【赢在课堂】高中数学 2.1.2 椭圆的简单几何性质检测试题 新人教A版选修1-1
人教a版数学【选修1-1】作业:2.1.2椭圆的简单几何性质(含答案)

2.1.2 椭圆的简单几何性质课时目标 1.掌握椭圆的范围、对称性、顶点、离心率等几何性质.2.明确标准方程中a ,b 以及c ,e 的几何意义,a 、b 、c 、e 之间的相互关系.3.能利用椭圆的几何性质解决椭圆的简单问题.1.椭圆的简单几何性质焦点的 位置焦点在x 轴上 焦点在y 轴上图形标准 方程范围 顶点轴长 短轴长=______,长轴长=______焦点 焦距对称性 对称轴是________,对称中心是______离心率2.直线与椭圆直线y =kx +b 与椭圆x 2a 2+y 2b2=1 (a >b >0)的位置关系:直线与椭圆相切⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1有______组实数解,即Δ______0.直线与椭圆相交⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1有______组实数解,即Δ______0,直线与椭圆相离⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1________实数解,即Δ______0.一、选择题1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( )A .5,3,45B .10,6,45C .5,3,35D .10,6,352.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( )A .x 236+y 216=1B .x 216+y 236=1C .x 26+y 24=1D .y 26+x 24=13.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A . 3B .32C .83D .234.如图所示,A 、B 、C 分别为椭圆x 2a 2+y2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为( )A.-1+52 B .1-22C.2-1D.225.若直线mx +ny =4与圆O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .06.已知F 1、F 2是椭圆的两个焦点。
高中数学 专题2.2.2 椭圆的简单的几何性质(2)测试(含

椭圆的简单的几何性质(2)(时间:25分,满分55分)班级 姓名 得分一、选择题1.椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是( ) A .±34 B .±32C .±22D .±34答案:A2.如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为( )A.15B.25C.55D.255解析:由条件知:F 1(-2,0),B (0,1),所以b =1,c =2, 所以a =22+12=5,所以e =c a=25=255.答案:D3.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相切B .相交C .相离D .不确定解析:选B 直线y =kx -k +1可变形为y -1=k(x -1),故直线恒过定点(1,1),而该点在椭圆x29+y24=1内部,所以直线y =kx -k +1与椭圆x29+y24=1相交,故选B .4.过椭圆x 2+2y 2=4的左焦点作倾斜角为π3的弦AB ,则弦AB 的长为( )A.67B.167C.716D.76答案:B5.已知F 是椭圆x 225+y 29=1的一个焦点,AB 为过其中心的一条弦,则△ABF 的面积最大值为( )A .6B .15C .20D .12解析:S =12|OF |·|y 1-y 2|≤12|OF |·2b =12.答案:D6.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则m n的值是( ) A .22B .233C .922D .2327解析:选A 由⎩⎪⎨⎪⎧mx 2+ny 2=1,y =1-x 消去y 得,(m +n )x 2-2nx +n -1=0.设M (x 1,y 1),N (x 2,y 2),MN 中点为(x 0,y 0), 则x 1+x 2=2n m +n ,∴x 0=n m +n, 代入y =1-x 得y 0=mm +n.由题意y 0x 0=22,∴m n =22,选A . 二、填空题7.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM |=1,且PM ·AM =0,则|PM |的最小值是________.解析:易知点A(3,0)是椭圆的右焦点.∵PM ·AM =0, ∴AM ⊥PM .∴|PM |2=|AP |2-|AM |2=|AP |2-1,∵椭圆右顶点到右焦点A 的距离最小,故|AP |min =2,∴|PM |min =3. 答案: 38.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为____________________.9.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ·FP 的最大值为________.解析:由x24+y23=1可得F(-1,0).设P(x ,y),-2≤x≤2,则OP ·FP =x2+x +y2=x2+x +31-x24=14x2+x +3=14(x +2)2+2,当且仅当x =2时,OP ·FP 取得最大值6. 答案:610.已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若FA →=3FB →,则|AF→|=________.解析:设点A (2,n ),B (x 0,y 0). 由椭圆C :x 22+y 2=1知a 2=2,b 2=1,所以c 2=1,即c =1,所以右焦点F (1,0). 所以由FA →=3FB →得(1,n )=3(x 0-1,y 0). 所以1=3(x 0-1)且n =3y 0. 所以x 0=43,y 0=13n .将x 0,y 0代入x 22+y 2=1,得12×⎝ ⎛⎭⎪⎫432+⎝ ⎛⎭⎪⎫13n 2=1.解得n 2=1,所以|AF →|=(2-1)2+n 2=1+1= 2.答案: 2 三、解答题11.已知直线l :y =kx +1与椭圆x 22+y 2=1交于M 、N 两点,且|MN |=423.求直线l 的方程.解:设直线l 与椭圆的交点M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +1,x 22+y 2=1,消y 并化简,得(1+2k 2)x 2+4kx =0, 所以x 1+x 2=-4k 1+2k2,x 1x 2=0.