浅析电网自愈技术
电网故障自愈技术研究与应用

电网故障自愈技术研究与应用随着现代社会对电力的需求日益增长,电网的稳定供电已成为人们生产、生活的重要保障。
然而,由于各种原因所导致的电网故障却是无法避免的,而解决电网故障所带来的短暂停电或长时间停电等问题,则成为了目前电力行业需紧急解决的难题之一。
为了解决这一难题,电网故障自愈技术应运而生。
一、电网故障自愈技术的基本原理电网故障自愈技术是指在电网设备或电路出现故障时,通过自动化控制系统的迅速检测、判断和调整能力实现电网自身的恢复与修复,从而使电网系统能够快速实现故障自愈。
这种技术的基本原理是依靠自动化控制系统对故障信息的快速识别和处理,自动调整电路和电器设备的状态,以达到尽可能快地恢复电力供应的目的。
具体来说,电网故障自愈技术主要包括以下功能:1.故障自动定位与诊断:该功能通过对电网实时传感器采集的数据的集中分析来快速发现和定位电网故障,诊断出故障的原因和性质。
2. 电网自动恢复:在检测到故障时,自动化控制系统可以快速隔离发生故障的部分电网单元,从而避免故障扩大影响其他部分电网。
3. 自动重构电网拓扑结构:在发生故障时,自动化控制系统可以自动重构电网拓扑结构,以使电网尽可能多地保持运营状态,减少停电范围和时间。
4. 电网自动发电:当部分电网发生故障或停电时,自动化控制系统可以自动调节发电厂的出力,通过自动化控制系统快速排除电网故障。
二、电网故障自愈技术的意义和价值据相关数据显示,每年全球电力系统的故障事件会导致上百亿美元的经济损失,同时也会影响人们的生产和生活。
而电网故障自愈技术的诞生则为电力行业解决了困扰电力行业多年的电网故障问题,具有非常重要的意义和价值。
首先,电网故障自愈技术的应用可以减少电力故障事件的经济损失。
相比于传统电力系统,在故障发生时使用电网故障自愈技术进行处理,能够最大程度地减少故障带来的停电范围和时间,同时也可以快速排除故障,降低事故的影响程度,从而避免经济损失。
其次,电网故障自愈技术的应用可以提高电力系统的可靠性和稳定性。
智能配电网自愈控制技术分析

智能配电网自愈控制技术分析随着信息技术的迅猛发展,智能配电网自愈控制技术成为了电力系统领域的研究热点。
智能配电网自愈控制技术可以对电力系统进行快速故障识别、定位和恢复,提高了电力系统的可靠性和安全性。
本文将就智能配电网自愈控制技术的技术原理、关键技术和发展趋势进行分析。
一、技术原理智能配电网自愈控制技术是指在配电网中通过实时监测和分析系统运行状态,自动识别故障点以及对故障点进行快速定位和隔离的技术。
其核心原理是利用先进的传感器和智能控制算法,对配电网中的各个节点进行实时监测,并根据监测数据进行分析和处理,快速响应并自动对故障进行处理,以实现故障自愈的目的。
具体来说,智能配电网自愈控制技术主要包括以下几个方面的技术原理:1. 实时监测:利用先进的传感器和监测设备对配电网中的电压、电流、功率等参数进行实时监测,并将监测到的数据传输至中心控制系统。
2. 数据分析:中心控制系统利用先进的数据分析算法对监测数据进行处理和分析,识别出故障点并给出相应的控制命令。
3. 快速定位:一旦发生故障,中心控制系统能够快速定位故障点所在位置,并告知配电网中的开关设备进行相应操作。
4. 隔离恢复:中心控制系统通过远程操控配电网中的开关设备,将故障点进行隔离,并恢复其他正常运行的回路,以实现故障自愈。
二、关键技术智能配电网自愈控制技术的实现离不开一系列关键技术的支持,包括传感技术、通信技术、数据处理技术、控制算法等。
这些关键技术的发展和创新直接影响着智能配电网自愈控制技术的性能和应用效果。
1. 传感技术:智能配电网自愈控制技术需要大量的传感器来实现对配电网运行状态的实时监测,因此传感技术的发展和应用至关重要。
高精度、低成本的传感器技术能够有效提高系统的监测性能和可靠性。
2. 通信技术:配电网中各个设备之间需要进行实时通信,以便中心控制系统能够迅速响应并下达控制命令。
因此通信技术的稳定性和高效性对智能配电网自愈控制技术来说至关重要。
分布式配电网自愈控制技术分析

图1 典型馈线自动化系统图1中如果馈线线路两个开关间无其他开关,表明两个开关是相邻关系,例如,开关A、B;一组相邻开关组成馈线线路则为配电领域,用),(B A Q 表示;相应开关节点是此配电领域端点用a,b 表示;和一个开关相连领域是此开关关联领域,例如,图1中开关A-F,分布式配电网自愈控制技术分析基金项目:市教委 智能分布式配电自动化系统故障隔离与自愈模式研究(C-KY202320)。
进行有效的维修和修复。
(5)制定维修计划,包括定期维护和预防性维修等。
合理管理备件库存,确保备件的供应和更新,减少维修时间和停机损失。
3 结语图2 典型闭环运行馈线系统线系统有序供电,在隔离故障的时候,便能够使非故障区供电恢复;如果电源调节无法满足以上要求,自愈控制程度将信号传送至配电自动化主站,根据整个配网结构尽快将非故障区供电恢复。
1.2 快速自愈控制技术配置要求如果站在配电网自愈视角下,馈线系统自愈控制技术为基础,在配电网各分支馈线线路中,馈线系统自愈控制属于有效分布式配电网自愈控制系统。
其和主站集中自愈控制区别在于馈线线路配电终端不仅是自愈控制主体,而且还是算法指令执行者,体现的是每个配电终端互相配合的结果。
所以,要想实现快速自愈控制技术的高效运用要符合以下要求:(1)将断路器安装于变电站出口母线位置,配备延时保护继电保护设备;(2)馈图3 故障发生在主干线2.2 技术方案分布式馈线自动自愈控制技术运用的时候,在通基层消防队伍应用固定消防设备图4 故障发生在支线信方面的要求很高,在出现故障后,DTU间信息必须在10ms内完成高效交互,因此,此次案例中选用的是工业光纤以太网自愈环。
变电站限时速断保护延时最少也。
配电网自愈技术分析

—354—技术改造引言:智能电网一定要具备自愈技术,而且还要有一定的可靠性,要对于优化管理方面也要有一定的独特见解,并且还要与客户进行友好沟通,要有一定的电源接入特点。
由于配电网直接面向客户,它的自愈技术会直接影响到供电的质量问题,如自愈效果差,还会破坏与客户之间的沟通关系,因此深入了解配电网在发生故障时的自愈关键技术是具有重要意义。
随着现代经济社会的不断进步和发展,一旦停电这造成的经济损失是不可估量的,它的影响也会越来越大,所以因此对供电可靠性的要求越来越高。
目前,我国的供电可靠性与国际先进水平相比还有较大差距,因此,需有对技术进行分析。
一、配电网自愈技术的概念电网自愈的概念最早是国外的一种自愈系统,它是一种复杂的互动系统,同时也是联合研究出来的一种计划;或者说是需要少量人工的情况下,并且利用先进的技术手段和监控手段,对电网运行状态进行在线自愈,或者诊断和评估;它的目的是为了及时发现并快速调整,消除电网故障的安全隐患:在故障发生的过程当中,可以通过自愈技术进行智能的自动降低故障影响的程度;他就好像人体的免疫系统一样,自愈可以让配电网能够有抵御外界故障的能力,并且可以环节内部的危害,以此去保证电网的安全稳定运行和供电质量,在此过程中相关的技术人员可以通过此项技术减少客户与电力系统工作人员之间的矛盾,降低矛盾发生的概率,从而去完善配电网的自愈技术工程建设[1]。
