万有引力定律在天文学上的应用典型例题解析

合集下载

(物理)物理万有引力与航天练习题20篇含解析

(物理)物理万有引力与航天练习题20篇含解析

(物理)物理万有引力与航天练习题20篇含解析一、高中物理精讲专题测试万有引力与航天1.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到:(2)根据万有引力等于重力:,则:,,代入数据得2.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。

这颗卫星是地球同步卫星,其运行周期与地球的自转周期T 相同。

已知地球的 半径为R ,地球表面的重力加速度为g ,求该卫星的轨道半径r 。

【答案】22324R gTr π= 【解析】 【分析】根据万有引力充当向心力即可求出轨道半径大小。

【详解】质量为m 的北斗地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有:2224Mm G m r r Tπ=; 在地球表面:112Mm Gm g R= 联立解得:222332244GMT R gTr ππ==3.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr = 将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算4.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R= 对于嫦娥三号由万有引力等于向心力:2224GMm m rr T π=联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==5.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL=同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.6.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用7.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。

高中物理万有引力定律在天文学上的应用

高中物理万有引力定律在天文学上的应用

1、基本方法:①把天体的运动看成匀速圆周运动,其所需向心力由万有引力提供:②在忽略天体自转影响时,天体表面的重力加速度:,R为天体半径。

2、环绕天体的绕行速度,角速度、周期与半径的关系。

①由得∴r越大,②由得∴r越大,③由得∴r越大,3、三种宇宙速度①第一宇宙速度():v1= km/s,人造卫星在地面附近环绕地球做匀速圆周运动的速度。

②第二宇宙速度():v2= km/s,使物体挣脱地球束缚,在地面附近的最小发射速度。

③第三宇宙速度():v3= km/s,使物体挣脱太阳引力束缚,在地面附近的最小发射速度。

4、同步卫星的特点:①同步卫星的周期T=②同步卫星的高度H=③同步卫星的线速度V=④同步卫星一定都处在赤道上空(可证明)。

5、万有引力和重力:重力是由万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2g=G, g =GM/r2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g随物体离地面高度的增大而减小,即g h=GM/(r+h)2,比较得g h=()2·g在赤道处,物体的万有引力分解的两个分力F向和m2g 刚好在一条直线上,则有F=F向+m2g,所以m2g=F-F向=G-m2Rω自2因地球自转角速度很小G>>m2Rω自2,所以m2g= G假设地球自转加快,即ω自变大,由m2g=G-m2Rω自2知物体的重力将变小,当G=m2Rω自2时,m2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=,比现在地球自转角速度要大得多.典型例题1、万有引力定律及其适用条件:例1、如图所示,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?分析:把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.(1)有部分同学认为,如果先设法求出挖去球穴后的重心位置,然后把剩余部分的质量集中于这个重心上,应用万有引力公式求解.这是不正确的.万有引力存在于宇宙间任何两个物体之间,但计算万有引力的简单公式却只能适用于两个质点或均匀球体,挖去球穴后的剩余部分已不再是均匀球体了,不能直接使用这个公式计算引力.(2)如果题中的球穴挖在大球的正中央,根据同样道理可得剩余部分对球外质点m的引力上式表明,一个均质球壳对球外质点的引力跟把球壳的质量(7M/8)集中于球心时对质点的引力一样.解析:完整的均质球体对球外质点m的引力这个引力可以看成是:m挖去球穴后的剩余部分对质点的引力F1与半径为R/2的小球对质点的引力F2之和,即F=F1+F2.因半径为R/2的小球质量M/为,则,所以挖去球穴后的剩余部分对球外质点m的引力。

