化,而这些电子的状态也就是所谓的杂化态。
概述1931年,Linus Carl Pauling提出轨道杂化理论。
实验事实基础是许多分子的键角不等于原子轨道间夹角。
如氧原子与氢原子组成的水分子H-O-H的键角是104.5o,不等于氧的2py与2pz轨道间的夹角90o。
类似的,NH3分子中H-N-H的键角也不等于90o,实际测得107.3o。
实验测得甲烷分子CH4是四面体结构,H-C-H键角为109.5o。
要点⑴ 在形成分子(主要是化合物)时,同一原子中几个能量相近的不同类型的原子轨道 (一般为同一能级组的原子轨道)可以进行线性组合(杂化),重新分配能量和确定空间方向,组成数目相等的新的一组原子轨道。
⑵杂化轨道成键能力大于原来的原子轨道。
因为杂化轨道的形状变成一头大一头小了,用大的一头与其他原子的轨道重叠,重叠部分显然会增大。
⑶ 形成的杂化轨道之间应尽可能地满足最小排斥原理(化学键间排斥力越小,体系越稳定),为满足最小排斥原理,杂化轨道之间的夹角应达到最大。
⑷ 分子的空间构型主要取决于分子中σ键形成的骨架,杂化轨道形成的键均为σ键,所以,杂化轨道的类型与分子的空间构型相关。
相关概念在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道线性组合成新的原子轨道,这个过程叫做原子轨道的杂化,产生的新轨道叫做杂化轨道。
杂化轨道理论

杂化轨道理论电子配对法阐明了共价键的本质、特征和类型,但在解释多原子分子的几何形状(或空间构型)方面遇到了困难。
例如C原子只有两个成单电子,但能形成稳定的CH4分子,所以电子配对法不能说明甲烷分子为什么是正四面体构型的分子。
1931年鲍林提出杂化轨道理论,满意地解释了许多多原子分子的空间构型。
杂化轨道理论认为:①形成分子时,由于原子间的相互作用,使同一原子中能量相近的不同类型原子轨道,例如ns轨道与np轨道,发生混合,重新组合为一组新轨道.这些新轨道称为杂化轨道。
杂化轨道的数目等于参与杂化的原子轨道数目。
如一个2s 轨道与三个2p轨道混合,可组合成四个sp3杂化轨道;一个2s轨道与二个2p 轨道混合,可得三个sp2杂化轨道;一个2s轨道与一个2p轨道混合,可得二个sp杂化轨道。
②杂化轨道的电子云一头大,一头小,成键时利用大的一头,可以使电子云重叠程度更大,从而形成稳定的化学键。
即杂化轨道增强了成键能力。
③杂化轨道可以分为等性杂化和不等性杂化。
等性杂化是所组合的一组杂化轨道的成分都相同的杂化。
如甲烷中的C原子所生成的四个sp3杂化轨道,每个杂化轨道各含1/4的s轨道成分,3/4的p轨道成分。
不等性杂化是所组合的一组杂化轨道的成分不全相同的杂化,如氨分子中的N原子所生成的四个sp3杂化轨道中,一个杂化轨道含0.3274的s轨道成分,0.6726的p轨道成分;其余三个杂化轨道各含0.2242的s轨道成分,0.7758的p轨道成分。
杂化有多种方式,视参加杂化的原子以及形成的分子不同而不同。
①sp3杂化——这是原子最外层的1个s轨道和3个p轨道发生的杂化。
杂化以后形成四个等价的sp3杂化轨道。
碳原子在与氢原子形成甲烷分子时就发生了sp3杂化。
发生杂化时,碳原子的2s轨道和3个2p轨道发生混杂,形成4个能量相等的杂化轨道,碳原子最外层的4个电子分别占据1个杂化轨道。
每一个sp3杂化轨道的能量高于2s轨道能量而低于2p轨道能量;杂化轨道的形状也可以说介于s轨道和p轨道之间。
杂化轨道理论

杂化轨道理论在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫做杂化轨道。