由|MN |=423,得(x 1-x 2)2+(y 1-y 2)2=329,所以(1+k 2)(x 1-x 2)2=329,所以(1+k 2)[(x 1+x 2)2-4x 1x 2]=329.即(1+k 2)⎝ ⎛⎭⎪⎫-4k 1+2k 22=329. 化简,得k 4+k 2-2=0,所以k 2=1,所以k =±1. 所以所求直线l 的方程是y =x +1或y =-x +1.12.已知中心在坐标原点,焦点在x 轴上的椭圆过点P (2,3),且它的离心率e =12.(1)求椭圆的标准方程;(2)与圆(x +1)2+y 2=1相切的直线l :y =kx +t 交椭圆于M ,N 两点,若椭圆上一点C 满足OM →+ON →=λOC →,求实数λ的取值范围.(3+4k 2)x 2+8ktx +(4t 2-48)=0. 设M (x 1,y 1),N (x 2,y 2),则有x 1+x 2=-8kt3+4k2, y 1+y 2=kx 1+t +kx 2+t =k (x 1+x 2)+2t =6t 3+4. 因为,λOC →=(x 1+x 2,y 1+y 2), 所以C ⎝⎛⎭⎪⎫-8kt (3+4k 2)λ,6t (3+4k 2)λ. 又因为点C 在椭圆上,所以,4k 2t 2(3+4k 2)2λ2+3t2(3+4k 2)2λ2=1⇒λ2=t 23+4k 2=1⎝ ⎛⎭⎪⎫1t 22+⎝ ⎛⎭⎪⎫1t 2+1. 因为t 2>0,所以⎝ ⎛⎭⎪⎫1t 22+⎝ ⎛⎭⎪⎫1t 2+1>1, 所以0<λ2<1,所以λ的取值范围为(-1,0)∪(0,1).。
2019-2020学年数学人教A版选修1-1作业与测评:2.1.2 椭圆的简单几何性质(1)

课时作业12 椭圆的简单几何性质(1)知识点一 由椭圆方程研究简单几何性质 1.椭圆25x 2+9y 2=1的范围为( ) A .|x |≤5,|y |≤3 B .|x |≤15,|y |≤13 C .|x |≤3,|y |≤5 D .|x |≤13,|y |≤15答案 B解析 椭圆方程可化为x 2125+y 219=1,所以a =13,b =15, 又焦点在y 轴上, 所以|x |≤15,|y |≤13.故选B.2.已知椭圆C 1:x 212+y 24=1,C 2:x 216+y 28=1,则( ) A .C 1与C 2顶点相同 B .C 1与C 2长轴长相等 C .C 1与C 2短轴长相等 D .C 1与C 2焦距相等 答案 D解析 由两个椭圆的标准方程,可知C 1的顶点坐标为(±23,0),(0,±2),长轴长为43,短轴长为4,焦距为42;C 2的顶点坐标为(±4,0),(0,±22),长轴长为8,短轴长为42,焦距为4 2.故选D.知识点二 由椭圆的几何性质求方程3.已知直线2x +y -2=0经过椭圆x 2a 2+y 2b 2=1(a >0,b >0)的上顶点与右焦点,则椭圆的方程为( )A.x 25+y 24=1B.x 24+y 2=1C.x 29+y 24=1 D.x 26+y 24=1答案 A解析 直线2x +y -2=0与坐标轴的交点坐标为(1,0),(0,2), 由题意得c =1,b =2, 所以a =b 2+c 2=5, 所以椭圆的方程为x 25+y 24=1.4.已知椭圆的中心在坐标原点,焦点在x 轴上,若长轴长为18,两个焦点恰好将长轴三等分,则该椭圆的标准方程是________.答案 x 281+y 272=1解析 由2a =18,得a =9. 又因为2c =183=6,所以c =3. 所以b 2=a 2-c 2=81-9=72.所以所求椭圆的标准方程为x 281+y 272=1. 知识点三 椭圆的离心率问题 5.椭圆x 2+4y 2=1的离心率为( ) A.32 B.34 C.22 D.23 答案 A解析 将椭圆方程x 2+4y 2=1化为标准方程得x 2+y214=1,则a 2=1,b 2=14,c =a 2-b 2=32,离心率e =c a =32.6.如图所示,F 是椭圆的左焦点,P 是椭圆上一点,PF ⊥x 轴,OP ∥AB ,则椭圆的离心率为________.答案 22解析 解法一:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则k AB =-ba .又PF ⊥x 轴,∴P 点的坐标为⎝ ⎛⎭⎪⎫-c ,b 2a ,∴k OP =-b 2ac .∵OP ∥AB ,∴k AB =k OP , 即-b a =-b 2ac ,∴b =c ,a 2=2c 2, 因此,a =2c ,∴e =22.解法二:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则P ⎝ ⎛⎭⎪⎫-c ,b 2a .又OP ∥AB ,∴∠POF =∠BAO , ∴Rt △OPF ∽Rt △ABO , ∴|PF ||BO |=|OF ||AO |,即b 2a b =c a ,即b a =c a ,∴b =c ,∴a =2c ,∴e =c a =22.7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1,F 2,若椭圆上存在一点P ,使得∠F 1PF 2=π3,求椭圆离心率的取值范围.解 在△F 1PF 2中,∠F 1PF 2=π3,由余弦定理,可得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3=(|PF 1|+|PF 2|)2-3|PF 1||PF 2|,由于|PF 1|+|PF 2|=2a ,所以4c 2=4a 2-3|PF 1|·|PF 2|.结合基本不等式,可得4a 2-4c 2=3|PF 1||PF 2|≤3⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=3a 2(当且仅当|PF 1|=|PF 2|=a 时等号成立),即a 2≤4c 2,可得e ≥12,又∵e <1,∴椭圆离心率的取值范围是⎣⎢⎡⎭⎪⎫12,1.一、选择题1.椭圆6x 2+y 2=6的长轴端点坐标为( ) A .(-1,0),(1,0) B .(-6,0),(6,0) C .(-6,0),(6,0) D .(0,-6),(0,6)答案 D解析 方程化为标准形式为x 2+y 26=1,其焦点在y 轴上,由于a 2=6,∴a = 6.∴长轴的端点坐标为(0,±6),故选D.2.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为( )A.x 22+y 24=1 B .x 2+y26=1C.x 26+y 2=1 D.x 28+y 25=1答案 B解析 椭圆9x 2+4y 2=36可化为x 24+y 29=1,可知焦点在y 轴上,焦点坐标为(0,±5),故可设所求椭圆方程为y 2a 2+x 2b 2=1(a >b >0),则c = 5.又2b =2,即b =1,所以a 2=b 2+c 2=6,则所求椭圆的标准方程为x 2+y26=1.3.