(完整版)万有引力定律经典例题

(完整版)万有引力定律经典例题

盘中心尺体査页成ftl 垃鰭藕吋’万科可力班*1那『史Jf骨=呼「黄金代樓*,其%表乐天弹表面的匪力加連讎2.中心天体质量和密度的估算⑴已知天体表面的重力加速度g 和天体半径R(2)已知卫星绕天体做圆周运动的周期 T 和轨道半径rMm 4 n4 n r 3① G ~^2 =吓r? M =苛 M 3 n 3 ② 尸4 3=乔R 33n Ri •火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知 ( )A •太阳位于木星运行轨道的中心B •火星和木星绕太阳运行速度的大小始终相等C •火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上, A错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B 错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的 比值是一个常数,C 正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面 积相等,不同行星在相同的时间内扫过的面积不相等,D 错误.答案:C2. (2016郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器•探测器升空1 .天体运动的分析方法G MR m= mg?天体质量:天体密度:“ gR 2M=旨3g 尸 4T GR③卫星在天体表面附近飞行时,r= R ,贝 y p=GT nN0.2题组训嫌提升能力天弹苕动的向心力来壽于天之间的万有引力 4^r-f后,先在近地轨道上以线速度 v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度 v '在火星表面附近环绕飞行•若认为地球和火星都是质量分布均匀 的球体,已知火星与地球的半径之比为 1 : 2,密度之比为5 : 7,设火星与地球表面重力加速度分别为g '和g ,下列结论正确的是()项正确,D 项错.答案:C3•嫦娥三号”探月卫星于 2013年12月2日1点30分在西昌卫星发射中心发射,将实 现“落月”的新阶段•若已知引力常量G ,月球绕地球做圆周运动的半径「1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径 匕、周期T 2,不计其他天体的影响,则根据题目条件可以( )A •求出“嫦娥三号”探月卫星的质量B .求出地球与月球之间的万有引力C .求出地球的密度 门3 r 23D.^=T 22不知道地球半径 r ,无法求出地球密度, C 错误;对4式得 g = 3G npR ,所以g ' : g = 5 : 14, A 、B 项错;探测器在大体表面飞行时,万有引力解析:在天体表面附近,重力与万有引力近似相等,由 GMRRm = mg , M = P 3 n R 3,解两G M R m - = mR , M = P 4 泯3,解两式得 v = 2^y G 3np,所以 v ' : v=\f28, C充当向心力,由 解析:绕地球转动的月球受力为 誉=M ' r 1 T 2 = ,已知 嫦娥三号”的周期和半径,可求出月球质量M ',但是所有的卫星A • g: g=4: 1B • g ': g = 10 : 7在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月 卫星质量无法求出, A 错误;已经求出地球和月球质量,而且知道月球绕地球做圆周运动 的半径r i ,根据F =可求出地球和月球之间的引力,B 正确;由开普勒第三定律即半长轴三次方与公转周期二次方成正比,前提是对同一中心天体而言,但是两个圆周运动 的中心天体一个是地球一个是月球,D 错误.答案:B Ir 反忠捉升j ---------------------------------------------------------------------------------------------------估算天体质量和密度时应注意的问题(1) 利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天 体的质量,并非环绕天体的质量.(2) 区别天体半径 R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r - R ;计算4天体密度时,V=:T R 3中的R 只能是中心天体的半径. L3______ 丿考点二人造卫星的运行 授课提示:对应学生用书第57页1. 人造卫星的a 、3、v 、T 与r 的关系1. 地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.N0.1梳理主干填准记牢GMm2.近地时GMm mg = -R2-ma > a = G r > a ’ 22 m w 2r m^2»GM = gR 2.⑵周期一定:与地球自转周期相同,即 T = 24 h = 86 400 s.(3) 角速度一定:与地球自转的角速度相同. (4) 高度一定:根据 = m 4T r 得r= 4,23x 104km ,卫星离地面高度 h =r - R ~ 6R(为恒量).(5) 绕行方向一定:与地球自转的方向一致. 2. 极地卫星和近地卫星(1) 极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2) 近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可 近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3) 两种卫星的轨道平面一定通过地球的球心.题组训嫌提升能力 运州I1.(2015高考福建卷)如图,若两颗人造卫星 a 和b 均绕地球做匀速圆周运动, a 、b 到地心O 的距离分别为「1、「2,线速度大小分别为 V 1、V 2,则()项正确,B 、C 、D 项错误.答案:A2. 2015年3月30号晚上9点52分,我国在西昌卫星发射中心用长征三号丙运载火箭, 将我国首颗新一代北斗导航卫星发射升空,于 31号凌晨3点34分顺利进入预定轨道.这 次发射的新一代北斗导航卫星,是我国发射的第17颗北斗导航卫星.北斗卫星导航系统空间段计划由35颗卫星组成,包括 5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步 轨道卫星•中地球轨道卫星和静止轨道卫星都绕地球球心做圆周运动,中地球轨道卫星离 地面高度低,则中地球轨道卫星与静止轨道卫星相比,做圆周运动的( )B .线速度小 D .向心加速度大N0.2解析:根据万有引力定律可得A .周期大 C .角速度小V 1 A.