九年级数学上册 3.8 弧长及扇形的面积 第2课时 扇形的面积公式作业 (新版)浙教版
初中数学冀教版九年级上册 28.5弧长和扇形面积的计算练习题

初中数学冀教版九年级上册第二十八章弧长和扇形面积的计算练习题一、选择题1.圆心角为的扇形的半径是3cm,则这个扇形的面积是A. B. C. D.2.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是,则圆锥的母线长是A. 8cmB. 12cmC. 16cmD. 24cm3.圆锥的表面展开图由一个扇形和一个圆组成,已知圆的周长为,扇形的圆心角为,则圆锥的全面积为A. B. C. D.4.如图,已知点C,D是以AB为直径的半圆的三等分点,弧CD的长为,则图中阴影部分的面积为A. B. C. D.5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚如图,那么B点从开始至结束所走过的路径长度为A. B. C. 4 D.6.如图已知扇形AOB的半径为6cm,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的底面半径为A. 2cmB. 4cmC. 1cmD. 8cm7.一个扇形的半径为6,圆心角为,则该扇形的面积是A. B. C. D.8.如图,在▱ABCD中,,的半径为3,则图中阴影部分的面积是A. B. C. D.9.圆锥的底面半径是5cm,侧面展开图的圆心角是,圆锥的高是A. B. 10cm C. 6cm D. 5cm10.钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是A. B. C. D.二、填空题11.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为,AB的长为20cm,扇面BD的长为15cm,则弧DE的长是______.12.若圆锥的底面直径为6cm,母线长为10cm,则圆锥的侧面积为______.13.已知扇形的面积为,圆心角为,则它的半径为______.14.一个扇形的圆心角是,半径为4,则这个扇形的面积为______结果保留15.如图,中,,CD平分交AB于点D,O是BC上一点,经过C、D两点的分别交AC、BC于点E、F,,,则劣弧的长为______.三、解答题16.如图,在平面直角坐标系中,将点C顺时针旋转后得则.请在图中画出,并写出点A的对应点的坐标;求线段AC旋转到时扫过的面积S.17.如图,的直径,半径,D为上一动点不包括B,C两点,,,垂足分别为E,F.求EF的长.若点E为OC的中点,求劣弧CD的长度;者点P为直径AB上一动点,直接写出的最小值.18.如图,把圆锥的侧面展开得到扇形,其半径,圆心角,求的长.19.已知:扇形的圆心角为,弧长为,求扇形面积.20.如图,AB是的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若,.求的半径;求图中阴影部分的面积.答案和解析1.【答案】B【解析】解:扇形的面积公式,故选:B.根据扇形的面积公式计算可得答案.本题考查扇形的面积公式.2.【答案】B【解析】解:圆锥的底面周长为,即为展开图扇形的弧长,由弧长公式得,,解得,,即圆锥的母线长为12cm.故选:B.根据圆锥侧面展开图的实际意义求解即可.本题考查圆锥的侧面展开图,明确展开图扇形的各个部分与圆锥的关系是正确计算的前提.3.【答案】A【解析】解:设圆锥的底面圆的半径为r,母线长为l,根据题意得,解得,,解得,所以圆锥的全面积.故选:A.设圆锥的底面圆的半径为r,母线长为l,利用圆的周长公式得,解得,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,解得,然后计算底面圆的面积与扇形的面积可得到圆锥的全面积.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4.【答案】A【解析】解:连接CD、OC、OD.,D是以AB为直径的半圆周的三等分点,,,弧CD的长为,,解得:,又,、是等边三角形,在和中,,≌,.故选:A.连接OC、OD,根据C,D是以AB为直径的半圆周的三等分点,可得,是等边三角形,将阴影部分的面积转化为扇形OCD的面积求解即可.本题考查了扇形面积的计算,解答本题的关键是将阴影部分的面积转化为扇形OCD的面积,难度一般.5.【答案】B【解析】解:如图:,,点从开始至结束所走过的路径长度为弧,故选:B.根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转,并且所走过的两路径相等,求出一个乘以2即可得到.本题考查了弧长的计算方法,求弧长时首先要确定弧所对的圆心角和半径,利用公式求得即可.6.