如果椭圆x 2k +8+y 29=1(k >-8)的离心率为e =12,则k =( )A .4B .4或-54 C .-45 D .4或-45答案 B解析 若椭圆的焦点在x 轴上,则k +8-9k +8=14,解得k =4;若椭圆的焦点在y 轴上,则9-(k +8)9=14, 解得k =-54.所以k =4或k =-54.4.若椭圆的焦距、短轴长、长轴长构成一个等比数列,则椭圆的离心率为( )A.5-12B.3-12C.32 D.5+12 答案 A解析 依题意得,4b 2=4ac ,∴b 2a 2=c a ,即1-e 2=e .∴e 2+e -1=0,∴e =5-12(舍去负值).5.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8 答案 C解析 由题意得,F (-1,0), 设点P (x 0,y 0),则y 20=3⎝⎛⎭⎪⎫1-x 204(-2≤x 0≤2), 因为OP →=(x 0,y 0),FP →=(x 0+1,y 0), 所以OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+y 2=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=14(x 0+2)2+2,所以当x 0=2时,OP →·FP →取得最大值6. 二、填空题6.已知以坐标原点为中心的椭圆,一个焦点的坐标为F (2,0),给出下列四个条件:①短半轴长为2;②长半轴长为22;③离心率为22;④一个顶点坐标为(2,0).其中可求得椭圆方程为x 28+y 24=1的条件有________(填序号).答案 ①②③解析 只需保证a =22,b =2,c =2即可,而椭圆的顶点坐标为(0,±2),(±22,0),故①②③可求得椭圆方程为x 28+y 24=1.7.比较椭圆①x 2+9y 2=36与②x 29+y25=1的形状,则________更扁(填序号).答案 ①解析 x 2+9y 2=36化为标准方程得x 236+y 24=1,故离心率e 1=426=223;椭圆x 29+y 25=1的离心率e 2=23.因为e 1>e 2,故①更扁.8.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为________.答案 33解析 由题意,△PF 1F 2为直角三角形,且∠F 1PF 2=60°,所以|PF 2|=2|PF 1|.设|PF 1|=x ,则|PF 2|=2x ,|F 1F 2|=3x ,又|F 1F 2|=2c ,所以x =2c 3,即|PF 1|=2c 3,|PF 2|=4c3.由椭圆的定义知,|PF 1|+|PF 2|=2a ,所以2c 3+4c 3=2a ,即e =c a =33.三、解答题9.求椭圆9x 2+y 2=81的长轴长、短轴长、焦点坐标、顶点坐标和离心率.解 椭圆的标准方程为x 29+y 281=1,则a =9,b =3,c =a 2-b 2=62,长轴长:2a =18;短轴长:2b =6;焦点坐标:(0,62),(0,-62);顶点坐标:(0,9),(0,-9),(3,0),(-3,0).离心率e =c a =223. 10.如下图,已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.解 (1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有|OA |=|OF 2|,即b =c .所以a =2c ,e =c a =22.(2)由题知A (0,b ),F 1(-c,0),F 2(c,0), 其中,c =a 2-b 2,设B (x ,y ). 由AF 2→=2F 2B →⇔(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2,即B ⎝ ⎛⎭⎪⎫3c 2,-b 2. 将B 点坐标代入x 2a 2+y 2b 2=1, 得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1, 解得a 2=3c 2.①又由AF 1→·AB →=(-c ,-b )·⎝⎛⎭⎪⎫3c2,-3b 2=32⇒b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3, 从而有b 2=2.所以椭圆方程为x 23+y 22=1.。
高中数学 专题2.2.2 椭圆的简单的几何性质(1)测试(含解析)新人教A版选修2-1(2021年

高中数学专题2.2.2 椭圆的简单的几何性质(1)测试(含解析)新人教A 版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题2.2.2 椭圆的简单的几何性质(1)测试(含解析)新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题2.2.2 椭圆的简单的几何性质(1)测试(含解析)新人教A版选修2-1的全部内容。
椭圆的简单的几何性质(1)(时间:25分,满分55分) 班级 姓名 得分一、选择题1.已知椭圆错误!+错误!=1与椭圆错误!+错误!=1有相同的长轴,椭圆错误!+错误!=1的短轴长与椭圆错误!+错误!=1的短轴长相等,则( )A .a 2=25,b 2=16B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25D .a 2=25,b 2=9解析:选D 因为椭圆x 225+错误!=1的长轴长为10,焦点在x 轴上,椭圆错误!+错误!=1的短轴长为6,所以a 2=25,b 2=9.2.椭圆x 2+4y 2=1的离心率为( )A.错误!B.错误!C.错误! D 。
错误!答案:A3.已知椭圆C 的左、右焦点坐标分别是(-错误!,0),(错误!,0),离心率是错误!,则椭圆C 的方程为( )A 。
错误!+y 2=1B .x 2+错误!=1 C.错误!+错误!=1 D.错误!+错误!=1 解析:因为错误!=错误!,且c =错误!,所以a =错误!,b =错误!=1。
所以椭圆C 的方程为1322=+y x 。
答案:A4.已知椭圆x2a2+错误!=1(a>b>0)的左焦点为F1,右顶点为A,点B在椭圆上,且BF1⊥x轴,直线AB与y轴交于点P,其中错误!=2错误!,则椭圆的离心率为() A.错误!B。
2019-2020学年高二数学人教A版选修1-1训练:2.1.2 椭圆的简单几何性质(一) Word版含解析