二、配电网保护的发展现状继电保护的作用就是隔离故障区域切除故障元件,是配电网故障自愈技术的重要内容;目前配电网所采用的电流保护技术是三段式的,与熔断器的保护是一致的,闭环运行配电环网是有大型分布式电源的,联络线也是分布式的,电源的高度与配电线路是有一定差距的,配电线路采用电流差动保护。
电流保护可以通过动作与时间的二者之间的配合去实现保护动作的选择性;但是配电线路是非常短的,根据地点的不同,配电线路的电流短路差距是不同的,但是差别不大;上下级电流保护之间的动作很难进行一系列的配合,只能靠时间来进行配合,去实现保护的选择性;因此给保护动作带来了延时时长,这也导致了短路电流与电压之间的时差问题,加重了对配电设备的一系列危害,对于敏感负荷来说也是有一定危害在里面的,同时也给上级电网保护的整定带来困难。
如何使用智能电力技术实现电网的自愈能力

如何使用智能电力技术实现电网的自愈能力如何利用智能电力技术实现电网的自愈能力一、引言电力是现代社会的重要基础设施之一,电网作为电力系统的核心组成部分,其稳定性和安全性对于经济社会的发展至关重要。
然而,在现实应用中,电网面临着各种挑战和困难。
自然灾害、设备故障和人为因素等问题经常导致电网故障和事故的发生,给社会带来了严重的损失和不便。
因此,如何利用智能电力技术实现电网的自愈能力成为了当前亟待解决的问题。
二、自愈能力的意义自愈能力是指电网在遭受外界干扰后,迅速从干扰中恢复,并尽快恢复正常运行的能力。
拥有强大的自愈能力的电网不仅可以提高供电可靠性,还可以减少事故影响范围和时间,保障用户的用电需求和经济利益。
而实现电网的自愈能力离不开智能电力技术的支持和应用。
三、智能电力技术在电网自愈中的应用3.1 智能感知技术智能感知技术是电网自愈的基础,通过安装在电网各个环节的传感器和监测设备,实时感知电网运行状况和环境信息,并将数据传输到集中管理系统中进行分析和处理。
基于智能感知技术,电网可以实现快速故障诊断和准确定位,对故障点进行隔离和恢复操作。
例如,在发生线路短路故障时,智能感知技术可以及时捕捉到异常信号,并通过智能设备自动切除故障区域,阻断故障扩散,提高电网自愈能力。
3.2 智能调度技术智能调度技术是电网自愈的关键环节,通过对电力设备和供需信息的分析和调度,实现电网的优化运行和资源的合理分配。
智能调度技术能够快速响应异常情况,迅速调整电网运行模式,保障系统的稳定性和安全性。
例如,在电力设备故障或过载情况下,智能调度技术可以实时监测到负载变化,并通过合理调整供电路径和负荷分布,实现电网的自动切换和恢复。
3.3 智能保护技术智能保护技术是电网自愈的保障措施,通过智能保护装置和控制系统,实现对电网的监测和保护。
智能保护系统具备自动化和智能化的特点,能够识别和切除电网中的故障点,减少故障扩散范围和影响,提高电网的故障处理能力。
智能电网故障自愈与快速响应技术

智能电网故障自愈与快速响应技术随着全球能源体系的复杂化和智能化趋势,智能电网作为未来能源互联网的核心组成部分,其稳定性和可靠性成为了研究与实践的焦点。
智能电网故障自愈与快速响应技术作为保障电网安全稳定运行的关键,正逐步受到电力行业和科研界的高度重视。
以下从六个方面深入探讨智能电网故障自愈与快速响应技术的发展现状与未来趋势。
一、智能电网故障自愈概述智能电网故障自愈能力是指电网在遭遇异常情况时,能够自动检测、隔离故障,并迅速恢复供电服务,从而最小化停电时间和影响范围的能力。
这一技术基于高度集成的信息通信技术(ICT)、高级传感技术、自动化控制技术及算法,能够显著提升电网的韧性与灵活性,是智能电网区别于传统电网的关键特征之一。
二、故障检测与定位技术快速准确的故障检测与定位是实现智能电网自愈的前提。
当前,分布式光纤传感器、智能电表、无人机巡检系统等高科技装备被广泛应用于电网监测,它们能够实时采集电压、电流、温度等关键参数,并通过大数据分析和机器学习算法,快速识别异常信号,精确判断故障位置。
此外,基于广域测量系统的相量测量单元(PMU)技术,能够实现实时动态监测,为故障快速定位提供强有力的数据支持。
三、自适应保护与隔离策略在确定故障后,智能电网需立即启动自适应保护机制,迅速隔离故障区域,防止故障扩散。
这要求保护装置具有高度智能化和灵活性,能够根据电网实时状态动态调整保护策略。
微网、虚拟电厂等分布式能源管理系统在此过程中扮演重要角色,它们能够在主网故障时自动解列,形成孤岛运行模式,保证局部区域供电不受影响,同时辅助故障区域的快速恢复。
四、智能重合闸与自愈控制策略智能重合闸技术是故障后快速恢复供电的关键技术之一。
与传统的定时重合闸不同,智能重合闸结合了先进的通信和智能算法,能够根据故障性质、电网状态以及历史数据,自动决定最佳的重合闸时机和策略,显著提高重合成功率,减少不必要的重试次数,缩短恢复时间。
此外,基于的自愈控制策略能够实现电网资源的最优配置,动态调整负荷分配,确保在故障发生后电网运行的稳定性。
配电网线路故障快速自愈技术全解

1
什么是配电线路故障自愈?
什么是配电线路故障自愈?
指不需要或仅需少量的人为干预,利用先进的保护、控 制手段,出现故障后能够快速隔离故障、自我恢复,不 影响非故障用户的正常供电或将对其影响降至最小。
2
目前故障自愈的控制技术
就地控制技术
利用重合器与分段器的配合,进行顺序重合控制,实现故 障隔离与恢复供电。 有电压型、电流型、电压电流型三种型式 不需要通信条件,投资小,易于实施。
电源1 QF1 Relay 控制主站 F QF2 Q42 Relay R M U 4 电源2 Q11 Q12 R M U 1 Q21 Q22 R M U 2 Q31 Q32 R M U 3 Q41
CP PZK-360H PZK-360H PZK-360H PZK-360H
光纤工业以太网
13
快速故障自愈技术
8
关键技术
故障自愈的通用控制方法
研究能够适应不同的配电网络、不同的运行状态(开环、 闭环)的控制算法。 研究智能终端的自适应、自组织与扩展技术,实现协同控 制,提高控制响应速度。
9
基于分布式智能的故障自愈实现模式
模式1
快速故障自愈
模式2
无缝故障自愈
10
基于分布式智能的快速故障自愈技术
11
快速故障自愈技术
工作原理