1基本介绍杂化轨道理论(hybrid orbital theory)是1931年由鲍林(Pauling L)等人在价键理论的基础上提出,它实质上仍属于现代价键理论,但是它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。
核外电子在一般状态下总是处于一种较为稳定的状态,即基态。
而在某些外加作用下,电子也是可以吸收能量变为一个较活跃的状态,即激发态。
在形成分子的过程中,由于原子间的相互影响,单个原子中,具有能量相近的两个能级中,具有能量较低的能级的一个或多个电子会激发而变为激发态,进入能量较高的能级中去,即所谓的跃迁现象,从而新形成了一个或多个能量较高的能级。
此时,这一个或多个原来处于较低能量的能级的电子所具有的能量增加到与原来能量较高的能级中的电子相同。
这样,这些电子的轨道便混杂在一起,这便是杂化,而这些电子的状态也就是所谓的杂化态。
用化学语言讲,杂化轨道理论从电子具有波动性、波可以叠加的观点出发,认为一个原子和其他原子形成分子时,中心电子所用的电子轨道不是原来纯粹的s轨道或p轨道,而是若干不同类型、能量相近的电子轨道经叠加混杂、重新分配轨道的能量和调整空间伸展方向,组成了同等数目的能量完全相同的新的电子轨道——杂化轨道,以满足化学结合的需要。
这一过程称为电子轨道的杂化。
2基本要点只有最外电子层中不同能级中的电子可以进行轨道杂化,且在第一层的两个电子不参与反应。
不同能级中的电子在进行轨道杂化时,电子会从能量低的层跃迁到能量高的层,并且杂化以后的各电子轨道能量相等又高于原来的能量较低的能级的能量而低于原来能量较高的能级的能量。
当然的,有几个原子轨道参加杂化,杂化后就生成几个杂化轨道。
杂化轨道成键时,要满足原子轨道最大重叠原理。
杂化后的电子轨道与原来相比在角度分布上更加集中,从而使它在与其他原子的原子轨道成键时重叠的程度更大,形成的共价键更加牢固。
分子的立体结构(杂化轨道理论)

01
02
03
04
sp杂化
一个s轨道和一个p轨道杂化 ,形成两个sp杂化轨道,形
状为直线型。
sp2杂化
一个s轨道和两个p轨道杂化 ,形成三个sp2杂化轨道,形
状为平面三角形。
sp3杂化
一个s轨道和三个p轨道杂化 ,形成四个sp3杂化轨道,形
状为正四面体型。
其他杂化类型
如dsp2、d2sp3等,涉及d轨 道的参与,形成更复杂的分子
指导新材料的设计和合成
通过研究杂化轨道理论,可以深入了解 分子中原子间的相互作用和电子排布规 律,从而揭示分子立体结构的本质。
通过调控分子的立体结构,可以设计 和合成具有特定功能的新材料,如催 化剂、药物、光电材料等。
预测和解释分子的性质
基于杂化轨道理论,可以预测和解释 分子的几何构型、键长、键角以及分 子的物理和化学性质。
预测反应活性
通过了解分子的电子云分布和键能,可以预测分子在化学反应中的 活性和选择性。
指导新材料设计
杂化轨道理论为设计具有特定功能和性质的新材料提供了理论指导。
研究成果与不足
成果
杂化轨道理论在解释和预测分子 的立体结构方面取得了显著成果 ,成功应用于多种有机和无机化 合物的结构和性质研究。
不足
对于某些复杂体系,如过渡金属 化合物和生物大分子,杂化轨道 理论的解释力有限,需要进一步 完善和发展。
分子的立体结构杂化轨道理论
contents
目录
• 引言 • 杂化轨道理论基础 • 分子的立体构型与杂化轨道 • 杂化轨道理论与化学键性质 • 杂化轨道理论与化学反应性 • 总结与展望
01 引言
分子的立体结构概述
分子立体结构的定义