2.1.2 椭圆的简单几何性质(一)课时过关·能力提升一、基础巩固1.椭圆x 22+y 24=1的短轴长为( )A .2B.2C.22D.42.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1B.x 24+y 23=1C .x 24+y 22=1D.x 24+y 23=13.已知椭圆中心在原点,一个焦点为(‒3,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是( )A .x 24+y 2=1B.x 2+y 24=1C .x 23+y 2=1D.x 2+y 23=1一个焦点为(‒3,0),∴焦点在x 轴上,且c =3.又长轴长是短轴长的2倍,即2a=2×2b ,∴a=2b.故选A .4.在椭圆中,若以焦点F 1,F 2为直径两端点的圆恰好过椭圆短轴的两个端点,则此椭圆的离心率e 等于( )A .12B.22C.32D.255b=c ,故a e =2c .所以=ca =22.5.椭圆x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的关系为( )A.有相等的长、短轴B.有相等的焦距C.有相同的焦点D.有相等的离心率,a=5,b=3,c=4,且焦点在x轴上.在椭,圆x 225+y 29=1中圆x 29-k +y 225-k =1中∵0<k<9,且25-k>9-k ,∴焦点在y 轴上,且c=4,∴两个椭圆有相等的焦距.6.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上的一个动点,且点P与椭圆长轴两顶点连线的斜率之积为‒12,则椭圆的离心率为( )A .32B.22C.12D.33P (x 0,y 0),则y 0x 0-a ·y 0x 0+a =‒12,化简得x 20a 2+2y 20a 2=1.又因为点P 在椭圆上,所a 2=2b 2,故e 以x 20a 2+y 20b 2=1,所以=22.7.若椭圆的中心在原点,其对称轴为坐标轴,长轴长为23,离心率为33,则该椭圆的方程为______________.,a =3.又e =33,∴c =1.∴b 2=2,∴椭圆的方程为x 23+y 22=1或y 23+x 22=1.+y 22=1或y 23+x 22=18.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交椭圆C 于点D ,且BF =2FD ,则椭圆C 的离心率为 .为x 2a 2+y 2b 2=1(a >b >0),则不妨设B (0,b ),F (c ,0).设D (x 0,y 0),∵BF =2FD ,∴(c ,-b )=2(x 0-c ,y 0).∴x 0=32c ,y 0=‒b2.代入椭圆方程得9c 24a 2+b 24b 2=1,∴c 2a 2=13,∴e =ca =33.9.已知F 1,F 2是椭圆的两个焦点,满足MF 1·MF 2=0的点M 总在椭圆内部,则椭圆离心率的取值范围是_________.F 1F 2为直径的圆在椭圆内,即b>c.MF 1·MF 2=0,可知以故a 2-c 2>c 2,所以0<e <22,即离心率的取值范围为(0,22).0,22)10.已知A 为y 轴上一点,F 1,F 2是椭圆的两个焦点,△AF 1F 2为等边三角形,且AF 1的中点B 恰好在椭圆上,求此椭圆的离心率.,连接BF 2.∵△AF 1F 2是等边三角形,且B 为线段AF 1的中点,∴AF 1⊥BF 2.又∠BF 2F 1=30°,|F 1F 2|=2c ,∴|BF 1|=c ,|BF 2|=3c .根据椭圆定义得|BF 1|+|BF 2|=2a ,即c +3c =2a ,∴ca =3‒1.∴椭圆的离心率e =3‒1.二、能力提升1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A.(±3,0)B.(0,±3)C.(±5,0)D.(0,±5)2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,椭圆C 与x 轴正半轴交于点A ,与y轴正半轴交于点B (0,2),且·=42+4,则椭圆C 的方程为( )A .x 24+y 22=1B.x 26+y 24=1C .x 28+y 24=1D.x 216+y 28=13.已知F 是椭⊥圆x 2a 2+y 2b 2=1(a >b >0)的左焦点,A 为右顶点,P 是椭圆上一点,且PF x 轴.若|PF|=14|AF |,则该椭圆的离心率是( )A .14B.34C.12D.32x=-c ,代入椭圆方程,解得y 2=b y=2(1-c 2a 2)=b 4a 2,即±b 2a .由PF ⊥x 轴,可设点P (-c ,b 2a ).又由|PF|=14|AF |,可得b 2a =14(a +c ),即4(a 2-c 2)=a 2+ac ,即(3a-4c )(a+c )=0,解得a =43c .故e =ca =34.4.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (‒5,4),则椭圆的方程为____________.e =c a =55,∴c 2a 2=a 2-b 2a2=15,∴5a 2-5b 2=a 2,即4a 2=5b 2.设椭圆的标准方程为x 2a 2+5y 24a2=1(a >0).∵椭圆过点P (-5,4),∴25a 2+5×164a 2=1.解得a 2=45.∴椭圆方程为x 245+y 236=1.y 236=1★5.已知椭△ABF 2的面积圆x 225+y 216=1的左、右焦点分别是F 1,F 2,弦AB 过点F 1.若是5,A ,B 两点的坐标是(x 1,y 1),(x 2,y 2),则|y 1-y 2|= .知,S △ABF 2=S △AF 1F 2+S △BF 1F 2=c |y 1‒y2|(A ,B 在x 轴上、下两侧),又S△ABF 2=5,∴|y 1‒y2|=5c =53.6.已知F 1,F 2是椭圆的两个焦点,过点F 1且与椭圆长轴垂直的直线交椭圆于A ,B 两点.若△ABF 2是等边三角形,求该椭圆的离心率.x 轴上,如图.∵AB ⊥F 1F 2,且△ABF 2为等边三角形,∴在Rt △AF 1F 2中,∠AF 2F 1=30°.令|AF 1|=x ,则|AF 2|=2x.∴|F 1F 2|=|AF 2|2-|AF 1|2=3x =2c .由椭圆定义,可知|AF 1|+|AF 2|=2a.∴e =2c2a =3x 3x=33.★7.设椭圆的中心在原点,焦点在x 轴上,离心率e =32,已知点P(0,32)到这个椭圆上的点的最远距离为7,求这个椭圆方程.为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点.由ca =32,a=2b ,|PM|2=x 2≤y ≤b ).得+(y -32)2=‒3(y +12)2+4b 2+3(‒b 若0<b y=-b 时|PM|2最大,b .<12,则当即(b +32)2=7,解得=7‒32>12,故矛盾若b ≥y=,4b 2+3=7,b 2=1,12,则当‒12时从而a 2=4.所求方程为x 24+y 2=1.。
2019-2020学年高二数学人教A版选修1-1训练:2.1.2 椭圆的简单几何性质(二) Word版含解析

6.若直线 3x-y-2=0 截焦点为(0,±5 2)的椭圆所得弦中点的横坐标是12,
则该椭圆的标准方程是_____________.