— V 2G 呼 r 2V 1 V 2,所以A解析:卫星离地面的高度越低,则运动半径越小•根据万有引力提供圆周运动向心力 24 2 ; 4 2 3得 G M$ = m* = m w 2r = m-T ^^ = ma ,则周期 T ="'‘石Mr ,知半径 r 越小,周期越小,故 A知半径r 越小,角速度越大,故 C 错误;向心加速度 a =学寻,知半径r 越小,向心加速度 越大,故D 正确.答案:D3•“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所•假设“空间 站”正在地球赤道平面内的圆周轨道上运行,其离地球表面的高度为同步卫星离地球表面 高度的十分之一,且运行方向与地球自转方向一致.下列说法正确的有( )A •“空间站”运行时的加速度小于同步卫星运行的加速度B •“空间站”运行时的速度等于同步卫星运行速度的 ,10倍C .站在地球赤道上的人观察到“空间站”向东运动D •在“空间站”工作的宇航员因不受重力而可在舱中悬浮速度,故A 错误;根据 G^Mm = m*得v =. GM ,离地球表面的高度不是其运动半径,所以线速度之比不是.10 : 1,故B 错误;轨道半径越大,角速度越小,同步卫星和地球自转 的角速度相同,所以空间站的角速度大于地球自转的角速度,所以站在地球赤道上的人观 察到空间站向东运动,故 C 正确;在“空间站”工作的宇航员处于完全失重状态,重力充 当向心力和空间站一起做圆周运动,故D 错误.答案:C—r 辰忠提升j -------------------------------------------------人造卫星问题的解题技巧,知半径r 越小,线速度越大,故 B 错误;角速度 3=解析:根据G Mm Gm “yr = ma 得 a =~rr ,知 空间站”运行的加速度大于同步卫星运行的加 错误;线速度 v =GMGM戸,(1) 利用万有引力提供向心力的不同表达式 2 2GMm v24 n r—== mr 3= m=^ = ma n r r T(2) 解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿 第二定律.①卫星的a n 、V 、3、T 是相互联系的,其中一个量发生变化,其他各量也随之发生 变化.⑶要熟记经常用到的常数,如地球自转一周为一天,绕太阳公转一周为一年,月球 绕地球公转一周为一月(27.3天)等.考点三卫星的发射和变轨问题 授课提示:对应学生用书第57页梳理主干填准记牢叩己|1. 第一宇宙速度(环绕速度)v i = 79 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度, 还是绕地面附近环绕地球做匀速圆周运动时具有的速度.2. 第二宇宙速度(脱离速度)V 2 = 11.2 km/s ,使卫星挣脱地球引力束缚的最小发射速度. 3. 第三宇宙速度(逃逸速度)V 3= 16! km/s ,使卫星挣脱太阳引力束缚的最小发射速度.-------------------------------------------1. 第一宇宙速度的两种计算方法 ^Mm. m vf 得 v 叫 /GM (1) 由 GR 2 = % 得 v = R.2(2) 由 mg = mR 得 v = . g R . 2. 卫星变轨的分析(1)变轨原因:当卫星由于某种原因速度突然改变时 (开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行.②a n 、 V 、 3、 T 均与卫星的质量无关,只由轨道半径r 和中心天体质量共同决定.2Mm v o 2 n o ⑵变轨分析:卫星在圆轨道上稳定时,G-^r = m? = m w 2r = m 〒2r.2①当卫星的速度突然增大时,vm*,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大•当卫星进入新的轨道稳定运行时,由GM 可知其运行速度比原轨道时减小,但重力势能、机械能均增加;②当卫星的速度突然减小时,> 疋,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小•当卫星进入新的轨道稳定运行时,由GM可知其运行速度比原轨道时增大,但重力势能、机械能均减小.1.(多选)(2015高考广东卷)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到 2v 时,可摆脱星球引力束缚脱离该星球•已知地球、火星两星球的质量比约为10 : 1,半径比约为2:1•下列说法正确的有( )A •探测器的质量越大,脱离星球所需要的发射速度越大B •探测器在地球表面受到的引力比在火星表面的大C .探测器分别脱离两星球所需要的发射速度相等D •探测器脱离星球的过程中,势能逐渐增大 解析:由GMRm = mvR 得,v = ;GRM , 2v = ',,2GM ,可知探测器脱离星球所需要的发射速度与探测器的质量无关, A 项错误;由F = GMm 及地球、火星的质量、半径之比可 做负功,引力势能增大, D 项正确.答案:BD 2.(多选)2013年12月2日我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,地面发射后奔向月球,在P 点从圆形轨道I 进入椭圆轨道n, Q 为轨道H 上的近月点•下列关于“嫦娥三号”的运动,正确的说法是 ( )N0.2報组训竦提升能力远川知,探测器在地球表面受到的引力比在火星表面的大, 探测器脱离两星球所需的发射速度不同,C 项错误;探测器在脱离两星球的过程中,引力B 项正确;由2GM” 盲可知,A •发射速度一定大于 7.9 km/sB •在轨道n 上从 P 到Q 的过程中速率不断增大C •在轨道n 上经过 P 的速度小于在轨道I 上经过 P 的速度D •在轨道n 上经过 P 的加速度小于在轨道I 上经过 P 的加速度 解析:“嫦娥三号”探测器的发射速度一定大于 7.9 km/s , A 正确•在轨道n 上从P到Q 的过程中速率不断增大,选项B 正确.“嫦娥三号”从轨道I 上运动到轨道n 上要减速,故在轨道n 上经过 P 的速度小于在轨道I 上经过 P 的速度,选项 C 正确.在轨道n 上经过P 的加速度等于在轨道I 上经过P 的加速度,D 错.答案:ABC3.(2016成都石室中学二诊)如图所示,在同一轨道平面上的三个人造地球卫星 A 、B 、C ,在某一时刻恰好在同一条直线上•它们的轨道半径之比为 说法中正确的是()B .三颗卫星具有机械能的大小关系为 E A V E B V E CC • B 卫星加速后可与 A 卫星相遇D • A 卫星运动27周后,C 卫星也恰回到原地点 解析: 根据万有引力提供向心力G M ^p = ma ,得 a = G r ,故 a A : a B : a c=2 :」2 :」2r r r A r B r c1 1 1=* :歹:32= 36 : 9 : 4,故A 错误;卫星发射的越高,需要克服地球引力做功越多,故机 械能越大,故 E A V E B V E C ,故B 正确;B 卫星加速后做离心运动,轨道半径要变大,不可C 的周期应为A 的周期的27倍,故D 错误.