F点故障,在出口保护(Relay)跳闸后,检测到故障电流的FTU发 起通信,向相邻的FTU请求相邻开关的故障检测信息。 通过交换信息,确认故障点前FTU检测到故障信息,而故障点后的 FTU没有检测到故障信息,从而确定故障点。 FTU控制故障点两侧的开关分闸,在相互确认后发出“故障隔离成 功”的消息;出口保护(Relay)和联络开关FTU在收到“故障隔离 成功” 消息后,分别控制出口开关与联络开关合闸,恢复故障区段 两侧供电。 故障处理完成,通过通信处理机(CP)将故障处理信息上报主站。
中压配电网故障自愈技术的研究论文

中压配电网故障自愈技术的研究论文我国近年来城乡电网改造与建设取得了长足进步,配电网规模持续增长,网架结构进一步改善,配电网供电能力得到提升,配电自动化技术取得了长足的进步,配电自动化和配电管理系统得到了初步应用,对于提高供电可靠性奠定了良好的基础。
智能电网是我国电网的发展趋势,智能电网的目标是实现电网运行的可靠、安全、经济、高效、环境友好和使用安全,“自愈”是智能电网最重要的特征,“自愈”电网需要在发生故障后,切除故障元件并且在很少或不用人为干预的情况下迅速恢复受影响的健全区域供电,从而几乎不中断对用户的供电服务。
一、实施配电网故障“自愈”的目的与意义尽管我国配电自动化和配电管理系统已经得到了初步应用,但是其故障处理仍不能满足“自愈”的要求,主要表现为:在实际当中故障信息往往是非健全的,而在这种条件下已有的故障定位技术的容错性差或不具备容错能力;故障恢复的自动化程度也不够高;对具有一定故障“自愈”功能的重合器相互配合模式馈线自动化装置的应用缺乏深入的研究,往往因整定缺陷而不能发挥其作用;对于实际应用中采取“自愈”方式的风险缺乏必要的评估。
为了解决上述问题,开展配电网故障“自愈”的研究,所取得的预期成果可对于进一步提高供电可靠性和配电网自动化水平具有重要意义。
配电网故障“自愈”完成后,研发的集中智能配电网故障“自愈”控制应用软件可以作为高级配电自动化系统的一个功能模块,提升配电自动化系统的功能;研发的分布智能配电网故障“自愈”控制装置可以进行产业化和推广应用;所提交的配电网故障“自愈”控制风险评估与防范措施研究报告有助于供电企业提高运行管理水平。
二、几种不同类型配电网实现“故障自愈”的理论和实践依据2.1.集中式智能配电网故障“自愈”控制。
根据配电自动化系统采集到的故障时刻前后的馈线开关状态信息、流过馈线开关的负荷信息和部分配电变压器工作信息,并利用上下游馈线段负荷变化的相关性,进行数据挖掘以实现在非健全信息条件下的配电网结线分析,得到比较可靠的网络拓扑及其变化信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Paper 0850TECHNOLOGIES OF THE SELF HEALING GRIDCleber ANGELO Peter SELEJANABB Inc. – USA ABB Inc. - USAcleber.angelo@ peter.selejan@ABSTRACTA self-healing grid refers to automated ways of removing temporary faults from the distribution power network. This paper will present three available technologies to help utilities improve overall system reliability by restoring power to the healthy portions of the grid. Three technologies were selected to support utilities’ achievement of service quality goals at different budgets and to start implementation of Smart Grid oriented FDIR – Fault Detection Isolation and Restoration- schemes. This will mitigate losses of revenues, penalties from regulators and cost of restoration while improving customer satisfaction. INTRODUCTIONSeventy five to eighty percent (75-80%) of the outages in distribution overhead networks are temporary in their nature. A temporary fault is considered to be an event that triggers a protection element and consequently trips the apparatus protection device (circuit breaker or recloser), driving the circuit voltage to zero, resulting in the loss of power for 3 to 5 minutes. If power is not restored within 5 minutes, the outage or fault is considered to be permanent, requiring substantial efforts on behalf of the utilities to fix the source causing that event.Traditionally, utilities have identified permanent faults on their networks from their own customers, who call to report a power outage after a permanent fault is isolated by a protection device. Armed with this information, the utility identifies the fault location, and implements restoration options/patch activities to mitigate the outage.This traditional restoration methodology incurs high operational cost for the utilities since several resources such as operations staff, crew members and dispatchers are