������2 ������2
解析:设椭圆的标准方程为������2 + ������2 = 1(������ > ������ > 0),
{由
������2 ������2
由椭圆的定义,得|AF|+|AF'|=2a.
所以 2a=|AF|+|AF'|=6+8=14.
������ 2������ 5
故离心率 e = ������ = 2������ = 7. 答案:57
8.已知椭圆 ax2+by2=1(a>0,b>0,且 a≠b)与直线 x+y-1=0 相交于 A,B 两点,C 是 AB 的中点
2.1.2 椭圆的简单几何性质(二)
课时过关·能力提升
一、基础巩固
������2 ������2
1.已知椭圆25 + 4 = 1的两个焦点为������1,������2,过点������2的直线交椭圆于������,������两点.若|������������| = 8,
则|������������1| + |������������1|的值为( )
②
由①②,得 a2=75,b2=25.
������2 ������2
故所求椭圆方程为25 + 75 = 1.
答案:
������2 25
+
������2 75
=
1
������2 ������2
7.已知椭圆 C:������2 + ������2 = 1(������ > ������ > 0)的左焦点为������,椭圆������与过原点的直线相交于������,������两点,
2019-2020学年数学人教A版选修1-1同步检测:2.1.2-1椭圆的简单几何性质

2.1.2 椭圆的简单几何性质第一课时 椭圆的简单几何性质填一填1.椭圆x 2a 2+y 2b 2=1(a >b >0)的简单几何性质(1)范围易知y 2b 2=1-x 2a 2≥0,故x 2a ≤1,即-a ≤x ≤a ;同理-b ≤y ≤b .故椭圆位于直线x =±a 和y =±b 所围成的矩形框里. (2)对称性在方程中,以-y 代替y 或以-x 代替x 或以-y 代替y 、以-x 代替x ,方程都不改变,故椭圆关于x 轴、y 轴和原点都对称.原点为椭圆的对称中心,也称为椭圆的中心.(3)顶点椭圆与x 轴、y 轴分别有两个交点,这四个交点即为椭圆与它的对称轴的交点,叫做椭圆的顶点.其中x轴上两个顶点的连线段称为椭圆的长轴,y轴上两个顶点的连线段称为椭圆的短轴,长轴长为2a,短轴长为2b.说明:依据椭圆的四个顶点,可以确定椭圆的具体位置.(4)离心率椭圆的焦距与长轴长的比称为椭圆的离心率.离心率能够刻画椭圆的扁平程度.椭圆的扁平程度由离心率的大小确定,与椭圆的焦点所在的坐标轴无关,e越大椭圆越扁,e越小椭圆越圆.2.椭圆x2a2+y2b2=1,y2a2+x2b2=1(a>b>0)的几何性质比较1.若点P (m ,n )在椭圆x 9+y 2=1上,则实数m 的取值范围是[-1,1].(×)解析:椭圆焦点在x 轴上,且a =3,所以-3≤m ≤3.故错误.2.已知点(3,2)在椭圆x 2a 2+y 2b2=1上,则点(-3,-2)不在椭圆上.(×)解析:根据椭圆的对称性可知点(-3,-2),(3,-2),(-3,2)均在椭圆上,故错误. 3.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是10,6,0.8.(√)解析:将方程25x 2+9y 2=225化为椭圆的标准方程为x 232+y 252=1,所以a =5,b =3,c =4,所以e =c a =45=0.8,长轴长2a =10,短轴长2b =6.4.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m =23.(×)解析:由题椭圆x 22+y 2m =1焦点在x 轴上,且离心率为12,故e =2-m 2=12⇒m =32,故错误.5.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为⎝⎛⎭⎫-233,233.(×)解析:因为点P 在椭圆x 22+y 23=1的外部,所以a 22+123>1,解得a >233或a <-233,故错误.6.已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是x 216+y 27=1.(×)解析:因为a =4,e =34,所以c =3.所以b 2=a 2-c 2=16-9=7.所以椭圆的标准方程是x 216+y 27=1或x 27+y 216=1.故错误.1.提示:一般的步骤(通常采用待定系数法):①确定焦点位置;②设出相应椭圆的方程(对于焦点位置不确定的椭圆可能有两种标准方程);③根据已知条件构造关于a ,b ,c 的关系式,利用方程(组)求出a ,b ,c .带入②即可.2.如何求解椭圆的离心率?提示:求解方法一般有两种:①易求a ,c ,代入e =ca 求解;易求b ,c ,由e =cb 2+c 2求解;易求a ,b ,由e =a 2-b 2a 求解.②列出含a ,c 的齐次方程,列式时常用公式b =a 2-c 2代替式子中的b ,然后将等式两边同时除以a 的n 次方(一般除以a 或a 2),从而利用e =ca转化为含e 的方程,解方程即可.但应注意0<e <1.思考感悟:1.椭圆6x 2+y 2=6的长轴的端点坐标是( ) A .(-1,0),(1,0) B .(-6,0),(6,0)C .(-6,0),(6,0)D .(0,-6),(0,6) 解析:因为椭圆的焦点在y 轴上,且a 2=6,所以长轴的两个端点坐标为(0,-6),(0,6).故选D. 答案:D2.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( ) A.13 B.33 C.22 D.12解析:因为2x 2+3y 2=m (m >0)⇒x 2m 2+y 2m 3=1,所以c 2=m 2-m 3=m 6,故e 2=13,解得e =33.故选B.答案:B3.椭圆以两坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为________.解析:由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69)答案:(0,±69)4.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为________.解析:由题意得|PF 2|=|F 1F 2|,所以2⎝⎛⎭⎫32a -c =2c ,所以3a =4c ,所以e =34. 答案:341.A .|x |≤5,|y |≤3B .|x |≤15,|y |≤13C .|x |≤3,|y |≤5D .|x |≤13,|y |≤15解析:椭圆方程可化为x 2125+y219=1,所以a =13,b =15,又焦点在y 轴上, 所以|x |≤15,|y |≤13.故选B.答案:B2.已知椭圆C 1:x 212+y 24=1,C 2:x 216+y 28=1,则( )A .C 1与C 2顶点相同B .C 1与C 2长轴长相等 C .C 1与C 2短轴长相等D .C 1与C 2焦距相等解析:由两个椭圆的标准方程,可知C 1的顶点坐标为(±23,0),(0,±2),长轴长为43,短轴长为4,焦距为42;C 2的顶点坐标为(±4,0),(0,±22),长轴长为8,短轴长为42,焦距为4 2.故选D.3.已知直线2x +y -2=0经过椭圆x a 2+y b2=1(a >0,b >0)的上顶点与右焦点,则椭圆的方程为( )A.x 25+y 24=1B.x 24+y 2=1 C.x 29+y 24=1 D.x 26+y 24=1 解析:直线2x +y -2=0与坐标轴的交点坐标为(1,0),(0,2), 由题意得c =1,b =2,所以a =b 2+c 2=5,所以椭圆的方程为x 25+y 24=1.