答案:B1 :2 : 3,质量相等,则下列能与A 卫星相遇,故 C 错误;根据万有引力提供向心力 _Mm 4 n= m*27周后, C 卫星也恰回到原地点,则A •三颗卫星的加速度之比为r ,得 T = 2 所以T C即T C = ■.27T A 若 A 卫星运动反忠捉升」航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨道上的运行速度变化由v=、代皿判断.(2) 航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速考点四天体运动中的双星或多星模型授课提示:对应学生用书第58页N0.1梳理主干牢固记忆1•模型构建片巾“ —GY绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.2. 模型条件(1) 两颗星彼此相距较近.(2) 两颗星靠相互之间的万有引力做匀速圆周运动.⑶两颗星绕同一圆心做圆周运动.3. 模型特点(1) “向心力等大反向”一一两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F1 = F2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.(2) “周期、角速度相同”一一两颗行星做匀速圆周运动的周期、角速度相等.(3) “半径反比” 一一圆心在两颗行星的连线上,且「1 + r2= L,两颗行星做匀速圆周运动的半径与行星的质量成反比.题组训练提升能力运用|1 •双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一 点做周期相同的匀速圆周运动•研究发现,双星系统演化过程中,两星的总质量、距离和 周期均可能发生变化•若某双星系统中两星做圆周运动的周期为 T ,经过一段时间演化后,两星总质量变为原来的 k 倍,两星之间的距离变为原来的 n 倍,则此时圆周运动的周期为( )解析:设两颗双星的质量分别为m i 、m 2,做圆周运动的半径分别为 r i 、「2,根据万有 m i m 24 nm i m 24 n引力提供向心力可得G ----------- = m i r i 2 , G ---------------- = m 2「2 2,联立两式解得 m i + m 2 =r i + r 22 1 r i + r 22 1变为原来的n 倍时,两星圆周运动的周期为T ' B 正确,A 、C 、D 错误.答案:B2.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常 可忽略其他星体对它们的引力作用•设四星系统中每个星体的质量均为 四颗星稳定分布在边长为 a 的正方形的四个顶点上•已知引力常量为 G.关于四星系统,下列说法正确的是()A •四颗星围绕正方形对角线的交点做匀速圆周运动B •四颗星的轨道半径均为aC ・四颗星表面的重力加速度均为 罟解析:其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点, 围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为 B 错误;在星体表面,根据万有引力等于重力,可得 G m m _= m ' g ,解得g =罟,故C故D 正确.4 n r i + r 24 n r i + r 2 GT 2,即T 2=,因此,当两星总质量变为原来的 k 倍,两星之间的距离G m i + m 2m ,半径均为 R , 正确;由万有引力定律和向心力公式得D •答案:ACD3•如图所示,双星系统中的星球 A 、B 都可视为质点.A 、B 绕两者连线上的 0点做匀 速圆周运动,A 、B 之间距离不变,引力常量为 G ,观测到A 的速率为v 、运行周期为T ,A 、B 的质量分别为m i 、m 2.⑴求B 的周期和速率.⑵A 受B 的引力F A 可等效为位于0点处质量为 m '的星体对它的引力,试求m '.(用 m i 、m 2 表示)解析:(1)设A 、B 的轨道半径分别为r i 、r 2,它们做圆周运动的周期 T 、角速度3都相同,根据牛顿第二定律有F A = m i 32r i , F B = m 2w 2r 2,即三=需故B 的周期和速率分别为:十 十 十m i r i m i vT B =T A =T,VB=3r= 3韦2 =石2m i + m 2⑵A 、B 之间的距离r = r i +「2= 匚厂r i ,根据万有引力定律有Gm i m 2 Gm i m 'F A=,m 23 2.m i + m 23答案:⑴T mv ⑵右辰忠捉升」解答双星问题应注意 “两等”“两不等”(1)双星问题的“两等” ①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力 大小总是相等的.⑵双星问题的“两不等” ①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半 径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.所以m '[随堂反馈]授课提示:对应学生用书第59页1. (2015高考重庆卷)宇航员王亚平在“天宫 1号”飞船内进行了我国首次太空授课, 演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为 h ,地球质量为M ,半径为R ,引力常量为 G ,则飞船所在处的重力加速度大小为( )GMm , /口GM解析:由 2= mg '得g ' =2, B 项正确.R +h 2 R +h 2答案:B2. (2015高考北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距 离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的公转周期B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度解析:地球的公转半径比火星的公转半径小,由知能TftHINO YAN|Ll>ANB.GM R + hC.GMm R + hD. GM T 2 GMm 2 n _尹=m — 2r ,可知地球的周期比火星的周期小,故 A 项错误;由響=m可知地球公转的线速度大,故B 项错误;由G%m = ma ,可知地球公转的加速度大,项错误;由G^^m = m w 2r ,可知地球公转的角速度大,故D 项正确.答案:D3 .已知地球质量为 M ,半径为 为G.有关同步卫星,下列表述正确的是R , 自转周期为 T ,地球同步卫星质量为 m ,引力常量A .卫星距离地面的高度为GM②由m i 32r i = m 232r 2知,由于 m i 与m 2一般不相等,故 r i 与「2 —般也不相等.B •卫星的运行速度等于第一宇宙速度C .卫星运行时受到的向心力大小为G M R2rD .