【答案】A【解析】解:扇形的弧长是,设底面半径是r,则,解得:.故选:A.首先利用扇形的弧长公式即可求得扇形,然后根据圆的周长公式即可求解.本题考查圆锥的计算,理解圆锥的展开图中扇形的弧长等于圆锥的底面周长是关键.7.【答案】C【解析】解:,故选:C.根据扇形的面积公式计算即可.本题考查的是扇形面积的计算,掌握扇形的面积公式是解题的关键.8.【答案】C【解析】【分析】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.根据平行四边形的性质可以求得的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:在▱ABCD中,,的半径为3,,图中阴影部分的面积是:,故选:C.9.【答案】A【解析】【分析】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解方程即可母线长,然后利用勾股定理求得圆锥的高即可.【解答】解:设圆锥的母线长为R,根据题意得,解得.即圆锥的母线长为10cm,圆锥的高为:.故选:A.10.【答案】B【解析】解:从9点到9点15分分针扫过的扇形的圆心角是,则分针在钟面上扫过的面积是:故选:B.从9点到9点15分分针扫过的扇形的圆心角是,利用扇形的面积公式即可求解.本题考查了扇形的面积公式,正确理解公式是关键.11.【答案】【解析】解:弧DE的长为:.故答案为:.直接利用弧长公式计算得出答案.此题主要考查了弧长公式计算,正确应用弧长公式是解题关键.12.【答案】【解析】解:圆锥的侧面积故答案为.利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.【答案】3【解析】解:设半径为r,由题意,得,解得,故答案为:3.根据扇形的面积公式,可得答案.本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.【答案】【解析】解:,故答案为.利用扇形的面积公式计算即可.本题考查扇形的面积,解题的关键是记住扇形的面积是扇形的半径,l是扇形的弧长.15.【答案】【解析】解:连接DF,OD,是的直径,,,,,平分交AB于点D,,,,,在中,,的半径,劣弧的长,故答案为连接DF,OD,根据圆周角定理得到,根据三角形的内角和得到,根据三角函数的定义得到,根据弧长个公式即可得到结论.本题考查了圆周角定理,解直角三角形,弧长的计算,作出辅助线构建直角三角形是本题的关键.16.【答案】解:如图所示,;由勾股定理得,,线段AC旋转到时扫过的面积.【解析】根据网格结构找出点A、B绕点C顺时针旋转后的对应点、的位置,再与点C 顺次连接即可,根据平面直角坐标系写出点的坐标;利用勾股定理列式求出AC,再根据扇形的面积公式列式计算即可得解.本题考查了利用旋转变换作图,扇形的面积公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.17.【答案】解:如图,连接OD,圆的半径为.,,,四边形OFDE是矩形,.点E为OC的中点,,,,劣弧CD的长度为.延长CO交于点G,连接DG交AB于点P,则的最小值为DG.,,,的最小值为.【解析】连接OD,由,,知四边形OFDE是矩形,据此可得;先求出的度数,再利用弧长公式求解可得;延长CO交于点G,连接DG交AB于点P,则的最小值为DG,再根据及可得答案.本题主要考查圆的有关概念与性质,解题的关键是掌握矩形的判定与性质、轴对称的性质、圆的相关性质.18.【答案】解:的长为:.【解析】弧长的计算公式为,把半径和圆心角代入公式可以求出弧长.本题考查的是弧长的计算,知道圆心角和半径,代入弧长公式计算.19.【答案】解:设扇形的半径为R,则由弧长公式得:,解得:,即扇形的面积是.【解析】先根据弧长公式求出扇形的半径,再根据扇形面积公式求出即可.本题考查了弧长公式和扇形面积公式的应用,注意:扇形的面积弧长半径.20.【答案】解:直径,.平分AO,.又,..在中,的半径为2;连接OF.在中,,...,,.【解析】本题综合考查了垂径定理和解直角三角形及扇形的面积公式.根据垂径定理得CE的长,再根据已知DE平分AO得解直角三角形求解.先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.。
人教版九年级数学上册课件:弧长和扇形面积 (2)

制造弯形管道时,要先按中心线计算“展直长度”,再下料 ,试计算图所示管道的展直长度L(结果取整数) .
解:由弧长公式,可得弧AB 的长 因此所要求的展直长度
1.弧长相等的两段弧是等弧吗?
2.如图,有一段弯道是圆弧形的,道长是12m,弧所对的圆 心角是81°.这段圆弧所在圆的半径R是多少米(结果保留小 数点后以为)?