答案:A4.已知椭圆中心在原点,一个焦点为(-3,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是( )A.x 24+y 2=1 B .x 2+y 24=1 C.x 23+y 2=1 D .x 2+y 23=1 解析:∵一个焦点为(-3,0), ∴焦点在x 轴上且c = 3.∵长轴长是短轴长的2倍,∴2a =2·2b ,即a =2b ,∴(2b )2-b 2=3.∴b 2=1,a 2=4,故所求椭圆的标准方程为x 24+y 2=1.答案:A5.已知椭圆的中心在坐标原点,焦点在x 轴上,若长轴长为18,两个焦点恰好将长轴三等分,则该椭圆的标准方程是________.解析:由2a =18,得a =9.又因为2c =183=6,所以c =3.所以b 2=a 2-c 2=81-9=72.所以所求椭圆的标准方程为x 281+y 272=1.答案:x 2+y2=16.椭圆x 2A.32 B.34 C.22 D.23 解析:将椭圆方程x 2+4y 2=1化为标准方程得x 2+y 214=1,则a 2=1,b 2=14,c =a 2-b 2=32,离心率e =c a =32. 答案:A7.如图所示,F 是椭圆的左焦点,P 是椭圆上一点,PF ⊥x 轴,OP ∥AB ,则椭圆的离心率为________.解析:方法一:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则k AB =-ba.又PF ⊥x 轴,∴P 点的坐标为⎝⎛⎭⎫-c ,b 2a ,∴k OP =-b 2ac .∵OP ∥AB ,∴k AB =k OP ,即-b a =-b 2ac,∴b =c ,a 2=2c 2,因此,a =2c ,∴e =22.方法二:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则P ⎝⎛⎭⎫-c ,b 2a . 又OP ∥AB ,∴∠POF =∠BAO ,∴Rt △OPF ∽Rt △ABO ,∴|PF ||BO |=|OF ||AO |,即b 2a b =c a , 即b a =c a ,∴b =c ,∴a =2c ,∴e =c a =22. 答案:228.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1,F 2,若椭圆上存在一点P ,使得∠F 1PF 2=π3,求椭圆离心率的取值范围. 解析:在△F 1PF 2中,∠F 1PF 2=π3,由余弦定理,可得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3=(|PF 1|+|PF 2|)2-3|PF 1||PF 2|,由于|PF 1|+|PF 2|=2a ,所以4c 2=4a 2-3|PF 1|·|PF 2|. 结合基本不等式,可得4a 2-4c 2=3|PF 1||PF 2|≤3⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=3a 2(当且仅当|PF 1|=|PF 2|=a 时等号成立),即a 2≤4c 2,可得e ≥12,又∵e <1,∴椭圆离心率的取值范围是⎣⎡⎭⎫12,1.一、选择题1.椭圆x 24+y 23=1的离心率为( )A .2 B. 3C.32D.12解析:由椭圆的方程x 24+y 23=1可得a =2,b =3⇒c =1,所以椭圆x 24+y 23=1的离心率为e =c a =12,故选D.答案:D2.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为( ) A.x 22+y 24=1 B .x 2+y 26=1 C.x 26+y 2=1 D.x 28+y 25=1 解析:椭圆方程9x 2+4y 2=36可化为x 24+y 29=1,可知焦点在y 轴上,焦点坐标为(0,±5),故可设所求椭圆方程为y 2a 2+x 2b2=1(a >b >0),则c = 5.又2b =2,即b =1,所以a 2=b 2+c 2=6,则所求椭圆的标准方程为x 2+y 26=1.答案:B3.已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为( )A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y23=1 解析:由题可知,椭圆的焦点在x 轴上,可设椭圆方程为x 2a 2+y 2b2=1(a >b >0).因为c a =63,c =2,所以a =3,b =a 2-c 2=1,所以椭圆C 的方程为x 23+y 2=1.故选A.答案:A4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 解析:由题可知e =c a =33,又△AF 1B 的周长为43,所以4a =43, 所以a =3,所以c =1.所以b 2=a 2-c 2=2.故C 的方程为x 23+y 22=1.故选A. 答案:A5.点P 为椭圆x 25+y 24=1上一点,以点P 及焦点F 1、F 2为顶点的三角形的面积为1,则P点的坐标为( )A.⎝⎛⎭⎫±152,1B.⎝⎛⎭⎫152,±1C.⎝⎛⎭⎫152,1D.⎝⎛⎭⎫±152,±1 解析:设P (x 0,y 0),∵a 2=5,b 2=4,∴c =1,∴S △PF 1F 2=12|F 1F 2|·|y 0|=|y 0|=1,∴y 0=±1,∵x 205+y 204=1,∴x 0=±152.故选D. 答案:D6.如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为( )A.15B.25C.55D.255解析:由条件知:F 1(-2,0),B (0,1),所以b =1,c =2,所以a =22+12=5,所以e =c a =25=255.故选D. 答案:D7.已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈⎣⎡⎦⎤π12,π6,则该椭圆的离心率e 的取值范围为( )A.⎣⎢⎡⎦⎥⎤3-12,32B.⎣⎢⎡⎦⎥⎤3-12,63 C.⎣⎡⎦⎤3-1,63 D.⎣⎡⎦⎤3-1,32解析:如图,因为AF ⊥BF ,所以点F 在以AB 为直径的圆上,则|OA |=|OB |=|OF |=c .根据图形的对称性知,|AF |+|BF |=2a .又因为∠ABF =α,所以|AF |+|BF |=|AB |·cos α+|AB |·sin α=2c (sin α+cos α)=2a ,因此e =c a =1sin α+cos α=12sin ⎝⎛⎭⎫α+π4.又因为α∈⎣⎡⎦⎤π12,π6,所以e ∈⎣⎡⎦⎤3-1,63,故选C. 答案:C二、填空题8.比较椭圆①x 2+9y 2=36与②x 29+y 25=1的形状,则________更扁(填序号). 解析:x 2+9y 2=36化为标准方程得x 236+y 24=1,故离心率e 1=426=223;椭圆x 29+y 25=1的离心率e 2=23.因为e 1>e 2,故①更扁. 答案:① 9.若椭圆x 2k +8+y 29=1的离心率e =13,则k 的值为________. 解析:由题意得c a =13⇒a 2=9c 2⇒a 2b 2=98,即k +89=98或k +89=89,解得k =0或k =178. 答案:0或178 10.已知椭圆的短半轴长为1,离心率0<e ≤32.