involved in the restoration activities. The methodology, besides being costly, does not restore the power quickly enough to the healthy portion of the circuitry, increasing the risk for the utilities of incurring penalties from the regulatory agencies and unnecessary revenues losses.The following are the most common indices used by regulatory agencies and electric power utilities to measure reliability and performance:SAIDI – System Average Interruption Duration Index is the average outage duration for each customer served, and it is calculated as:SAIDI = Sum of all customer interruption durationsTotal number of customers servedSAIDI is measured in units of time, often minutes or hours. The median value for North American utilities is approximately 1.50 hours. SAIFI – System Average Interruption Frequency Index is the average number of interruptions that a customer would experience, and is calculated as:SAIFI = Total number of customer interruptionsTotal number of customers servedSAIFI is measured in units of interruptions per customer. It is approximately 1.10 interruptions per customer for North American utilities.CAIDI – Customer Average Interruption Duration Index is related to SAIDI and SAIFI, and is calculated as: CAIDI = Sum of all customer interruption durations = SAIDI CAIDI gives the average outage duration that any given customer would experience. CAIDI can also be viewed as the average restoration time.CAIDI is measured in units of time, often minutes or hours. The median value for the North American utilities is approximately 1.36 hours.All indices above are usually measured over the course of a year, according to IEEE Standard 1366-2003.The estimated financial impact of power outages is considered to be 79BUSD in the USA and is composed ofthe following segments:Figure 1: Financial Impact of Outages [4]By implementing self-healing technologies on the grid, the utilities can:Improve CAIDI and SAIDI metrics by up to 33% Decrease restoration times from 45 min to less than 3 minutes – see Figure 2 and 3 comparisonbelowReduce the cost of restorationDrastically reduce lost revenuesBoost the utility’s reputation with customers,Paper 0850stockholders and regulators. Figure 2: Typical utility response time without FDIRtechnologies[4]Figure 3: Typical utility response time using FDIRtechnologies [4]The challenge facing utilities is how to optimize the power distribution system to deliver greater reliability while lowering the operation costs and building a modern grid.SELF HEALING TECHNOLOGIES – VOLTAGE AND CURRENT BASED SOLUTIONDriven by the necessity to lower the SAIDI, SAIFI and CAIDI indices, utilities are investing in solutions that automatically switch and protect the network to reduce restoration time by eliminating temporary outages from the system.The microprocessor controlled reclosers are instrumental devices for the utility in its fight to