卫星运行的向心加速度小于地球表面的重力加速度等于第一宇宙速度,同步卫星的运行速度小于第一宇宙速度,B 错误;同步卫星运行时的向心力大小为F 向=GMm C 错误;由G M?m = mg 得地球表面的重力加速度 g = G^,而R +h 2RR同步卫星所在处的向心加速度g ' =-GM -, D 正确.R + h 2答案:D4. (2015成都七中二诊)2013年12月2日,嫦娥三号探测器由长征三号乙运载火箭从西 昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察.假设嫦娥三号在环月圆轨道 和椭圆轨道上运动时,只受到月球的万有引力.则( )A .若已知嫦娥三号环月圆轨道的半径、运动周期和引力常量,则可以计算出月球的 密度B .嫦娥三号由环月圆轨道变轨进入环月椭圆轨道时,应让发动机点火使其加速C .嫦娥三号在环月椭圆轨道上P 点的速度大于 Q 点的速度D .嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小解析:根据万有引力提供向心力 G Mm = m^r ,可以解出月球的质量 M = ^7"2,由于 r I GI 不知道月球的半径,无法知道月球的体积,故无法计算月球的密度,故A 错误;嫦娥三号在环月段圆轨道上 P 点减速,使万有引力大于向心力做近心运动,才能进入环月段椭圆轨 道,故B 错误;嫦娥三号从环月椭圆轨道上P 点向Q 点运动过程中,距离月球越来越近,月球对其引力做正功,故速度增大,即嫦娥三号在环月段椭圆轨道上P 点的速度小于 Q 点的速度,故 C 错误;卫星越高越慢,第一宇宙速度是星球表面近地卫星的环绕速度,故嫦解析:GMm2 n 2 ,口 2= m(R + h) ~T 2得 R + h 2 13GMT 2h= j ZT - R ,A 项错误;近地卫星的运行速度娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小,故答案:D 5.—物体在距某一行星表面某一高度处由静止开始做自由落体运动,依次通过A 、B 、C 三点,已知 AB 段与BC 段的距离均为0.06 m ,通过AB 段与BC 段的时间分为0.2 s 与0.1 s ,求:(1)该星球表面重力加速度值;⑵若该星球的半径为 180 km ,则环绕该行星的卫星做圆周运动的最小周期为多少? 解析:(1)根据运动学公式,由题意可得 1x = V 1t 1 + 2gt代入数值可求得g = 2 m/s 2.Mm 2 n _⑵对质量为 m 的卫星有 = m — 2r可知当R = r 时卫星做圆周运动的最小周期为代入数据解得 T 最小=600 n . 答案:(1)2 m/s 2(2)600 n s[课时作业]授课提示:对应学生用书第243页一、单项选择题1. (2016成都市石室中学一诊)下列说法正确的是( )A •洗衣机脱水桶脱水时利用了离心运动B •牛顿、千克、秒为力学单位制中的基本单位C .牛顿提出了万有引力定律,并通过实验测出了万有引力常量D •理想实验是把实验的情况外推到一种理想状态,所以是不可靠的解析:洗衣机脱水时利用离心运动将附着在衣服上的水分甩掉,水做离心运动•故 A正确;米、千克、秒为力学单位制中的基本单位,而牛顿不是基本单位,故B 错误;牛顿D 正确.2x = V 1 t 1 + t 2 + 2g t 1+ t 2星球表面有Mm=m ' g提出了万有引力定律,卡文迪许通过实验测出了万有引力常量,故 C 错误;理想实验是把实验的情况外推到一种理想状态,是可靠的,故D 错误.答案:A2•欧洲天文学家在太阳系之外发现了一颗可能适合人类居住的行星,命名为“格利斯 581c ”.该行星的质量是地球的5倍,直径是地球的 1.5倍.设想在该行星表面附近绕行星圆轨道运行的人造卫星的动能为 E k1,在地球表面附近绕地球沿圆轨道运行的相冋质量的 人造卫星的动能为 E k2,则学为(E k2)A . 0.13B . 0.3C . 3.33D . 7.5解析:在行星表面运行的卫星其做圆周运动的向心力由万有引力提供 Mm v 2故有 G~r = m~,r r1所以卫星的动能为 E k = 2mv 2 = GMm =2rGM 地m故在地球表面运行的卫星的动能E k2 =2R 地答案:C 3.(2015高考天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状 态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示•当旋 转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表 面时相同大小的支持力•为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大在“格利斯”行星表面运行的卫星的动能GM 行m E k1 =E k1所以有E 2GM 行m2R 行GM 地m 2R 地M 行R 地 5 1• = — XM 地 R 行 11.51033.33.B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D •宇航员质量越大,旋转舱的角速度就应越小解析:宇航员站在旋转舱内圆柱形侧壁上,受到的侧壁对他的支持力等于他站在地球越大,需要的角速度越小, A 项错误,B 项正确.答案:B4. 一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速 1度大小减小为原来的2则变轨前后卫星的()A .轨道半径之比为 1 : 2B .向心加速度大小之比为 4 : 1C .角速度大小之比为 2 : 1D .周期之比为1 : 8解析:卫星绕地球做圆周运动过程中,万有引力充当向心力,严=2?豊=4,A 项错;6节平=ma? a =号単,所以鲁=16, B 项错;由开普勒第三T 4QT" = & D项正确;因为 T =」,角速度与周期成反比,故 号=8, C 项 12 8 GG 2错.答案:D5•美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适 合居住的行星“开普勒-226”,它每290天环绕着一颗类似于太阳的恒星运转一周,距离 地球约600光年,体积是地球的 2.4倍.已知万有引力常量和地球表面的重力加速度.根 据以上信息,下列推理中正确的是( )A •若能观测到该行星的轨道半径,可求出该行星所受的万有引力B .若该行星的密度与地球的密度相等,可求出该行星表面的重力加速度C .根据地球的公转周期与轨道半径,可求出该行星的轨道半径D •若已知该行星的密度和半径,可求出该行星的轨道半径 解析:根据万有引力公式 F =,由于不知道中心天体的质量,无法算出向心力,故A 错误;根据万有引力提供向心力公式 G^Mm = mg ,有g = G%,若该行星的密度与地球表面时的支持力,则mg = mr GJ ,C 、D 项错误;半径V 1 V 2G 132因此角速度与质量无=m^? v =。