则长轴长的取值范围为________. 解析:∵b =1,∴c 2=a 2-1,又c 2a 2=a 2-1a 2=1-1a 2≤34,∴1a 2≥14,∴a 2≤4, 又∵a 2-1>0,∴a 2>1,∴1<a ≤2,故长轴长为2<2a ≤4. 答案:(2,4]11.已知以坐标原点为中心的椭圆,一个焦点的坐标为F (2,0),给出下列四个条件:①短半轴长为2;②长半轴长为22;③离心率为22;④一个顶点坐标为(2,0).其中可求得椭圆方程为x 28+y 24=1的条件有________(填序号). 解析:只需保证a =22,b =2,c =2即可,而椭圆的顶点坐标为(0,±2),(±22,0),故①②③可求得椭圆方程为x 28+y 24=1. 答案:①②③12.与椭圆y 24+x 23=1有相同的离心率,且长轴长与x 28+y 23=1的长轴长相等的椭圆方程为________.解析:椭圆y 24+x 23=1的离心率为e =12,椭圆x 28+y 23=1的长轴长为4 2. 所以⎩⎪⎨⎪⎧c a =12,2a =42,解得a =22,c =2,故b 2=a 2-c 2=6. 又因为所求椭圆焦点既可在x 轴上,也可在y 轴上,故方程为x 28+y 26=1或y 28+x 26=1.答案:x 28+y 26=1或y 28+x 26=1 三、解答题13.求椭圆9x 2+y 2=81的长轴长、短轴长、焦点坐标、顶点坐标和离心率.解析:椭圆的标准方程为x 29+y 281=1,则a =9,b =3,c =a 2-b 2=62,长轴长:2a =18;短轴长:2b =6;焦点坐标:(0,62),(0,-62);顶点坐标:(0,9),(0,-9),(3,0),(-3,0).离心率e =c a =223. 14.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1、F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程. 解析:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有|OA |=|OF 2|,即b =c .所以a =2c ,e =c a =22. (2)由题知A (0,b ),F 1(-c,0),F 2(c,0),其中,c =a 2-b 2,设B (x ,y ).由AF 2→=2F 2B →⇔(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b 2,即B ⎝⎛⎭⎫3c 2,-b 2. 将B 点坐标代入x 2a 2+y 2b2=1, 得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1, 解得a 2=3c 2.①又由AF 1→·AB →=(-c ,-b )·⎝⎛⎭⎫3c 2,-3b 2=32 ⇒b 2-c 2=1,即有a 2-2c 2=1.②由①②解得c 2=1,a 2=3,从而有b 2=2.所以椭圆方程为x 23+y 22=1.15. (1)离心率e =34,椭圆上一点P 到两焦点距离的和是8; (2)椭圆过定点A ⎝⎛⎭⎫2,212、B ⎝⎛⎭⎫-3,74. 解析:(1)∵P 到两焦点的距离和为8,∴2a =8,a =4,又∵e =c a =34,c =3, b 2=16-9=7,∴椭圆方程为x 216+y 27=1或y 216+x 27=1. (2)设椭圆方程为x 2m +y 2n=1(m ≠n ≠0), ∵椭圆过点A ⎝⎛⎭⎫2,212、B ⎝⎛⎭⎫-3,74, ∴⎩⎪⎨⎪⎧ 4m +214n=19m +4916n =1解得⎩⎪⎨⎪⎧m =16n =7, ∴椭圆的方程为x 216+y 27=1. 16.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点为F 1(-3,0)、F 2(3,0),且该椭圆过点⎝⎛⎭⎫3,12. (1)求椭圆C 的标准方程;(2)若椭圆C 上的点M (x 0,y 0)满足MF 1⊥MF 2,求y 0的值.解析:(1)由题意得,(3)2a 2+⎝⎛⎭⎫122b2=1,且a 2-b 2=3, 解得a 2=4,b 2=1,所以椭圆C 的标准方程为x 24+y 2=1. (2)点M (x 0,y 0)满足MF 1⊥MF 2,则有MF 1→·MF 2→=0且y 0≠0,即(-3-x0,-y0)·(3-x0,-y0)=x20+y20-3=0①,+y20=1②,而点M(x0,y0)在椭圆C上,则x204取立①②消去x20,得y20=13≠0,所以y0=±33.。
[精品]新人教A版选修1-1高中数学强化训练2.1.2椭圆的简单几何性质和答案
![[精品]新人教A版选修1-1高中数学强化训练2.1.2椭圆的简单几何性质和答案](https://img.taocdn.com/s3/m/9a411bdbc8d376eeaeaa319e.png)
2.1.2 椭圆的简单几何性质课时目标 1.掌握椭圆的范围、对称性、顶点、离心率等几何性质.2.明确标准方程中a,b以及c,e的几何意义,a、b、c、e之间的相互关系.3.能利用椭圆的几何性质解决椭圆的简单问题.1.椭圆的简单几何性质焦点的焦点在x轴上焦点在y轴上位置图形标准方程范围顶点轴长短轴长=______,长轴长=______焦点焦距对称性对称轴是________,对称中心是______离心率2.直线与椭圆直线y =kx +b 与椭圆x 2a 2+y 2b 2=1 (a >b >0)的位置关系:直线与椭圆相切⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y2b2=1有______组实数解,即Δ______0.直线与椭圆相交⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y2b2=1有______组实数解,即Δ______0,直线与椭圆相离⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y2b2=1________实数解,即Δ______0.一、选择题1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5,3,45 B .10,6,45C .5,3,35D .10,6,352.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( )A .x 236+y 216=1B .x 216+y 236=1 C .x 26+y 24=1 D .y 26+x 24=13.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A .3B .32C .83D .234.如图所示,A 、B 、C 分别为椭圆x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为( )A.-1+52 B .1-22C.2-1D.225.若直线mx +ny =4与圆O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0 6.已知F 1、F 2是椭圆的两个焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 椭圆的简单几何性质
1.椭圆C1:=1与椭圆C2:x2+=1在扁圆程度上( )
A.C1较扁
B.C2较扁
C.C1与C2的扁圆程度一样
D.不能确定
答案:B
解析:∵C1的离心率e1=,C2的离心率e2=,且e1<e2,∴C2较扁.