杂化轨道理论(图解)

杂化轨道理论(图解)一、原子轨道角度分布图S Px Py Pzdz 2dx 2-y 2dxy dxz dyz二、共价键理论和分子结构 ㈠、共价键理论简介1、经典的化学键电子理论:1916年德国化学家柯塞尔(Kossel)和1919年美国化学家路易斯(Lewis)等提出了化学键的电子理论。
他们根据稀有气体原子的电子层结构特别稳定这一事实,提出各元素原子总是力图(通过得失电子或共用电子对)使其最外层具有8电子的稳定结构。
柯塞尔用电子的得失解释正负离子的结合。
路易斯提出,原子通过共用电子对而形成的化学键称为共价键(covalent [k ǝu`veilent]bond[b כnd])。
用黑点代表价电子(即最外层s ,p 轨道上的电子),可以表示原子形成分子时共用一对或若干对电子以满足稀有气体原子的电子结构。
为了方便,常用短线代替黑点,用“-”表示共用1对电子形成的共价单键,用“=”表示2对电子形成的共价双键,“≡”表示3对电子形成的共价叁键。
原子单独拥有的未成键的电子对叫做孤对电子(lone[l ǝun ]pair[p εǝ]electron[i`lektr כn])。
Lewis 结构式的书写规则又称八隅规则(即8电子结构)。
评价 贡献:Lewis 共价概念初步解释了一些简单非金属原子间形成共价分子的过程及其与离子键的区别。
局限性:①、未能阐明共价键的本质和特性;②、八隅规则的例外很多。
PCl 5 SF 6 BeCl 2 BF 3 NO ,NO 2 …中心原子周围价电子数 10 12 4 6 含奇数价电子的分子 … ③、不能解释某些分子的性质。
含有未成对电子的分子通常是顺磁性的(即它们在磁场中表现出磁性)例如O 2。
2、1927年德国的海特勒Heitler 和美籍德国人的伦敦London 两位化学家建立了现代价键理论,简称VB 理论(电子配对法)。
1931年,鲍林在电子配对的基础上提出了杂化轨道理论的概念,获1954年诺贝尔化学奖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6. 杂化轨道要点
(1 ) 轨道杂化是指同一个原子中相关轨道的混合,由 此产生的杂化轨道也是原子轨道。
(2)参与杂化的轨道中电子所处的能级略有不同, 而杂化轨道中的电子则处于相同能级。杂化后 能级相当于杂化前有关电子能级的中间值。
(3) 杂化只能发生在能级接近的轨道之间,如主量 子数相同的s、p、d轨道之间,或(n-1)d与ns、np 之间,能量也是相近的。亚层符号按能级升高的 顺序排列,例如d2sp3和sp3d2代表不同杂化轨道。
杂化轨道理论
主讲人:蒋毅民 教授
知识回顾:价键理论的基本要点。
问题:在H2S分子中两个S-H键的夹角为什么 是90º而不是180º?
H
Sห้องสมุดไป่ตู้
H
H
109.5º
H C
H
H
CH4的分子结构 C 原子的基态为 1s22s22px12py12pz0
O
H
H
104.5º
H2O的分子结构 O 原子的基态为 1s22s22px12py12pz2
杂化轨道的类型与空间结构的关系
杂化类型 用于杂化的 原子轨道数 杂化轨道数
空间构型
实例
sp 2 2 直线型 BeCl2 CO2
sp2 3 3 平面三角形 BF3 BCl3
sp3 4 4 四面体 CH4 CCl4
sp3d2 6 6
八面体 SF6 SiF62-
本节课结束! 谢谢!
H
H C
H
H
✓ 问题:
在CH4分子形成过程中,C原子的轨 道为什么要激发,杂化?激发过程所 需的能量从哪里来?