increase grid reliability. Reclosers with Loop Control Module (LCM) logic - built-in restoration logic, based on fault and voltage information combined with timers and alternate settings groups - are capable of performing simple and cost effective FDIR schemes without the need for communication technologies. The distribution one-line diagram in Figure 4 represents a simple loop system that will be used for analysis of the voltage based FDIR scheme. This system consists of the following components:x Source – Substation breakers 1 and 2xSectionalizing recloserx Midpoint recloser xTie Point recloserFigure 4: Example of single tie distribution circuit A permanent fault out of the substation and before the sectionalizing reclosers would cause the Substation breaker 1 or 2 to operate (until lockout, granted those breakers have reclosing capabilities). This operation would cause loss of power for the entire feeder protected by the breaker, until repairs are completed and the fault is removed.The Loop Control scheme is designed to automatically detect loss of voltage and switch to an alternative source. Considering the example above of a fault just out of the fence of the substation, using the automatic transfer scheme the Substation breaker would lock out. During this brief outage the other normally closed reclosers on the line detect a loss of voltage and, after a time delay, switch to an alternate settings group. The alternate settings are designed to coordinate with the reclosers from the other side of the Tie Point recloser. The alternate setting includes a special feature that prevents reclosing for a short period after the line is re-energized from the alternate source. This is necessary as the fault still exists. Meanwhile, the normally open Tie recloser detects a loss of voltage on the faulted side. When the timer reaches its programmable setting, the Tie recloser closes, energizing the line from the alternate source. When the Tie point recloser closes, the faulted line will be energized. This will cause the closest recloser energized from the alternate source to trip and lock out. The fault has now been isolated between the substation breaker and the first Sectionalizing recloser. The customers between the faulted section of the line and tie recloser are restored and the crew can more easily determine the fault location. In order to help the crews find the fault, each recloser controller can be programmed with the feeder data to the next downstream device, allowing the controller to estimate the distance to the fault. These estimations are based on the available data and may not be accurate for evolving faults such as a line to line fault that eventually involves ground. The healthy portion of the circuitry is restored without any crew dispatch and the restoration time is reduced considerably.The following is another FDIR example based on voltage-Paper 0850 