2.已知椭圆C的左、右焦点坐标分别是(-,0),(,0),离心率是,则椭圆C的方程为( )
A.+y2=1
B.x2+=1
C.=1
D.=1
答案:A
解析:∵,且c=,
∴a=,b==1.
∴椭圆C的方程为+y2=1.
3.设F1,F2是椭圆E:=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )
A. B. C. D.
答案:C
解析:设直线x=与x轴交于点M,则∠PF2M=60°,
在Rt△PF2M中,PF2=F1F2=2c,F2M=-c,故cos 60°=,
解得,故离心率e=.
4.椭圆=1的一个焦点为F1,点P在椭圆上,如果线段PF1的中点M在y轴上,那么点M的纵坐标是( )
A.±
B.±
C.±
D.±
答案:A
解析:由=1知a=2,b=.
∴c=3,不妨取F1(-3,0),F2(3,0).
又PF1的中点M在y轴上,则OM∥PF2,
∴PF2⊥x轴.
设P(3,y P),则=1,
∴y P=±,故y M=±.
5.若直线y=x+与椭圆x2+=1(m>0且m≠1)只有一个公共点,则该椭圆的长轴长为( )
A.1
B.
C.2
D.2
答案:D
解析:联立方程消去y得(1+m2)x2+2x+6-m2=0.
由已知Δ=24-4(1+m2)(6-m2)=0,
解得m2=5或m2=0(舍).
∴椭圆的长轴长为2.
二、填空题
6.一个顶点为(0,2),离心率e=,坐标轴为对称轴的椭圆方程为.
答案:=1或=1
解析:(1)当椭圆焦点在x轴上时,
由已知得b=2,e=,
∴a2=,b2=4,∴方程为=1.
(2)当椭圆焦点在y轴上时,
由已知得a=2,e=,
∴a2=4,b2=3,∴方程为=1.
7.已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足0<<1,则|PF1|+|PF2|的取值范围
为.
答案:[2,2)
解析:由于0<<1,
所以点P(x0,y0)在椭圆+y2=1内部,且不能与原点重合.
根据椭圆的定义和几何性质知,|PF1|+|PF2|<2a=2,且|PF1|+|PF2|的最小值为点P落在线段F1F2上,此时|PF1|+|PF2|=2.
故|PF1|+|PF2|的取值范围是[2,2).
8.椭圆=1(a为定值,且a>)的左焦点为F,直线x=m与椭圆相交于点A,B,△FAB的周长的最大值是12,则该椭圆的离心率是.
答案:
解析:如图所示,设椭圆右焦点为F1,AB与x轴交于点H,则|AF|=2a-|AF1|,△ABF的周长为
2|AF|+2|AH|=2(2a-|AF1|+|AH|),
∵△AF1H为直角三角形,∴|AF1|>|AH|,仅当|AF1|=|AH|,即F1与H重合时,△AFB的周长最大,即最大周长为2(|AF|+|AF1|)=4a=12,∴a=3,而b=,∴c=2,离心率e=.
三、解答题
9.已知椭圆的中心为坐标原点,焦点在x轴上,斜率为1且过椭圆右焦点的直线交椭圆于A,B两点,且与m=(3,-1)共线,求椭圆的离心率.
解:设椭圆方程为=1(a>b>0),右焦点为(c,0),
则直线方程为y=x-c.
联立方程消去y得(a2+b2)x2-2a2cx+a2c2-a2b2=0.
设A(x1,y1),B(x2,y2),
则x1+x2=,y1+y2=x1+x2-2c=-2c=.
∵与m=(3,-1)共线,
∴(x1+x2)+3(y1+y2)=0.
∴2a2c-6b2c=0,∴a2=3b2.
∴c2=2b2.∴e2=.
∴椭圆的离心率为e=.
10.设椭圆C:=1(a>b>0)的右焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,=2.
(1)求椭圆C的离心率;
(2)如果|AB|=,求椭圆C的方程.
解:设A(x1,y1),B(x2,y2)(y1<0,y2>0).
(1)直线l的方程为y=(x-c),其中c=.
联立消去x得
(3a2+b2)y2+2b2cy-3b4=0.
解得y1=,y2=,
因为=2,所以-y1=2y2,
即=2²,
得离心率e=.
(2)因为|AB|=|y2-y1|,
所以².
由得b=a.
所以a=,得a=3,b=.
所以椭圆C的方程为=1.。