尽管电子从基态跃迁到激发态需要一定的能量 但其激发后能形成4个共价键比电子不激发只形 成两个C-H键放出的能量要大得多,这些能量足 以补偿电子激发所 需的能量而有余,因此,C与 H形成化合物时生成CH4而不是CH2
❖ 杂化轨道:通过杂化所形成的新轨道就称为杂化轨道。
❖ 注意两点: (1)原子轨道的杂化只有在形成分子的过程中才会发生; (2)能量相近通常是指:ns与np、ns,np与nd或(n-1)d。
2.sp2杂化
激发
Sp2杂化
重叠
形成3个(sp2-p) σ键
BF3分子形成过程
一个s轨道和二个p轨道杂化,产生三个等同 的sp2杂化轨道, sp2杂化轨道间夹角120º, 呈平面三角形。
Cl
Be
Cl
BeCl2分子结构示意图
4.sp3d2杂化
sp3d2杂化轨道是由一个s轨道、三个p轨道 和两个d轨道组合而成,其特点是6个sp3d 杂化轨道指向正八面体的六个顶点,相 邻的夹角为90º。
激发
杂化
重叠
sp3d2杂化轨道示意图
F
F
F
S
F
F
SF6分子的空间结构
F
5. 等性杂化与不等性杂化
以H2O为例: 价键理论:两个2p轨道分别与两个氢原子形成两
个 P-S σ键 键角为 90º 杂化理论:O原子的2s和2p采取sp3杂化,O原子最外层 有6个电子,四个杂化轨道中有两个被两对孤电子对占据, 其余两个轨道被两个单电子占据,与两个H形成两个sp3s共价键。
O氧子基态
杂化
sp3杂化态
H2O分子
轨道的杂化更有利于轨道之间的重叠成键。因 为杂化后电子云分布更为集中,可使成键的原子 轨道间的重叠部分增大,成键能力增强,因此C 与H原子能结合成稳定的CH4
S轨道
p轨道
Sp杂化轨道
CH4分子的空间结构
以上是用杂化轨道理论来解释CH4的结构, 得到了满意的结论。从这里我们也可以看出:
❖ 杂化:在形成分子时,由于原子的相互影响,若干 不同类型能量相近的原子轨道混合起来,重新组合成 一组新的轨道,这种轨道重新组合的过程叫做杂化。
课堂思考题:推断、解释NH3的结构?
杂化
N氧子基态
sp3杂化态
NH3分子
H
109.5
H C
H
H H
N H
H H
O H
CH4
NH3
H2O
孤电子对数: 0
夹
角:109.5º
空间结构: 正四面体
1 107.3º 三角锥
2 104.5º
V形
结论:在CH4、NH3和H2O分子中,中心原子都 取sp3杂化,其夹角随孤电子对数的增加而减少。
杂化
激发态
杂化态
✓ 杂化轨道还认为:在成键过程中,这4个不同的轨 道重新组合成4个能量相等的新轨道,由于是由1个 s与3个p轨道组合而成,因而新轨道称作sp3杂化轨 道。每一个sp3杂化轨道含1/4s成分和3/4p成分.
杂化态
✓ 这4个sp3杂化轨道分别与4个氢1s轨道重叠成键, 形成CH4分子。所以四个C-H键是等同的。
二、杂化轨道理论 1、SP3杂化(以甲烷的分子结构为例)
基态
激发态
✓ 杂化轨道理论认为:在形成甲烷分子时,C原子 上的一个2s电子可被激发到2p空轨道上,形成 四个单键,这时虽然解决了4个共价键的问题, 但是如果这4个轨道,即1个s轨道和3个p轨道, 分别与4个氢原子结合,形成4个键能量是不同的, 这与事实不符。
(4) 各种杂化轨道的“形状”均为葫芦形,由分 布在原子核两侧的大小叶瓣组成,轨道的伸 展方向是指大叶瓣的伸展方向,为简明起见 往往不给出小叶瓣。
(5) 杂化轨道的数目等于参与杂化的轨道的总数
(6) 杂化轨道可分为等性杂化轨道与不等性杂化 轨道两种。
(7) 杂化轨道成键时,要满足化学键间最小排斥原 理,键角越大,排斥力越小。杂化轨道类型不 同,成键时键角不同,分子的空间结构也不同。
➢sp2杂化轨道示意图
F
F
B
F
➢BF3分子的结构示意图
3.sp杂化
激发
sp杂化
重叠
形成2个(sp-s) σ键
BeCl2分子形成过程 进行sp杂化时,每个杂化轨道由 ½ S 轨道和 ½ P 轨道组合 而成,两个杂化轨道之间的夹角为180°。因此由sp杂化轨 道构成的分子具有直线形的构型。
sp杂化轨道示意图