圆锥中的最短路径问题
如图,已知点 P 是圆锥母线 OM 上一点,OM =6,OP =4, 圆锥的侧面积为12π,一只蜗牛从 P 点出发,绕圆锥侧面爬行 一周回到点P,则爬过的最短路线长为______.
圆锥中的最短路径问题
如图,圆锥的底面半径为1,母线长为3,一只蚂蚁要从底面 圆周上一点B出发,沿圆锥侧面爬到过母线AB的轴截面上另一 母线AC上,问它爬行的最短路线是多少?
答案:2π.
扇形面积计算综合
如图,直径 AB 为 8 的半圆,绕 A 点逆时针旋转 60°,此时点 B 到了点 B ',则图中阴影部分的面积是___________.
圆锥中的最短路径问题
圆锥的底面半径是 1,母线长是 4,一只蜘蛛从底面圆周上的 一点 A 出发沿圆锥的侧面爬行一周后回到 A 点,则蜘蛛爬行的 最短路径的长是________.
如图,⊙A,⊙B,⊙C,⊙D 两两不相交,且半径都是2cm ,求图中阴影部分的面积. 提示:可以先算非阴影部分的扇 形面积之和.
答案:12π.
如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其 中水面高0.9cm,求截面上有水部分的面积(结果保留小数 点后两位).
如下图中每个阴影部分是以多边形各顶点为圆心,1 为半径的 扇形,并且所有多边形的每条边长都大于 2,则第 n 个多边 形中,所有扇形面积之和是___________( 结果保留π,用含 n 式子表示 ).
初中数学浙教版九年级上册3.8弧长及扇形的面积(2)同步练习

初中数学浙教版九年级上册3.8弧长及扇形的面积(2)同步练习一、单选题(共10题;共20分)1.一个扇形的半径为6,圆心角为,则该扇形的面积是()A. B. C. D.2.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为4的“等边扇形”的面积为()A. 8B. 16C. 2πD. 4π3.如图,一根5米长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只羊(羊在草地上活动),那么羊在草地上的最大活动区域面积是()平方米.A. B. C. D.4.钟面上的分针的长为1,从9点到9点15分,分针在钟面上扫过的面积是()A. B. C. D.5.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A. B. 1﹣ C. ﹣1 D. 1﹣6.如图,圆的四条半径分别是OA,OB,OC,OD,其中点O,A,B在同一条直线上,若∠AOD=90°,∠AOC=3∠BOC,那么圆被四条半径分成的四个扇形的面积的比是()A. 1:2:2:3B. 3:2:2:3C. 4:2:2:3D. 1:2:2:17.如图所示,分别以边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为()A. B. C. D.8.如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A,B为圆心, AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的面积是()A. 16﹣2πB. 16﹣πC. 8﹣2πD. 8﹣π9.如图,扇形纸扇完全打开后,扇形ABC的面积为,∠BAC=150°,BD=2AD,则的长度为( )A. B. C. D.10.如图,P1是一块半径为1的半圆形纸板,在P1的右上端剪去一个直径为1的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P3、P4…P n…,记纸板P n的面积为S n,则S n-S n+1的值为( )A. B. C. D.二、填空题(共5题;共5分)11.一个扇形的半径为,面积为,则此扇形的圆心角为________.12.将长为8cm的铁丝首尾相接围成半径为2cm的扇形,则S扇形=________cm2.13.如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为________.(答案用根号表示)14.如图,扇形AOB的圆心角是为90°,四边形OCDE是边长为1的正方形,点C,E,D 分别在OA,OB,上,过A作AF⊥ED交ED的延长线于点F,那么图中阴影部分的面积为________.15.