(物理)高考必刷题物理万有引力定律的应用题含解析

(物理)高考必刷题物理万有引力定律的应用题含解析

(物理)高考必刷题物理万有引力定律的应用题含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:32GMvR.【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。

万有引力定律·典型例题解析

万有引力定律·典型例题解析

万有引力定律·典型例题解析【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下:(1)g (2)(3)r 60R 地面上物体的重力加速度=;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GMR GMrg 22αα(4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ;(5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果,求的值.αg解析:(1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力GMmr mg G Mmrm 22α的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目的条件可以用、ω或来表示.v r r T2224r 2π【例】月球质量是地球质量的,月球半径是地球半径的,在2181138.距月球表面14m 高处,有一质量m =60kg 的物体自由下落.(1)它落到月球表面需用多少时间?(2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)?解析:(1)4s (2)588N点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设mg GM m R mg GM m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的万有引力,设=.以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 22122214175S g .(2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N .跟踪反馈1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为:[ ]A .Gm 1m 2/r 2B .Gm 1m 2/r 12C .Gm 1m 2/(r 1+r 2)2D .Gm 1m 2/(r 1+r 2+r)22.下列说法正确的是[ ] A.地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动B.太阳是静止不动的,地球和其他行星都绕太阳运动C.地球是绕太阳运动的一颗行星D.日心说和地心说都是错误的3.已知太阳质量是1.97×1030kg,地球质量是5.98×1024kg,太阳和地球间的平均距离1.49×1011m,太阳和地球间的万有引力是_______N.已知拉断截面积为1cm2的钢棒力4.86×104N,那么,地球和太阳间的万有引力可以拉断截面积是_______m2的钢棒.4.下列说法正确的是[ ] A.行星绕太阳的椭圆轨道可以近似地看作圆形轨道,其向心力来源于太阳对行星的引力B.太阳对行星的引力大于行星对太阳的引力,所以行星绕太阳运转而不是太阳绕行星运转C.万有引力定律适用于天体,不适用于地面上的物体D.行星与卫星之间的引力,地面上的物体所受的重力和太阳对行星的引力,性质相同,规律也相同参考答案1.D 2.CD 3.3.54×1022;7.28×134.A。