current and loop control capabilities. Let’s consider apermanent fault between the Sectionalizing and Midpointreclosers.The Sectionalizing recloser will go to lockout. TheMidpoint recloser recognizes a loss of voltage and after atime delay switches to its alternate settings. The normallyopen Tie recloser recognizes a loss of voltage and sensesthe voltage is still present from the other source side. TheTie recloser, after expiration of the dead bus timer, closes,re-energizing the line from the other source. The fault is stillpresent and the midpoint recloser trips in one operation, since it has previously switched to its alternate settings. The alternate settings have a switch on the fault timer – SWOFT. This setting blocks reclosing after the recloser is energized for a brief period of time. The midpoint recloser is the closest to the fault and will trip directly to the lockout state when the fault is energized. The fault has now been isolated and the customers connected to the healthy portion of the system are restored by the alternate source. Other fault locations and restoration schemes are considered on this voltage and loop scheme based solution.The FDIR technology described above is commonly available on microprocessor based reclosers and does not incur incremental communication infrastructure costs for the utilities to deploy such schemes.SELF HEALING TECHNOLOGIES – PEER TO PEER GOOSE BASED COMMUNICATIONS The distribution one-line diagram in Figure 5 represents a simple loop system that will be used for analysis of FDIR. This system consists of the following components: x Source – Substation breakers 1 and 2x Sectionalizing recloserx Midpoint recloserx Tie Point recloserAll recloser controllers in Figure 5 are IEC 61850 capable. One important benefit IEC 61850 provides is the use of interoperable Generic Object Oriented Substation Event – GOOSE messaging between recloser controls. GOOSE data is exchanged between recloser controls at deterministic time intervals and is based on a publisher/subscriber model. The publishing recloser control multicasts data over the local area network to different subscribing recloser controls. The content of the GOOSE message allows the receiving recloser controls to perform processing of the data in order to execute required actions.Figure 5: Example of single tie Distribution Circuit Consider an example of a permanent fault between the Substation 1 breaker and the Sectionalizer recloser.The Substation 1 circuit breaker recognizes the fault and goes through its reclosing shots to lockout (for illustration purposes we assume 3 operations to lockout for all devices). At the same time, the Substation feeder relay multicasts GOOSE messages that contain the Lockout information. The Sectionalizing recloser receives a Lockout message and automatically trips after t1 seconds, isolating the faulted zone on the source side of