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连结AC,BD.若图中阴影部分的面积是,OA=2,则OC的长为________.三、解答题(共4题;共40分)16.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,CD=,求阴影部分的面积.17.△ABC和点S在平面直角坐标系中的位置如图所示:(1)将△ABC向右平移4个单位得到△A1B1C1,则点A1、B1的坐标分别是.(2)将△ABC绕点S按顺时针方向旋转90°,画出旋转后的图形;(3)求出线段AC在(2)的条件下所扫过的面积.18.如图是一种正方形地板砖图样,阴影部分是由两个扇形(四分之一圆)重叠产生的.(1)设正方形边长为a,用含a的代数式表示图中阴影部分的面积S;(2)现在要按照图样制作地板砖若制成边长为0.3m的地板砖,求每块地板砖中阴影面积(单位:m2,π≈3.14,精确到0.01)19.如图,AB为⊙O的直径,CD是弦,AB⊥CD于点E,OF⊥AC于点F,BE=OF.(1)求证:△AFO≌△CEB;(2)若BE=4,CD = 求:①⊙O的半径;②求图中阴影部分的面积.答案解析部分一、单选题1.【答案】C【解析】【解答】解:该扇形的面积S=,故答案为:C.【分析】根据扇形的面积公式计算即可.2.【答案】A【解析】【解答】解:∵扇形的弧长等于它的半径,当半径为4时,∴此扇形的弧长为4,∴此等边扇形”的面积为.故答案为:A.【分析】根据等边扇形”的定义,可知已知扇形的半径和弧长都为4,再利用扇形的面积公式:S扇形=(l为扇形的弧长,r为扇形的半径),代入计算可求解。
浙教版数学九年级上册《3.8 弧长及扇形的面积》教案1

浙教版数学九年级上册《3.8 弧长及扇形的面积》教案1一. 教材分析《3.8 弧长及扇形的面积》是浙教版数学九年级上册的一部分,本节课主要介绍了弧长和扇形面积的计算方法。
通过本节课的学习,学生能够理解弧长和扇形面积的概念,掌握计算弧长和扇形面积的方法,并能够应用于实际问题中。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和理解有一定的基础。
但是,对于弧长和扇形面积的计算方法,学生可能较为陌生,需要通过实例和练习来加深理解和掌握。
三. 教学目标1.理解弧长和扇形面积的概念。
2.掌握计算弧长和扇形面积的方法。
3.能够应用弧长和扇形面积的计算方法解决实际问题。
四. 教学重难点1.弧长和扇形面积的概念。
2.计算弧长和扇形面积的方法。
五. 教学方法采用问题驱动的教学方法,通过实例和练习来引导学生理解和掌握弧长和扇形面积的计算方法。
同时,运用合作学习的方式,让学生在小组讨论和实践中共同解决问题,提高学生的参与度和积极性。
六. 教学准备1.PPT课件。
2.练习题。
3.几何画板或者实物模型。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:一个自行车轮子一周的行驶距离是多少?引导学生思考和讨论,引出弧长的概念。
2.呈现(15分钟)通过PPT课件或者几何画板展示扇形的模型,引导学生观察和理解扇形的特征,讲解扇形的面积计算公式,并通过实例来演示计算过程。
3.操练(15分钟)让学生分组进行练习,每组选择一道练习题进行计算,其他组进行评价和讨论。
教师巡回指导,解答学生的疑问,并强调计算过程中的注意事项。
4.巩固(10分钟)通过PPT课件或者几何画板展示一些典型的练习题,让学生独立进行计算,教师选取部分学生的答案进行讲解和分析,巩固学生对弧长和扇形面积计算方法的掌握。
5.拓展(10分钟)让学生思考和讨论一些拓展问题,例如:如何计算一个圆的周长和面积?如何计算一个扇形的弧长和面积?引导学生运用所学的知识解决实际问题。
初三数学扇形和弧长练习题

初三数学扇形和弧长练习题1. 计算扇形的面积问题:一个半径为5cm的圆的一个扇形的圆心角为60度,求该扇形的面积。
解析:扇形的面积等于圆的面积乘以扇形的圆心角度数除以360度。
已知半径为5cm,圆心角为60度,代入公式可得:扇形面积 = 圆的面积 ×圆心角度数 / 360= π × 5^2 × 60 / 360= π × 25 × 60 / 360= π × 25 / 6≈ 13.09cm^2所以该扇形的面积约为13.09cm^2。