高一物理万有引力定律在天文学上的应用 练习与解析2

高一物理万有引力定律在天文学上的应用 练习与解析2

万有引力定律在天文学上的应用练习与解析21.关于万有引力定律应用于天文学研究的历史事实,下列说法正确的是A.天王星、海王星和冥王星,都是运用万有引力定律,经过大量计算后发现的B.18世纪时人们发现太阳的第七颗行星的运动轨道总是同根据万有引力定律计算出来的结果有比较大的偏差,于是人们推测出在这颗行星的轨道外还有一颗行星C.太阳的第八颗行星是牛顿运用自己发现的万有引力定律,经过大量计算而发现的D.太阳的第九颗行星是英国剑桥大学的学生亚当斯和勒维列合作研究,利用万有引力定律共同发现的解析:天王星是在1781年发现的,而卡文迪许测出万有引力常量是在1789年,在此之前人们还不能用万有引力定律作具有实际意义的计算,选项A不正确,选项B正确.太阳的第八颗行星是在1846年发现的,而牛顿发现万有引力定律是在1687年,显然选项C的说法是不正确的.太阳的第九颗行星是英国剑桥大学的亚当斯和法国的天文爱好者勒维列利用万有引力定律计算出轨道位置,由德国的加勒首先发现的,选项D错误.答案:B2.若已知行星绕太阳公转的半径为r,公转的周期为T,万有引力常量为G,则可求出A.某行星的质量B.太阳的质量C.某行星的密度D.太阳的密度解析:由GrTmrMm22)π2(=可得中心天体太阳的质量:M=232π4GTr.答案:B3.设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,月球仍可看作是均匀的球体,月球仍沿开采前的圆周轨道运动,则与开采前相比A.地球与月球间的万有引力将变大B.地球与月球间的万有引力将变小C.月球绕地球运动的周期将变长D.月球绕地球运动的周期将变短解析:由万有引力定律F=GMm/r2可知,M与m之和不变时,当M=m时力F最大,当m减小、M增大时,力F 减小,选项B正确.由万有引力定律提供向心力GMm/r2=m4π2r/T2可得T2=4π2r3/GM,当地球质量增加时,月球绕地球运动的周期将变短,选项D正确.答案:BD4.一太空探测器进入了一个圆形轨道绕太阳运转,已知其轨道半径为地球绕太阳运转轨道半径的9倍,则太空探测器绕太阳运转的周期是A.3年B.9年C.27年D.81年解析;设绕太阳做匀速圆周运动的物体(行星或太空探测器等)质量为m,轨道半径为r,运转周期为T,若太阳质量为M,则物体绕太阳运转的运动方程为GrTmrMm22)π2(=,由此式可得223π4GM T r ==常量. 不难看出常量2π4GM与绕太阳运转的行星、太空探测器……的质量无关,这实际上是开普勒第三定律(太空探测器相当于一颗小行星),我们运用地球和探测器绕太阳运转时23T r 相等,即可求解.设地球绕太阳运转的轨道半径为r0,运转周期为T0=1年,已知太空探测器绕太阳运转的轨道半径r ≈9r0,设它绕太阳的运转周期为T ,则有: 230)9(T r =2030T r , T=39T0=27T0=27年. 答案:C5.已知地球半径为6.4×106 m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地心的距离为_______m.(结果只保留一位有效数字)解析:月球绕地球做圆周运动的向心力由万有引力提供,G r T m R Mm 222π4=,在地球表面处,物体的重力约等于万有引力:G 2R Mm=mg ,由以上两式联立解出r=3222π4T gR .由于本题是估算题,结果只要求一位有效数字,则可取g=10 m/s2,3.142≈10,T=30天=30×24×3600 s=2.5×106 s,由题知R=6.4×106 m 代入得r=4×108 m.答案:4×1086.两行星A 和B 是两均匀球体,行星A 的卫星a 沿圆轨道运行的周期为Ta ,行星B 的卫星b 沿圆轨道运行的周期为Tb.设两卫星均为各自中心星体的近地卫星.而且Ta ∶Tb=1∶4,行星A 和行星B 的半径之比RA ∶RB=1∶2,则行星A 和行星B 的密度之比B A ρρ:=_______,行星表面的重力加速度之比gA ∶gB=_______. 解析:卫星绕行星运动,由牛顿第二定律有 G R T m R Mm 222π4= ①行星的密度:ρ=3434R M⨯ ②由①②两式得ρ=2π3GT ③由③式得116)(2==A B BA T T ρρ. 如果忽略行星的自转影响,则可以认为行星表面物体的重力等于物体所受到的万有引力,故 mg0=G 2R mM,GM=R2g0 ④ 由②③④式得:18)(2=⋅=⋅=B A A B B A B A BA R R T T R R g g ρρ. 答案:16∶1 8∶17.行星的平均密度是ρ,靠近行星表面运行的卫星运转周期是T ,试证明ρT2是一个常量.证明:G ,π4,π4232222GT R M R T m R Mm ==G T GT R Mπ3,π3π34223===ρρ,故ρT2是常量.8.如果把地球绕太阳公转看作是匀速圆周运动,轨道平均半径约为1.5×108 km,已知万有引力常量G=6.67×10-11 N ·m2/kg2,则可估算出太阳的质量大约是多少?(结果取一位有效数字)解析:题干给出地球轨道半径:r=1.5×1011 m,虽没有直接给出地球运转周期数值,但日常知识告诉我们:地球绕太阳公转一周为365天.故T=365×24×3600 s=3.15×107 s,万有引力提供向心力G 22)π2(T mr rMm =, 故太阳质量: M=27113112232)102.3(107.6)105.1(1.344⨯⨯⨯⨯⨯⨯=-GT r π kg=2×1030 kg. 答案:2×1030 kg9.已知引力常量为G ,某星球半径为R ,该星球表面的重力加速度为g ,求该星球的平均密度是多大?解析:把该星球看作均匀球体,则星球体积为V=34πR3.设星球质量为M ,则其密度为ρ=V M,星球表面某质点(0质量为m )所受重力近似等于星球的万有引力G 2R Mm=mg,以上三式联立即得密度p=GR g π43. 答案:GR g π43。

高中物理万有引力定律在天体运动中的应用典型例题解析

高中物理万有引力定律在天体运动中的应用典型例题解析

万有引力定律在天体运动中的应用典型例题解析[例题1]两颗人造卫星的质量之比m1∶m2=1∶2,轨道半径之比R1∶R2=3∶1.求:(1)两颗卫星运行的线速度之比;(2)两颗卫星运行的角速度之比;(3)两颗卫星运行的周期之比;(4)两颗卫星运行的向心加速度之比;(5)两颗卫星运行的向心力之比.[思路点拨] 将卫星的运动近似看成匀速圆周运动,其所需向心力系万有引力,即应用时根据实际情况选用适当公式进行分析为求解此类问题的基本方法.[小结] 本题是典型地把天体(或卫星)的运动视为圆周运动,并应用万有引力等于向心力解题的题目.此方法主要用于计算天体的质量,讨论天体(或卫星)的速度、角速度、周期及半径等问题.在应用以上思路解题时,一般常采用比例计算法.[例题2]飞船沿半径为R的圆周绕地球运动,其周期为T.如果飞船要返回地面,可在轨道上某一点A处将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在B点相切,如图6-2所示.试求飞船由A点到B点所需的时间(已知地球半径为R0)?[思路点拨] 设飞船沿椭圆轨道运动时的周期为T′,因椭圆轨道故飞船由A点到B点所需的时间为[小结]分析天体运动的问题,基本方法是把天体的运动看成匀速圆周运动,所需向心力由万有引力提供,依此分析和求解.但同时也应注意开普勒行星运动三大定律也是解决有关天体运动的重要方法.[例题3] 如图6-3所示,某行星围绕太阳C沿椭圆轨道运行.它的近日点A离太阳的距离为a,行星经过近日点时的速率为vA,行星的远日点B离太阳的距离为b,求它经过远日点时速度的大小.[思路点拨]尽管该题是一个椭圆轨道问题,但我们仍可以利用太阳对行星的万有引力等于行星所需的向心力来解题.但此时要注意向心力公式中的r应为该点的曲率半径.解:设A、B点的曲率半径为r,于是有[小结]由于受圆周运动计算半径的习惯影响,解题者往往误认为椭圆在A、B两点的曲率半径就等于A、B两点至太阳C的距离.其实,椭圆的形状是左右对称的,A点与B点的曲率半径应该相等.。