the Sectionalizing recloser. Lockout GOOSE from the Substation 1 breaker and Open position GOOSE from the Sectionalizing recloser are used as inputs for the Midpoint recloser. Two GOOSE messages from Substation 1 breaker and Sectionalizing recloser request the Midpoint recloser control to start its Switch-on-to-fault (SWOTF) timer, and if programmed, to use setting group 2 after t2 seconds.The Lockout GOOSE from the Substation 1 breaker and Open position GOOSE from the Sectionalizing recloser are used as an input for Tie Point recloser. Two GOOSE messages from the Substation 1 breaker and sectionalizing recloser request the Tie Point recloser control to use setting group 2 after t3 seconds.The un-faulted portion of the distribution feeder circuit between the Sectionalizing recloser and Tie Point recloser is picked back up per sequence of events on Figure 6.changes to Setting group2setting based on LockOut,OPEN GOOSEschanges to Settinggroup2 setting andcloses based onLockOut GOOSE Figure 6: Sequence of Events for GOOSE FDIR The restoration is completed expeditiously and without causing unnecessary fault stress on the grid by closing onto a permanent fault. The FDIR technology performance described above relies on the selected communications media and bandwidth available to transfer the GOOSE messages within a deterministic period of time. The decision is made locally by the devices without any latency from SCADA/DMS system, restoring power to unaffectedPaper 0850areas quickly. Some recloser controls with IEC 61850 capabilities have both technologies available – Voltage based loop schemes and GOOSE messaging for implementation of the FDIR scheme. Another advantage of using GOOSE message technology is the interoperability of different IEC 61850/GOOSE capable devices, without locking the utilities in a limited number of devices (reclosers, switches, breakers) employing proprietary solutions.SELF HEALING TECHNOLOGIES – SUBSTATION COMPUTER AND DMS/SCADAA SCADA and substation computer solution is a more comprehensive way to implement a mashed or complex network FDIR scheme. Substation computers can be programmed to make decisions based on information from feeder devices. They further report status and metrics back to the SCADA/DMS system which has a more comprehensive view of the network.. The SCADA/DMS is capable of making decisions based on additional factors involved such as feeder loads, overload conditions and demand response. Combined with the restoration implemented from the local substation computer, a meshed SCADA and substation computer application can decide what devices to switch to improve the power quality of the overall system - Volt Var control schemes. The benefits of the combined SCADA/DMS and local substation computer offer are faster feeder level response to an event and scalability to implement future distributed generation into the grid such