2. 计算弧长问题:一个圆的周长为10π cm,求圆的一段弧长。
解析:弧长等于圆的周长乘以弧所占圆周的比例。
已知圆的周长为10π cm,我们可以设所求弧长为x cm,代入公式可得:x / (10π) = 所求弧所占圆周的比例 = 弧长 / 圆的周长解得 x = 弧长= (10π) × 弧长 / 圆的周长= (10π) × 1 / 4π= 10 / 4= 2.5 cm所以该圆的一段弧长为2.5 cm。
3. 综合计算问题:一个半径为8cm的圆的两个扇形的圆心角分别为120度和60度,求这两个扇形的面积之和。
解析:根据第一题的解析,我们可以计算出两个扇形的面积,然后相加即可。
已知半径为8cm,圆心角分别为120度和60度,代入公式可得:第一个扇形的面积= π × 8^2 × 120 / 360= π × 64 × 120 / 360= π × 8 × 40= 320π cm^2第二个扇形的面积= π × 8^2 × 60 / 360= π × 64 × 60 / 360= π × 8 × 10= 80π cm^2两个扇形的面积之和 = 第一个扇形的面积 + 第二个扇形的面积= 320π + 80π= 400π cm^2所以这两个扇形的面积之和为400π cm^2。
弧长及扇形的面积公式

弧长及扇形的面积公式弧长的公式:弧长是弧上的一段弧线长度,表示为S,可以通过下面的公式来计算:S=rθ其中,S表示弧长,r表示弧的半径,θ表示圆心角(以弧度为单位)。
这个公式的推导可以通过以下几个步骤来得到:首先,我们将圆的半周长除以π,得到半径r之后,再用r乘以θ,即可得到弧长S。
需要注意的是,弧度是一个角度的度量单位,一个完整的圆的弧度是2π。
所以,如果我们知道了弧度的大小,就可以很容易地计算出弧长。
扇形的面积公式:扇形是由圆心角和半径所确定的一个图形,它是由一个圆的一部分构成,通常是从圆心到圆上的一段弧线,再与两个半径的延长线所围成的图形。
扇形的面积表示为A,可以通过下面的公式来计算:A=0.5r²θ其中,A表示扇形的面积,r表示扇形的半径,θ表示扇形的圆心角。
这个公式的推导可以通过以下几个步骤来得到:首先,我们将整个圆的面积除以2π,得到圆的半径r之后,再用r乘以圆心角的弧度θ,最后再除以2,即可得到扇形的面积A。
需要注意的是,公式中的θ必须使用弧度来表示。
因此,在计算扇形的面积之前,我们需要将角度转换为弧度。
将角度转换为弧度可以使用以下公式:弧度=角度×π/180。
另外,如果我们知道扇形的弧长S,也可以使用以下公式来计算扇形的面积A:A=0.5rS这个公式是根据弧长和扇形圆心角的关系来推导的。
总结:弧长和扇形的面积是圆的重要属性之一,它们可以通过简单的公式来计算。
在计算之前,我们需要明确圆的半径和圆心角(以弧度形式表示)。
然后,根据公式S=rθ和A=0.5r²θ或A=0.5rS,即可计算出弧长和扇形的面积。
24.4 弧长和扇形面积 (第2课时)九年级上册数学人教版

圆锥的侧面积计算公式的推导
1
(l为弧长,R
lR 为扇形的半径)
∵ S侧
2
又∵
1
S侧 2r l.
2
∴
l
侧
展开图
l
o
r
(r表示圆锥底面的半径, l 表示圆锥的母线长 )
圆锥的全面积计算公式
面
素养考点 1
圆锥有关概念的计算
例1 一个圆锥的侧面展开图是一个圆心角为120°、弧长为
20 的扇形,试求该圆锥底面的半径及它的母线的长.
2
2
是 15πcm ,全面积是 24πcm .
能力提升题
如图,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,求
圆锥全面积.
解:∵AB=AC,∠BAC=60°,
∴△ABC是等边三角形.
∴AB=BC=AC=8cm.
∴S侧=πrl=π×4×8=32π(cm2),
S底=πr2=π×4×4=16π(cm2),
∴=360°×
l
=288°
α
∴S=
πl2=2000π(cm2)
360°
解法二:
1
1
S= ×2πr·l= ×2π×40×50=2000π(cm2).
2
2
解法三:
S=πr·
l= π×40×50=2000π (cm2).
已知一个圆锥的底面半径为12cm,母线长为
20cm,则这个圆锥的侧面积为
2
384
∵∠BAC=90°,AB=AC,
∴AB=AC= 10
∴S扇形=
①
②
B
O
2.