万有引力定律应用例题

万有引力定律应用例题

万有引力定律应用例题
1. 在太阳系中,行星绕太阳运动的轨道是通过万有引力定律来解释的。

根据万有引力定律,行星受到太阳的引力作用,行星沿着椭圆轨道绕太阳运动。

2. 在地球表面上,物体受到地球的引力作用,加速度约为9.8米/秒²。

这是因为根据万有引力定律,地球的质量和物体的质量以及两者之间的距离决定了引力的大小和方向。

3. 人造卫星的运行也是通过万有引力定律来解释的。

卫星受到地球的引力作用,沿着地球表面上的轨道飞行,同时还要克服大气阻力和其他外力的影响。

4. 万有引力定律也可以用来解释天体的引力束缚。

例如,引力束缚是在双星系统中观察到的现象,其中两个星体以互相围绕的方式相互吸引。

5. 万有引力定律还可以用来解释地球潮汐现象。

地球和月球之间的引力相互作用导致地球潮汐的形成,使得海洋表面上的水产生周期性的涨落。

这些是万有引力定律在物理学和天文学中的一些应用例题。

它提供了解释和预测天体运动和相互作用的基本原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力定律在天文学上的应用·典型例题解析
【例1】在天体运动中,将两颗彼此距离较近的行星称为双星,由于两星间的引力等于向心力而使它们在运动中距离保持不变,已知两个行星的质量分别为M 1、M 2,相距为L ,求它们的角速度.
解析:如图44-2所示,设M 1的轨道半径为r 1,M 2的轨道半径为r 2,两个行星都绕O 点做匀速圆周运动的角速度为ω;由于两个行星之间的万有引力提供向心力,根据牛顿第二定律有
G M M r M r G M M r M r r r L
12
12
1121222
22212==+=ωω 以上三式联立解得
ω=
112L G M M L
()
+
点拨:双星之间的万有引力大小相等,方向相反,这两个行星之所以能在
引力作用下不相互靠近而保持距离不变,是因为它们都绕着二者联线上的同一点(质心)做匀速圆周运动,并且它们的角速度相同.这就是双星的物理模型.
【例2】某星球可视为球体,其自转周期为T ,在它的两极处,用弹簧秤测得某物体重为P ,在它的赤道上,用弹簧秤测得同一物体重为0.9P ,星球的平均密度是多少?
解析:设被测物体的质量为m ,星球的质量为M ,半径为R ;在两
极处时物体的重力等于星球对物体的万有引力,即=在赤道上,P G
Mm
R 2
因星球自转物体做匀速圆周运动,星球对物体的万有引力和弹簧秤对物
体的拉力的合力提供向心力,根据牛顿第二定律有-=G Mm
R 0.9P mR 42
π22
T
由以上两式解得星球的质量为=
根据数学知识可知星球的体积为=.
M V R 34094
3
23
2
ππPR G P P T (.)-
根据密度的定义式可得星球的平均密度为
ρππ=
==M V P P P GT GT 3093022
(.)- 点拨:重力是由于地球对物体的吸引而产生的力,但是不能认为重力就是
地球对物体的吸引力.严格地讲,只有在两极处,重力才等于地球对物体的万有引力;在地球的其他地方,重力都小于地球对物体的万有引力.由于重力与地球对物体的万有引力差别极小,所以通常近似视为重力等于地球对物体的万有引力.
【例3】宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离
为.若抛出时的初速增大到倍,则抛出点与落地点之间的距离为L 23
L .已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G .求该星球的质量M .
点拨:设抛出点的高度为h ,第一次平抛的水平射程为x ,则有x 2+h 2=L 2.由平抛运动规律得知,当初速增大到2倍,其水平射程也增
大到,则有+=.可得的值.设该星球上的重力加速
度为,由平抛运动的规律,有=得.由万有引力定律与牛顿第
2x (2x)h (3L)h g h gt g 2222
12 二定律,有=.式中为小球的质量,联立以上各式,解得=.
G Mm
R mg m M 2
23322
LR Gt
【例4】在地球某处海平面上测得物体自由下落高度h 所需的时间为t ,到某高山顶测得物体自由下落h 同样高度所需时间增加了Δt ,已知地球半径为R ,试求山的高度H .
点拨:在海平面,=
,自由落体时间=,在高山顶,′=,自由落体时间:+Δ='得=.
g t g t t H R GM R
h
g GM R H h g t
t 2
2
22()+∆
跟踪反馈
1.天体之间的作用力主要是_______力.
2.若已知行星绕太阳做匀速圆周运动的轨道半径为r ,运行周期为T ,则太阳的质量M 太=_______.
3.在月球上以初速度V 0竖直上抛一个小球,经过时间t 落回到抛出点,已知月球的半径为R ,试求月球的质量.
4.若已知太阳的一个行星绕太阳运转的轨道半径为r ,周期为T ,引力常量为G ,则可求得
[ ]
A .该行星的质量
B .太阳的质量
C .该行星的平均密度
D .太阳的平均密度
参考答案
[] 1 2 3 4B 跟踪反馈.万有引力.π..4223
2
02r GT V R Gt。

相关文档
最新文档