as energy storage units, electrical vehicles, solar panels and Volt Var control already mentioned. The substation computer combined with SCADA/DMS application also reduces the engineering hours to set each feeder device to perform FDIR schemes. The SCADA and substation computer solution does not require the recloser controls to use interoperable communication protocols, as long as the substation computer can interface to each recloser control. This is often the case for utilities that are in the process of modernizing their grid. In terms of operating speed, the GOOSE based FDIR may be faster, however, the additional information available to the SCADA/DMS and substation computer application allows FDIR to be based on the larger picture, using the factors mentioned earlier.The complexity, budgets, and operational philosophy of the utility system will dictate the best solution in order to achieve the SAIDI, SAIFI and CAIDI goals. The three presented solutions offer tools for the utilities to address the different service areas’ needs and diversify the solutions implemented. The technology chosen and feeder device selection play a key role for the future full deployment ofthe utility roadmap for attaining a Smart Grid.Figure 7: Sample of Substation Computer andSCADA/DMS system SUMMARYThere are benefits to be gained at the presented levels of FDIR integration. In its simplest form, FDIR can be achieved without relying on communication technologies, however, it is possible to close onto a fault. Restoration time is based on the dead bus system timers.GOOSE based FDIR solves the problem of speed and closing onto a permanent fault, however, it requires that all recloser controllers be GOOSE capable and interoperable and the additional expense of a reliable communication network.The meshed SCADA and substation computer application allows integration of different generation of IEDs, and it is able to make better decisions based on power generation, demand, and real time power flow. Assuming that the infrastructure already exists, the cost and challenge will be in developing an application that will perform reliably under all possible system conditions.REFERENCES[1] Xiaoming Feng, William Peterson, "Volt VarOptimization Reduces Losses”, 2012, ABB Corporate Research – Raleigh – NC – USA.[2] Cleber Angelo, Fahrudin Mekic, Robert Goodin, KenAllowy, “Fault Detection, Isolation and Restoration in the Feeder (FDIR): Pick Your Technology”, 2011, 21st International Conference on Electricity Distribution – CIRED.[3] Cleber Angelo, Howard Self, “IEC61850 IncreasesGrid Reliability” 2012, Power System Design – PSD Magazine Europe – September 2012 pg 46.[4] Kristina Hamachi LaCommare and Joseph H. Eto,“Understanding the Cost of Power Interruptions to U.S. Electricity Consumers”, 2004 – Berkley Lab.[3] IEEE 1366-2003 "Guide for Electrical PowerDistribution Reliability Indices”.。