90 10 2
360
浙教版-9年级-上册-数学-第3章《圆的基本性质》3.8 弧长及扇形的面积(1)-每日好题挑选

浙教版-9年级-上册-数学-第3章《圆的基本性质》3.8弧长及扇形的面积(1)--每日好题挑选【例1】如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了。
【例2】如图,一条公路的转弯处是一段圆弧(即图中CD ︵,点O 是CD ︵的圆心),其中CD=600米,E 为CD ︵上一点,且OE⊥CD,垂足为F,OF=3003米,则这段弯路的长度为。
【例3】如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A 在整个旋转过程中所经过的路径总长为。
【例4】如图,将边长为1cm 的等边三角形ABC 沿直线l 向右翻动(不滑动)至点B 重新落在直线l 上,点B 从开始运动到结束,所经过路径的长度为。
【例5】如图为一个半圆形工件,未搬动前直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m,半圆的直径为4m,则圆心O 所经过的路线长是m。
【例6】如图,扇形纸扇完全打开后,外侧两竹条AB,AC 的夹角为120°,AB 的长为30厘米,则弧BC 的长为厘米(结果保留π)。
【例7】如图,△ABC 和△A′B′C 是两个完全重合的三角尺,∠B=30°,斜边长为10cm.三角尺A′B′C 绕直角顶点C 顺时针旋转,当点A′落在AB 边上时,CA′旋转所构成的扇形的弧长为cm。
【例8】如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中CD ︵,DE ︵,EF ︵的圆心依次是A,B,C,如果AB=1,那么曲线CDEF 的长是。
【例9】如图①是由若干个相同的图形(图②)组成的美丽图案的一部分,图②中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图②中图形的周长为cm(结果保留π)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 扇形的面积公式
知识点 扇形的面积公式
如果扇形的半径为R ,圆心角为n °,扇形的弧长为l ,那么扇形面积S 的计算公式为S =________=________.
1.半径为6,圆心角为120°的扇形的面积是( ) A .3π B .6π C .9π D .12π
2.若扇形的面积为3π,圆心角为60°,则该扇形的半径为( ) A .3 B .9 C .2
3 D .3
2
类型一 利用扇形的面积公式求阴影部分的面积
例1 [教材补充例题] 如图3-8-3,在扇形AOB 中,∠AOB =90°,C 为OA 的中点,
CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC 长为半径作CD ︵
交OB 于点D ,若OA =2,则阴
影部分的面积为________.
图3-8-3
【归纳总结】求阴影部分的面积问题,有时需要将不规则的图形面积转化为规则图形的面积的和或差进行计算.
类型二弓形面积的计算问题
例2 [教材例4针对练] 如图3-8-4,水平放置的圆柱形排水管的截面半径为12 cm,截面中有水部分弓形的高为6 cm,则截面中有水部分弓形的面积为多少?(结果精确到1 cm2)
图3-8-4
【归纳总结】两类弓形面积的求法
(1)小于半圆的弧与弦组成的弓形,如图3-8-5①,用扇形的面积减去三角形的面积;
图3-8-5
(2)大于半圆的弧与弦组成的弓形,如图3-8-4②,用扇形的面积加上三角形的面积.
学了本节课,你知道解决与弧有关的不规则图形的面积问题应如何添加辅助线吗?
详解详析
【学知识】 知识点 n πR 2360 1
2lR
1.[答案]D
2.[解析]D 设扇形的半径为r ,扇形的面积=60πr 2
360=3π,解得r =3
2.
【筑方法】
例1 [答案]π12+3
2
[解析] 连结OE ,AE , ∵C 为OA 的中点, ∴∠CEO =30°, ∠EOC =60°,
∴△AEO 为等边三角形, ∴S 扇形AOE =60π×22360=2
3
π,
∴S 阴影=S 扇形AOB -S 扇形COD -(S 扇形AOE -S △COE ) =90π×22360-90π×12360-(60π×22360-1
2
×1×3)
=34π-23π+32=π12+32
.
例2 解:如图,连结OA ,OB ,过点O 作OD⊥AB,交AB 于点E , ∵弓形的高为6 cm ,截面半径为12 cm , ∴OE =OD -DE =12-6=6(cm). 在Rt △AOE 中,
AE =OA 2-OE 2=122-62=6
3(cm),
∴AB =2AE =12 3cm.
在Rt △AOE 中,∵OE =1
2OA ,
∴∠OAE =30°,∠AOE =60°, ∴∠AOB =2∠AOE=2×60°=120°,
∴S
弓形
=S
扇形
AOB -S △AOB =120π×122360-1
2
×12 3×6=144π
3
-36
3≈1443
×3.14-
36×1.73≈88(cm 2).
【勤反思】
[反思] 通常作弧两端的半径,将问题转化为扇形与三角形等规则图形的面积的和或差的问题来解决.
感谢您的支持,我们会努力把内容做得更好!。